½ÃÀ庸°í¼­
»óǰÄÚµå
1804256

¼¼°èÀÇ Åº¼Ò¼¶À¯ ½ÃÀå : Àü±¸Ã¼ À¯Çü, Tow Size(1-12k, 24-48k, 48k ÀÌ»ó), ź¼º·ü, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° - ½ÃÀå ±Ô¸ð, »ê¾÷ ¿ªÇÐ, ±âȸ ºÐ¼® ¹× ¿¹Ãø(2025-2035³â)

Global Carbon Fiber Market: By Precursor Type, Tow Size (1-12 k, 24-48 k, >48 k), Modulus, End Users, Region-Market Size, Industry Dynamics, Opportunity Analysis and Forecast for 2025-2035

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Astute Analytica | ÆäÀÌÁö Á¤º¸: ¿µ¹® 392 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ź¼Ò¼¶À¯´Â ź¼Ò ¿øÀÚ·Î ¸¸µé¾îÁø ¸Å¿ì °¡´Ã°í ¸Å¿ì °­ÇÑ °áÁ¤Áú Çʶó¸àÆ®·Î ±¸¼ºµÈ ÷´Ü ÷´Ü ¼ÒÀçÀÔ´Ï´Ù. ¼¼°è ź¼Ò¼¶À¯ ½ÃÀåÀº Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, °Ç¼³, Àç»ý¿¡³ÊÁö µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ °æ·®È­ ¹× °í¼º´É ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î °­·ÂÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. 2024³â ½ÃÀå ±Ô¸ð´Â ¾à 34¾ï 7,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, ³»±¸¼º Çâ»ó, °æ·®È­, ¿¬ºñ È¿À² °³¼±ÀÌ ¿ä±¸µÇ´Â ¿ëµµ¿¡¼­ ź¼Ò¼¶À¯ÀÇ Ã¤ÅÃÀÌ È®´ëµÇ°í ÀÖÀ½À» º¸¿©ÁÖ¾ú½À´Ï´Ù. 2025-2035³âÀÇ ¿¹Ãø ±â°£ µ¿¾È 14.44%ÀÇ ¼ºÀå·üÀ» º¸À̸ç 2035³â¿¡´Â 153¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­ ¼¼ºÎ Á¤º¸

Àü±¸Ã¼ À¯Çüº°·Î´Â Æú¸®¾ÆÅ©¸±·Î´ÏÆ®¸±(PAN) °è¿­ ź¼Ò¼¶À¯°¡ 2024³â 73.31%·Î ¾ÐµµÀûÀÎ Á¡À¯À²À» º¸ÀÌ¸ç ½ÃÀåÀ» Áö¹èÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¾ÐµµÀûÀÎ ¿ìÀ§´Â Á¦Á¶ ±â¼úÀÇ Å« ¹ßÀü°ú PAN°è ¼¶À¯¿¡ ÀÇÁ¸ÇÏ´Â »ê¾÷¿ëµµÀÇ È®´ë¿¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ ºÎ¹®ÀÇ CAGRÀº 11.09%·Î, ½ÅÈï ¹× °í¼ºÀå ºÐ¾ß¿¡¼­ PAN ź¼Ò¼¶À¯ÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖÀ½À» º¸¿©ÁÝ´Ï´Ù.

2024³â¿¡´Â 24-48k Ä«Å×°í¸®°¡ 70.07%ÀÇ ³ôÀº Á¡À¯À²À» Â÷ÁöÇϸç Áö¹èÀûÀÎ ºÎ¹®À¸·Î ºÎ»óÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§´Â ź¼Ò¼¶À¯ Á¦Á¶ÀÇ °æÁ¦¼º°ú ±× ¿ëµµÀÇ ´Ù¾ç¼º¿¡¼­ ±Ùº»ÀûÀÎ º¯È­¸¦ º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù. ÀÌ ºÎ¹®Àº CAGR 11.16%ÀÇ °­·ÂÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖÀ¸¸ç, ÀÌ´Â ´Ù¾çÇÑ »ê¾÷¿¡¼­ ±× Á߿伺ÀÌ Ä¿Áö°í ÀÖÀ½À» º¸¿©ÁÝ´Ï´Ù. 24-48k Åä¿ì »çÀÌÁî´Â ƯÈ÷ ÀÚµ¿È­µÈ º¹ÇÕÀç·á Á¦Á¶ °øÁ¤ÀÇ ±â¹ÝÀÌ µÇ°í ÀÖÀ¸¸ç, ·Îº¿¿¡ ÀÇÇÑ ÀÚµ¿ ¹èÄ¡ ½Ã½ºÅÛ¿¡¼­ÀÇ È°¿ëÀÌ ´ëÇ¥ÀûÀÔ´Ï´Ù.

