½ÃÀ庸°í¼­
»óǰÄÚµå
1732570

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¥ÀÌÅͼ¾ÅÍ¿ë GPU ½ÃÀå : ¿ëµµº°, Á¦Ç°º°, ±¹°¡º° - ºÐ¼®°ú ¿¹Ãø(2024-2034³â)

Asia-Pacific Data Center GPUs Market: Focus on Application, Product, and Country - Analysis and Forecast, 2024-2034

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: BIS Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 1-5ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¥ÀÌÅͼ¾ÅÍ¿ë GPU ½ÃÀå ±Ô¸ð´Â 2024³â 67¾ï ´Þ·¯¿¡¼­ 2034³â¿¡´Â 446¾ï ´Þ·¯¿¡ ´ÞÇϸç, ¿¹Ãø ±â°£ÀÎ 2024-2034³âÀÇ CAGRÀº 20.80%¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­´Â AI, µö·¯´×, ºòµ¥ÀÌÅÍ ºÐ¼® µî °í¼º´É ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖÀ¸¸ç, º¹ÀâÇÑ ÀÛ¾÷¿¡ ƯȭµÈ 'ÁÖ·Â'À¸·Î¼­ GPUÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¸Þ¸ð¸® ¿ë·®, ó¸® ´É·Â, Àü·Â È¿À² Áõ°¡°¡ ¼ºÀåÀ» °¡¼ÓÈ­Çϰí ÀÖÀ¸¸ç, GPU º¥´õ¿Í Ŭ¶ó¿ìµå ÇÁ·Î¹ÙÀÌ´õ °£ÀÇ Çù¾÷, ÇÏÀÌÆÛ½ºÄÉÀÏ µ¥ÀÌÅͼ¾ÅÍ È®ÀåÀ¸·Î °ø±Þ¸Á °­°Ç¼ºÀÌ °­È­µÇ°í, R&D ÅõÀÚ°¡ È®Àå °¡´ÉÇÑ µðÁöÅÐ »ýŰ踦 À§ÇÑ Áö¼Ó°¡´ÉÇϰí ÄÄÇöóÀ̾𽺸¦ ÁؼöÇÏ´Â Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÄÄÇöóÀ̾𽺸¦ ÁؼöÇÏ´Â Çõ½ÅÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
¿¹Ãø ±â°£ 2024-2034³â
2024³â Æò°¡¾× 67¾ï ´Þ·¯
2034³â ¿¹Ãø 446¾ï ´Þ·¯
CAGR 20.8%

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¥ÀÌÅͼ¾ÅÍ¿ë GPU »ê¾÷Àº ±×·¡ÇÈó¸®Àåºñ(GPU)ÀÇ º´·Ä ó¸® ´É·ÂÀ» Ȱ¿ëÇϱâ À§ÇØ ÀÌ Áö¿ª ±â¾÷ÀÌ °æÀïÀûÀ¸·Î GPU¸¦ µµÀÔÇϸ鼭 ȹ±âÀûÀÎ ¼Óµµ·Î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. °ú°Å ±×·¡ÇÈ ·»´õ¸µ¿¡ ±¹ÇѵǾú´ø GPU´Â ºòµ¥ÀÌÅÍ ºÐ¼®, °í¼º´É ÄÄÇ»ÆÃ(HPC), ¸Ó½Å·¯´×(ML), ÀΰøÁö´É(AI)°ú °°Àº °è»ê Áý¾àÀûÀÎ ÀÛ¾÷À» °¡¼ÓÈ­ÇÏ´Â µ¥ ÇʼöÀûÀÎ ÅøÀÌ µÇ¾ú½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­´Â ±ÝÀ¶, ÇコÄɾî, Á¦Á¶, E-Commerce, °ø°ø ¼­ºñ½º µî ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ±Þ¼ÓÇÑ µðÁöÅÐ ÀüȯÀÌ ÁøÇàµÇ¸é¼­ ½Ç½Ã°£ Ãß·Ð, ´ë±Ô¸ð ¾ð¾î ¸ðµ¨ ÇнÀ, ¾î·Á¿î °úÇÐ ¹× ¿£Áö´Ï¾î¸µ ¹®Á¦ ½Ã¹Ä·¹À̼ÇÀ» À§ÇÑ GPU °¡¼Ó ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù.¿¡ ´ëÇÑ Àü·Ê ¾ø´Â ¼ö¿ä°¡ ¹ß»ýÇϰí ÀÖ½À´Ï´Ù.