ÃÖÁ¾ »ç¿ëÀÚº°·Î´Â 2024³â Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ºÐ¾ß°¡ Áß¿äÇÑ À§Ä¡¸¦ Â÷ÁöÇϸç Àüü ¸ÅÃâ Á¡À¯À²ÀÇ 26.02%¸¦ Â÷ÁöÇß½À´Ï´Ù. ÀÌ ºÐ¾ß´Â ¼ºÀå °¡´É¼º¿¡¼­µµ ¼±µÎ¸¦ ´Þ¸®°í ÀÖÀ¸¸ç, ¿¹»ó CAGRÀÌ 11.23%·Î °¡Àå ³ôÀº ¼öÄ¡¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼öÄ¡´Â Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ºÐ¾ß°¡ ź¼Ò¼¶À¯ »ê¾÷ÀÇ Çõ½Å°ú ǰÁú ±âÁØ Çâ»óÀ» À̲ô´Â °¡Àå Áß¿äÇÑ ¿øµ¿·ÂÀÓÀ» º¸¿©ÁÝ´Ï´Ù. »ó¾÷¿ë Ç×°øÀÇ È¸º¹°ú È®ÀåÀº ź¼Ò¼¶À¯ ¼ÒÀçÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

ź¼º·üº°·Î´Â Ç¥ÁØ Åº¼º·ü(T300-T700) µî±ÞÀÌ 2024³â¿¡µµ 82.05%ÀÇ Å« Á¡À¯À²À» Â÷ÁöÇÏ¸ç ½ÃÀåÀ» Áö¹èÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¾ÐµµÀûÀÎ Á¸Àç°¨Àº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡ È¿°úÀûÀ¸·Î Àû¿ëµÉ ¼ö ÀÖ´Â ¶Ù¾î³­ ¹ü¿ë¼ºÀ» ÀÔÁõÇÏ´Â Áõ°ÅÀÔ´Ï´Ù. ºñ¿ë È¿À²¼ºÀÌ ³ô´Ù´Â Á¡µµ Ç¥ÁØ Åº¼º·ü µî±ÞÀÌ °úµµÇÑ ºñ¿ë ¾øÀÌ ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼º´ÉÀ» ¿øÇÏ´Â Á¦Á¶¾÷ü¿Í ¿£Áö´Ï¾î¿¡°Ô ¼±ÅõǴ ÀÌÀ¯¸¦ ´õ¿í È®°íÈ÷ ÇØÁÝ´Ï´Ù.

Áö¿ªº° ºÐ¼®

ź¼Ò¼¶À¯ ½ÃÀåÀÇ Áß½ÉÀº ¾Æ½Ã¾ÆÅÂÆò¾çÀ̸ç, ÀÌ Áö¿ªÀº 42% ÀÌ»óÀÇ ¾ÐµµÀûÀÎ ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§´Â ¶Ù¾î³­ Á¦Á¶ ´É·Â°ú ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡ °ÉÄ£ Àü·«Àû ÅëÇÕ¿¡ ÀÇÇØ µÞ¹ÞħµÇ°í ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÷´Ü ±â¼ú°ú ´ë±Ô¸ð »ý»ê üÁ¦¸¦ Ȱ¿ëÇÏ¿© ´Ù¾çÇÑ °í ¼ö¿ä »ê¾÷¿¡ ´ëÀÀÇÔÀ¸·Î½á ź¼Ò¼¶À¯ »ý»êÀÇ ¼¼°è Çãºê·Î¼­ ÀÔÁö¸¦ ´ÙÁö°í ÀÖ½À´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾ç Áß¿¡¼­µµ Áß±¹ÀÌ ¿¬°£ 16¸¸ 300ÅæÀ̶ó´Â ¾öû³­ »ý»ê ´É·ÂÀ» °®Ãá ÃÖ´ë »ý»ê±¹À¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¿©±â¿¡ ÀϺ»°ú Çѱ¹ÀÌ µÚ¸¦ ÀÌÀ¸¸ç, ÀÌ ¼¼ ³ª¶ó´Â Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, dz·Â¿¡³ÊÁö µî ¼¼°è ÁÖ¿ä »ê¾÷¿¡ ź¼Ò¼¶À¯¸¦ °ø±ÞÇÏ´Â °­·ÂÇÑ »ï°¢Æí´ë¸¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌµé ±¹°¡´Â ¾ö°ÝÇÑ Ç°Áú ¹× »ý»ê·® ¿ä°ÇÀ» ÃæÁ·Çϴ źźÇÑ Á¦Á¶ »ýŰ踦 ±¸ÃàÇÏ¿© ¼¼°è ½ÃÀå¿¡¼­ÀÇ ¸®´õ½ÊÀ» È®º¸Çϰí ÀÖ½À´Ï´Ù.

¼¼°èÀÇ Åº¼Ò¼¶À¯(Carbon Fiber) ½ÃÀåÀ» Á¶»çÇßÀ¸¸ç, ½ÃÀå °³¿ä, ½ÃÀå ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â °¢Á¾ ¿µÇâ¿äÀÎ ºÐ¼®, ½ÃÀå ±Ô¸ð ÃßÀÌ¿Í ¿¹Ãø, °¢Á¾ ºÎ¹®º° »ó¼¼ ºÐ¼®, °æÀï ±¸µµ, ÁÖ¿ä ±â¾÷ °³¿ä µîÀÇ Á¤º¸¸¦ Á¤¸®ÇÏ¿© ÀüÇØµå¸³´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ÇÁ·¹ÀÓ¿öÅ©

  • Á¶»ç ¸ñÀû
  • Á¦Ç° °³¿ä
  • ½ÃÀå ¼¼ºÐÈ­

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à : ¼¼°èÀÇ Åº¼Ò¼¶À¯ ½ÃÀå

Á¦4Àå ¼¼°èÀÇ Åº¼Ò¼¶À¯ ½ÃÀå : °³¿ä

  • ¹ë·ùüÀÎ ºÐ¼®
  • »ê¾÷ Àü¸Á
  • PESTLE ºÐ¼®
  • PorterÀÇ Five Forces ºÐ¼®
  • ½ÃÀå ¿ªÇаú µ¿Çâ
  • ½ÃÀå ¼ºÀå µ¿Çâ¿¡ ´ëÇÑ COVID-19ÀÇ ¿µÇâ Æò°¡
  • ½ÃÀå ¼ºÀå°ú Àü¸Á
  • °æÀï ´ë½Ãº¸µå

Á¦5Àå ¼¼°èÀÇ Åº¼Ò¼¶À¯ ½ÃÀå ºÐ¼® : Àü±¸Ã¼ À¯Çüº°

  • ÁÖ¿ä ÀλçÀÌÆ®
  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • PANÇü ź¼Ò¼¶À¯
    • ÇÇÄ¡°è ź¼Ò¼¶À¯

Á¦6Àå ¼¼°èÀÇ Åº¼Ò¼¶À¯ ½ÃÀå ºÐ¼® : Tow Sizeº°

  • ÁÖ¿ä ÀλçÀÌÆ®
  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • 1-12k
    • 24-48k
    • >48k

Á¦7Àå ¼¼°èÀÇ Åº¼Ò¼¶À¯ ½ÃÀå ºÐ¼® : ź¼º·üº°

  • ÁÖ¿ä ÀλçÀÌÆ®
  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • Ç¥ÁØ Åº¼º·ü(T300-T700)
    • Áß°£ ź¼º·ü(T800-T1100)
    • °íź¼ºÀ²(M35-M60)

Á¦8Àå ¼¼°èÀÇ Åº¼Ò¼¶À¯ ½ÃÀå ºÐ¼® : ÃÖÁ¾»ç¿ëÀÚº°

  • ÁÖ¿ä ÀλçÀÌÆ®
  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
    • ÀÚµ¿Â÷
    • ¾Ð·Â ¿ë±â ¹× ¼ö¼Ò ÀúÀå
    • dz·Â ¹× ¿¡³ÊÁö
    • ÀÎÇÁ¶ó ¹× Åä¸ñ
    • ¼ÒºñÀÚ