¼¼°è ¸®´õ¿Í ½ÅÈï Áö¿ª º¥´õ¸¦ Æ÷ÇÔÇÑ ÁÖ¿ä ½ÃÀå ÁøÃâ±â¾÷Àº Ŭ¶ó¿ìµå ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ ¹× ½Ã½ºÅÛ ÅëÇÕ»ç¾÷ÀÚ¿ÍÀÇ Àü·«Àû Á¦ÈÞ¸¦ ÅëÇØ ±× ¼¼·ÂÀ» È®ÀåÇϰí ÀÖ½À´Ï´Ù. °¡»óÈ­ GPU ÀνºÅϽº´Â AWS, Microsoft Azure, Google Cloud, Alibaba Cloud, Tencent Cloud¿Í °°Àº ÆÛºí¸¯ Ŭ¶ó¿ìµå Ç÷§Æû¿¡ µµÀÔµÇ¾î ±â¾÷ÀÌ Á¾·®Á¦ ¹æ½ÄÀ¸·Î °í¼º´É ÄÄÇ»ÆÃÀ» ÀÌ¿ëÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ÇÏÀÌÆÛ½ºÄÉÀÏ·¯, Çаè, ´ë±â¾÷¿¡¼­´Â ¿¹Ãø °¡´ÉÇÑ ¿öÅ©·Îµå ¹× µ¥ÀÌÅÍ º¸Á¸ ¿ä±¸¿¡ ƯȭµÈ GPU Ŭ·¯½ºÅ͸¦ ¿ä±¸Çϰí ÀÖÀ¸¸ç, On-Premise µµÀÔÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÎÇÁ¶ó µ¿ÇâÀº È¿À²¼º°ú ¼º´É ¸ðµÎ¿¡ ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. °í¹Ðµµ ·¢ÀÇ ÀÌ»óÀûÀÎ ¿­ ÇÁ·ÎÆÄÀÏÀ» À¯ÁöÇϱâ À§ÇØ Ä§¼ö ¹× Ĩ¿¡ Á÷Á¢ ¿¬°áµÇ´Â Äݵå Ç÷¹ÀÌÆ®¿Í °°Àº ÃÖ÷´Ü ³Ã°¢ ±â¼úÀÌ ¸Þ¸ð¸® ´ë¿ªÆø Áõ°¡, AI Çà·Ä ¿¬»êÀ» À§ÇÑ ÅÙ¼­ ÄÚ¾î, È¥ÇÕ Á¤¹Ð ÄÄÇ»ÆÃÀ» Á¦°øÇÏ´Â GPU ¾ÆÅ°ÅØÃ³ÀÇ ¹ßÀü°ú °áÇÕµÇ¾î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ºÐÇØ ¹× ±¸¼º °¡´ÉÇÑ GPU ÆÐºê¸¯ÀÇ ÃâÇöÀ¸·Î °¡¼Ó±â ¸®¼Ò½º¸¦ µ¿ÀûÀ¸·Î Ç®¸µÇÏ¿© Ȱ¿ëµµ¸¦ ³ôÀ̰í ÃѼÒÀ¯ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

GPU ±â¹Ý µ¥ÀÌÅͼ¾ÅÍ¿¡ ´ëÇÑ ÅõÀÚ´Â ½Ì°¡Æ÷¸£ÀÇ ±×¸° µ¥ÀÌÅͼ¾ÅÍ º¸Á¶±Ý, Çѱ¹ÀÇ µðÁöÅÐ ´ºµô, ÀεµÀÇ ±¹°¡ AI ¹Ì¼Ç, Áß±¹ÀÇ '½Å ÀÎÇÁ¶ó' °èȹ µî Á¤ºÎ ±¸»ó°ú Àμ¾Æ¼ºê ÇÁ·Î±×·¥¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦´Â Â÷¼¼´ë GPU ¼³°è, ¼ÒÇÁÆ®¿þ¾î ÅøÃ¼ÀÎ, °ü¸® Ç÷§ÆûÀÇ ¿¬±¸°³¹ßÀ» °¡¼ÓÈ­Çϰí, AI ±â¾÷¿¡ ´ëÇÑ º¥Ã³Ä³ÇÇÅ» ÅõÀÚ¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±â¾÷°ú °ø°ø ºÎ¹®ÀÇ GPU µµÀÔÀÌ °è¼Ó È®´ëµÊ¿¡ µû¶ó °æÁ¦ ¼ºÀå°ú ±â¼ú ¸®´õ½ÊÀ» ÃËÁøÇϰí GPU¸¦ ÅëÇÑ Çõ½ÅÀ» °¡¼ÓÈ­ÇÏ´Â ¼¼°è Áß½ÉÁö·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾ç µ¥ÀÌÅͼ¾ÅÍ GPU ½ÃÀå µ¿Çâ°ú ÃßÁø ¿äÀÎ ¹× °úÁ¦