Á¦9Àå ¼¼°èÀÇ Åº¼Ò¼¶À¯ ½ÃÀå ºÐ¼® : Áö¿ªº°

  • ÁÖ¿ä ÀλçÀÌÆ®
  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • À¯·´
    • ºÏ¹Ì
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ³²¹Ì

Á¦10Àå À¯·´ÀÇ Åº¼Ò¼¶À¯ ½ÃÀå ºÐ¼®

  • ÁÖ¿ä ÀλçÀÌÆ®
  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • Àü±¸Ã¼ À¯Çüº°
    • Tow Sizeº°
    • ź¼º·üº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°

Á¦11Àå ºÏ¹ÌÀÇ Åº¼Ò¼¶À¯ ½ÃÀå ºÐ¼®

  • ÁÖ¿ä ÀλçÀÌÆ®
  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • Àü±¸Ã¼ À¯Çüº°
    • Tow Sizeº°
    • ź¼º·üº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°

Á¦12Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Åº¼Ò¼¶À¯ ½ÃÀå ºÐ¼®

  • ÁÖ¿ä ÀλçÀÌÆ®
  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • Àü±¸Ã¼ À¯Çüº°
    • Tow Sizeº°
    • ź¼º·üº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°

Á¦13Àå Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Åº¼Ò¼¶À¯ ½ÃÀå ºÐ¼®

  • ÁÖ¿ä ÀλçÀÌÆ®
  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • Àü±¸Ã¼ À¯Çüº°
    • Tow Sizeº°
    • ź¼º·üº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°

Á¦14Àå ³²¹ÌÀÇ Åº¼Ò¼¶À¯ ½ÃÀå ºÐ¼®

  • ÁÖ¿ä ÀλçÀÌÆ®
  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • Àü±¸Ã¼ À¯Çüº°
    • Tow Sizeº°
    • ź¼º·üº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°

Á¦15Àå ±â¾÷ °³¿ä

  • Advanced Composites Inc.
  • BASF SE
  • Formosa M Co. Ltd
  • Hexcel Corporation
  • Mitsubishi Chemical Carbon Fiber &Composites Inc.
  • Nippon Graphite Fiber Co. Ltd.
  • SGL Group
  • Solvay
  • Teijin Limited
  • Toray Industries Inc
  • Zoltek Corporation
  • ±âŸ ÁÖ¿ä ±â¾÷
LSH 25.09.11

Carbon fiber is a highly advanced material consisting of extremely thin, yet exceptionally strong, crystalline filaments made from carbon atoms. The global carbon fiber market is witnessing robust growth, fueled by rising demand for lightweight and high-performance materials across a variety of sectors, including aerospace, automotive, construction, and renewable energy. In 2024, the market was valued at approximately US$ 3.47 billion, reflecting the increasing adoption of carbon fiber in applications that require enhanced durability, reduced weight, and improved fuel efficiency. Looking ahead, the carbon fiber market is projected to achieve a remarkable market valuation of US$ 15.30 billion by 2035. This growth corresponds to a compound annual growth rate (CAGR) of 14.44% during the forecast period spanning from 2025 to 2035.

Noteworthy Market Developments

The carbon fiber market in 2025 is characterized by intense competition as companies strategically position themselves to capitalize on the sector's rapid growth. Industry leaders are actively pursuing partnerships that combine complementary strengths to drive faster innovation and expand market reach. A notable example occurred in June 2025 when Dow announced its plan to sell its 50% stake in the DowAksa carbon fiber joint venture to its Turkish partner, Aksa Akrilik Kimya. Valued at approximately $125 million, this transaction is expected to finalize in the third quarter of 2025.

Alongside these corporate realignments, regional expansions in production capacity are accelerating, especially across Asia and Europe, driven by surging demand for carbon fiber materials. In China, the importance of the carbon fiber market is growing rapidly, evidenced by PetroChina's announcement of plans to enter the industry through a joint venture with Changsheng (Langfang) Technology.

To better manage costs and ensure a stable supply of critical raw materials such as carbon fibers and resins, vertical integration has emerged as a key competitive strategy. Companies are investing heavily to control multiple stages of the value chain, reducing reliance on external suppliers and improving operational efficiencies. For instance, the French startup Fairmat, specializing in recycling carbon fiber composites, secured €51.5 million in a Series B funding round. This capital infusion is aimed at scaling up its innovative recycling technologies to produce high-quality recycled carbon fiber materials for a variety of industries.

Core Growth Drivers

The aerospace industry continues to be a central force propelling the demand for carbon fiber, driven by its relentless pursuit of materials that offer both lightweight characteristics and exceptional strength. These attributes are critical in the aerospace sector, where reducing aircraft weight directly translates into enhanced fuel efficiency and lowered greenhouse gas emissions. As environmental regulations tighten and airlines seek to optimize operational costs, the integration of advanced materials like carbon fiber composites has become indispensable in aircraft design and manufacturing.

In 2024, aerospace manufacturers are increasingly incorporating carbon fiber composites into a wide range of aircraft components, including fuselage panels, wings, and interior structural elements. The use of carbon fiber in these applications allows for substantial weight reductions without compromising structural integrity or safety. This superior strength-to-weight ratio not only improves overall aircraft performance-such as increased range, payload capacity, and maneuverability-but also contributes to lower fuel consumption. Consequently, airlines benefit from reduced operating expenses and a smaller carbon footprint, aligning with both economic and environmental objectives.

Emerging Technology Trends

The production of carbon fiber is known for its extreme energy intensity, which profoundly influences both sustainability concerns and cost competitiveness within the carbon fiber market. The energy-intensive nature of manufacturing processes not only contributes to higher production costs but also raises environmental challenges, making sustainability a critical focus for industry stakeholders. In 2024, addressing these challenges has become a priority, leading to significant advancements in recycling technologies that are reshaping the carbon fiber industry.

Recycling methods for carbon fiber have evolved to become increasingly efficient and cost-effective, enabling the recovery and reprocessing of fibers from end-of-life composite materials. Traditional disposal methods, which often involved landfilling or incineration, are being replaced by processes that reclaim usable carbon fibers without significantly degrading their mechanical properties. Techniques such as pyrolysis, solvolysis, and mechanical reclamation are gaining traction, allowing manufacturers to extract carbon fibers that can be reintegrated into the production cycle.

Barriers to Optimization

Carbon composites have become integral materials across a variety of industries, including aerospace, automotive, construction, oil and gas, and wind energy, due to their exceptional combination of high performance and lightweight characteristics. However, despite their advantages, the manufacturing process of carbon fiber remains costly, significantly impacting the overall price of carbon composite products. This elevated cost acts as a major barrier to broader adoption, preventing many industries from fully integrating carbon composites into their products and infrastructure.

The high price of carbon fiber is closely linked to both the yield and the cost of the precursor material used in its production. Polyacrylonitrile (PAN) is currently the predominant precursor, but the conversion process from PAN to carbon fiber has an efficiency rate of only about 50%. This low conversion efficiency means that a significant amount of raw precursor material is required to produce a given quantity of carbon fiber, driving up costs. At present, the average price for PAN-based carbon fibers, particularly those not meeting aerospace-grade specifications, hovers around USD 21.5 per kilogram. These prices remain prohibitively expensive for many manufacturers, especially smaller or domestic companies that lack the economies of scale enjoyed by larger producers.

Detailed Market Segmentation

By Precursor Type, Polyacrylonitrile (PAN) type carbon fiber continues to dominate the carbon fiber market in 2024, holding a commanding 73.31% share. This overwhelming market supremacy is driven by significant breakthroughs in manufacturing technologies and the expanding range of industrial applications that rely on PAN-based fibers. The segment's impressive compound annual growth rate (CAGR) of 11.09% reflects the accelerating adoption of PAN carbon fibers across emerging and high-growth sectors.

By Tow Size, in 2024, the 24-48k tow size category has emerged as the dominant segment within the carbon fiber market, commanding an impressive 70.07% share. This dominance signifies a fundamental transformation in both the economics of carbon fiber manufacturing and the versatility of its applications. The segment is experiencing robust growth, with a compound annual growth rate (CAGR) of 11.16%, underscoring its increasing importance across various industries. The 24-48k tow size has become the cornerstone of automated composite manufacturing processes, particularly in the use of robotic placement systems.

By End Users, in 2024, the aerospace and defense sector holds a significant position in the carbon fiber market, commanding 26.02% of the total revenue share. This sector also leads in growth potential, boasting the highest projected compound annual growth rate (CAGR) of 11.23%. These figures highlight aerospace and defense as the foremost catalysts for innovation and elevated quality standards within the carbon fiber industry. The resurgence and expansion of commercial aviation have played a pivotal role in accelerating the adoption of carbon fiber materials.

By modulus, the standard modulus range of carbon fibers, specifically the T300 to T700 grades, continues to dominate the market in 2024, accounting for a substantial 82.05% share. This overwhelming market presence is a testament to the range's exceptional versatility, which allows it to be applied effectively across a broad spectrum of industrial uses. Its cost-effectiveness further solidifies its position as the preferred choice among manufacturers and engineers who require reliable performance without incurring excessive expenses.

Segment Breakdown

By Precursor Type

  • PAN Type Carbon Fibre
  • Pitch Type Carbon Fibre

By Tow Size

  • 1-12 k
  • 24-48 k
  • >48 k

By Modules

  • Standard Modulus (T300 -T700)
  • Intermediate Modulus (T800-T1100)
  • High Modulus (M35-M60)

By End User

  • Aerospace & Defence
    • Civil wide body
    • Civil narrow body
    • EVtol/drones
    • Military
    • Other
  • Automotive
    • Super cars
    • Premium vehicles (gasoline)
    • Electric vehicles (EVs)
  • Pressure vessels / Hydrogen storage
    • CNG
    • Hydrogen storage Automotive
    • Hydrogen storage Aerospace
    • Hydrogen storage Ground
    • Hydrogen storage Rail
  • Pressure vessels / Hydrogen storage
    • CNG
    • Hydrogen storage Automotive
    • Hydrogen storage Aerospace
    • Hydrogen storage Ground
    • Hydrogen storage Rail
  • Wind & Energy
    • Wind on-shore
    • Wind off-shore
    • Tidal power
    • Fuel cells
    • Other
  • Infrastructure/civil
    • Buildings
    • Concrete re-bar
    • Trains
    • Other
  • Consumer
    • Bicycles
    • Marine
    • Consumer goods
    • Other

By Region

  • North America
    • The U.S.
    • Canada
    • Mexico
  • Europe
    • The UK
    • Germany
    • France
    • Italy
    • Spain
    • Poland
    • Russia
    • Rest of Europe
  • Asia Pacific
    • China
    • India
    • Japan
    • South Korea
    • Australia & New Zealand
    • ASEAN
      • Malaysia
      • Singapore
      • Thailand
      • Indonesia
      • Philippines
      • Vietnam
      • Rest of ASEAN
    • Rest of Asia Pacific
  • Middle East & Africa
    • UAE
    • Saudi Arabia
    • South Africa
    • Rest of MEA
  • South America
    • Argentina
    • Brazil
    • Rest of South America

Geographical Breakdown

The carbon fiber market is predominantly centered in the Asia Pacific region, which holds a commanding market share exceeding 42%. This dominance is driven by the region's exceptional manufacturing capabilities combined with strategic integration across various industrial sectors. The Asia Pacific has effectively positioned itself as a global hub for carbon fiber production, leveraging advanced technologies and large-scale operations that cater to diverse high-demand industries.

Within Asia Pacific, China emerges as the foremost producer with an impressive annual production capacity of 160,300 metric tons. It is closely followed by Japan and South Korea, together forming a powerful triad that supplies critical sectors such as aerospace, automotive, and wind energy worldwide. These countries have developed robust manufacturing ecosystems that enable them to meet the rigorous quality and volume requirements demanded by these industries, ensuring their leadership on the global stage.

Leading Market Participants

  • Advanced Composites Inc.
  • BASF SE
  • Formosa M Co. Ltd
  • Hexcel Corporation
  • Mitsubishi Chemical Carbon Fiber & Composites Inc.
  • Nippon Graphite Fiber Co. Ltd.
  • SGL Group
  • Solvay
  • Teijin Limited
  • Toray Industries Inc
  • Zoltek Corporation
  • Other Prominent players

Table of Content

Chapter 1. Research Framework

  • 1.1 Research Objective
  • 1.2 Product Overview
  • 1.3 Market Segmentation

Chapter 2. Research Methodology

  • 2.1 Qualitative Research
    • 2.1.1 Primary & Secondary Sources
  • 2.2 Quantitative Research
    • 2.2.1 Primary & Secondary Sources
  • 2.3 Breakdown of Primary Research Respondents, By Region
  • 2.4 Assumption for the Study
  • 2.5 Market Size Estimation
  • 2.6. Data Triangulation

Chapter 3. Executive Summary: Global Carbon Fiber Market

Chapter 4. Global Carbon Fiber Market Overview

  • 4.1. Industry Value Chain Analysis
    • 4.1.1. Material Provider
    • 4.1.2. Manufacturer
    • 4.1.3. Distributor
    • 4.1.4. End User
  • 4.2. Industry Outlook
    • 4.2.1. Carbon Fiber EXIM Analysis - 2023
  • 4.3. PESTLE Analysis
  • 4.4. Porter's Five Forces Analysis
    • 4.4.1. Bargaining Power of Suppliers
    • 4.4.2. Bargaining Power of Buyers
    • 4.4.3. Threat of Substitutes
    • 4.4.4. Threat of New Entrants
    • 4.4.5. Degree of Competition
  • 4.5. Market Dynamics and Trends
    • 4.5.1. Growth Drivers
    • 4.5.2. Restraints
    • 4.5.3. Challenges
    • 4.5.4. Key Trends
  • 4.6. Covid-19 Impact Assessment on Market Growth Trend
  • 4.7. Market Growth and Outlook
    • 4.7.1. Market Revenue Estimates and Forecast (US$ Mn), 2020-2035
    • 4.7.2. Market Volume Estimates and Forecast (Tons), 2020-2035
    • 4.7.3. Price Trend Analysis
  • 4.8. Competition Dashboard
    • 4.8.1. Market Concentration Rate
    • 4.8.2. Company Market Share Analysis (Value %), 2023
    • 4.8.3. Competitor Mapping & Benchmarking

Chapter 5. Global Carbon Fiber Market Analysis, By Precursor Type

  • 5.1. Key Insights
  • 5.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons)
    • 5.2.1. PAN Type Carbon Fibre
    • 5.2.2. Pitch Type Carbon Fibre

Chapter 6. Global Carbon Fiber Market Analysis, By Tow Size

  • 6.1. Key Insights
  • 6.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons)
    • 6.2.1. 1-12 k
    • 6.2.2. 24-48 k
    • 6.2.3. >48 k

Chapter 7. Global Carbon Fiber Market Analysis, By Modulus

  • 7.1. Key Insights
  • 7.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons)
    • 7.2.1. Standard Modulus (T300 -T700)
    • 7.2.2. Intermediate Modulus (T800-T1100)
    • 7.2.3. High Modulus (M35-M60)

Chapter 8. Global Carbon Fiber Market Analysis, By End Users

  • 8.1. Key Insights
  • 8.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons)
    • 8.2.1. Aerospace & Defence
      • 8.2.1.1. Civil wide body
      • 8.2.1.2. Civil narrow body
      • 8.2.1.3. EVtol/drones
      • 8.2.1.4. Military
      • 8.2.1.5. Other
    • 8.2.2. Automotive
      • 8.2.2.1. Super cars
      • 8.2.2.2. Premium vehicles (gasoline)
      • 8.2.2.3. Electric vehicles (EVs)
    • 8.2.3. Pressure vessels / Hydrogen storage
      • 8.2.3.1. CNG
      • 8.2.3.2. Hydrogen storage Automotive
      • 8.2.3.3. Hydrogen storage Aerospace
      • 8.2.3.4. Hydrogen storage Ground
      • 8.2.3.5. Hydrogen storage Rail
    • 8.2.4. Wind & Energy
      • 8.2.4.1. Wind on-shore
      • 8.2.4.2. Wind off-shore
      • 8.2.4.3. Tidal power
      • 8.2.4.4. Fuel cells
      • 8.2.4.5. Other
    • 8.2.5. Infrastructure/civil
      • 8.2.5.1. Buildings
      • 8.2.5.2. Concrete re-bar
      • 8.2.5.3. Trains
      • 8.2.5.4. Other
    • 8.2.6. Consumer
      • 8.2.6.1. Bicycles
      • 8.2.6.2. Marine
      • 8.2.6.3. Consumer goods
      • 8.2.6.4. Other

Chapter 9. Global Carbon Fiber Market Analysis, By Region

  • 9.1. Key Insights
  • 9.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons)
    • 9.2.1. Europe
      • 9.2.1.1. Western Europe
        • 9.2.1.1.1. The UK
        • 9.2.1.1.2. Germany
        • 9.2.1.1.3. France
        • 9.2.1.1.4. Italy
        • 9.2.1.1.5. Spain
        • 9.2.1.1.6. Rest of Western Europe
      • 9.2.1.2. Eastern Europe
        • 9.2.1.2.1. Poland
        • 9.2.1.2.2. Russia
        • 9.2.1.2.3. Rest of Eastern Europe
    • 9.2.2. North America
      • 9.2.2.1. The U.S.
      • 9.2.2.2. Canada
      • 9.2.2.3. Mexico
    • 9.2.3. Asia Pacific
      • 9.2.3.1. China
      • 9.2.3.2. India
      • 9.2.3.3. Japan
      • 9.2.3.4. Singapore
      • 9.2.3.5. South Korea
      • 9.2.3.6. Australia & New Zealand
      • 9.2.3.7. ASEAN
      • 9.2.3.8. Rest of Asia Pacific
    • 9.2.4. Middle East & Africa
      • 9.2.4.1. UAE
      • 9.2.4.2. Saudi Arabia
      • 9.2.4.3. South Africa
      • 9.2.4.4. Rest of MEA
    • 9.2.5. South America
      • 9.2.5.1. Argentina
      • 9.2.5.2. Brazil
      • 9.2.5.3. Rest of South America

Chapter 10. Europe Carbon Fiber Market Analysis

  • 10.1. Key Insights
  • 10.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons)
    • 10.2.1. By Precursor Type
    • 10.2.2. By Tow Size
    • 10.2.3. By Modulus
    • 10.2.4. By End Users
    • 10.2.5. By Country

Chapter 11. North America Carbon Fiber Market Analysis

  • 11.1. Key Insights
  • 11.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons
    • 11.2.1. By Precursor Type
    • 11.2.2. By Tow Size
    • 11.2.3. By Modulus
    • 11.2.4. By End Users
    • 11.2.5. By Country

Chapter 12. Asia Pacific Carbon Fiber Market Analysis

  • 12.1. Key Insights
  • 12.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons)
    • 12.2.1. By Precursor Type
    • 12.2.2. By Tow Size
    • 12.2.3. By Modulus
    • 12.2.4. By End Users
    • 12.2.5. By Country

Chapter 13. Middle East and Africa Carbon Fiber Market Analysis

  • 13.1. Key Insights
  • 13.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons)
    • 13.2.1. By Precursor Type
    • 13.2.2. By Tow Size
    • 13.2.3. By Modulus
    • 13.2.4. By End Users
    • 13.2.5. By Country

Chapter 14. South America Carbon Fiber Market Analysis

  • 14.1. Key Insights
  • 14.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons)
    • 14.2.1. By Precursor Type
    • 14.2.2. By Tow Size
    • 14.2.3. By Modulus
    • 14.2.4. By End Users
    • 14.2.5. By Country

Chapter 15. Company Profile (Company Overview, Financial Matrix, Key Product landscape, Key Personnel, Key Competitors, Contact Address, and Business Strategy Outlook)

  • 15.1. Advanced Composites Inc.
  • 15.2. BASF SE
  • 15.3. Formosa M Co. Ltd
  • 15.4. Hexcel Corporation
  • 15.5. Mitsubishi Chemical Carbon Fiber & Composites Inc.
  • 15.6. Nippon Graphite Fiber Co. Ltd.
  • 15.7. SGL Group
  • 15.8. Solvay
  • 15.9. Teijin Limited
  • 15.10. Toray Industries Inc
  • 15.11. Zoltek Corporation
  • 15.12. Other Prominent Players
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