µ¿Çâ

  • AI¿¡ ÃÖÀûÈ­µÈ GPU(NVIDIA Blackwell, AMD MI300)°¡ »ý¼ºÇü AI ¹× LLM ÇнÀ¿¡ ºü¸£°Ô º¸±ÞµÇ°í ÀÖ½À´Ï´Ù.
  • À¯¿¬ÇÑ ¸®¼Ò½º Ç®À» °¡´ÉÇÏ°Ô ÇÏ´Â ºÐ»êÇü ¹× ÄÄÆ÷Àúºí GPU ¾ÆÅ°ÅØÃ³
  • ¾Æ½Ã¾ÆÅÂÆò¾ç ÆÛºí¸¯ Ŭ¶ó¿ìµå(AWS, Azure, GCP)¿¡¼­ °¡»óÈ­ GPU ÀνºÅϽº Áõ°¡
  • ·ÎÄà Ãß·ÐÀ» À§ÇÑ ¿§Áö ¹× Áö¿ª PoPÀÇ '¸¶ÀÌÅ©·Î Ŭ·¯½ºÅÍ' ±¸Ãà
  • Àü·Â ¹Ðµµ Áõ°¡¸¦ °ü¸®Çϱâ À§ÇØ ¼ö·©½Ä ¹× ¾×ħ³Ã°¢ GPU ·¢ »ç¿ë Áõ°¡

¼ºÀå ÃËÁø¿äÀÎ

  • ±ÝÀ¶, ÇコÄɾî, Á¦Á¶ »ê¾÷¿¡¼­ AI/ML ¿öÅ©·Îµå Æø¹ßÀû ¼ö¿ä Áõ°¡
  • ±¹°¡ AI Àü·«(Áß±¹ÀÇ AI 2.0 ·Îµå¸Ê, ÀεµÀÇ AI ¹Ì¼Ç µî)ÀÌ µ¥ÀÌÅͼ¾ÅÍ ¾÷±×·¹À̵带 ÃËÁøÇÕ´Ï´Ù.
  • GPU-as-a-Service ¹× ÇÏÀ̺긮µå Ŭ¶ó¿ìµå GPU ¼Ö·ç¼ÇÀ» Á¦°øÇϴ Ŭ¶ó¿ìµå ÇÁ·Î¹ÙÀÌ´õÀÇ ¾Æ½Ã¾ÆÅÂÆò¾ç ÁøÃâ º»°ÝÈ­
  • °úÇÐ ¿¬±¸ ¹× µðÁöÅÐ Æ®À©À» À§ÇÑ °í¼º´É ÄÄÇ»ÆÃ(HPC)ÀÇ ¼ºÀå
  • ±â¾÷ÀÇ µðÁöÅÐ Àüȯ°ú ½Ç½Ã°£ ºÐ¼® Ȱ¿ë¿¡ ´ëÇÑ °æÀï ¾Ð·Â¿¡ ´ëÇÑ ÀÚ·áÀÔ´Ï´Ù.

°úÁ¦

  • Àü·Â ¼Òºñ ¹× ³Ã°¢ ¿ä±¸ »çÇ×ÀÇ ±Þ°ÝÇÑ Áõ°¡¿¡ µû¸¥ OPEX »ó½Â
  • Àü ¼¼°è GPU °ø±ÞÀÇ Á¦¾à°ú Â÷¼¼´ë °¡¼Ó±âÀÇ ±ä ¸®µåŸÀÓÀ¸·Î ÀÎÇÑ Á¦¾à
  • °í¹Ðµµ GPU µµÀÔ¿¡ ´ëÇÑ ³ôÀº ÀÚº» ÁöÃâ°ú ROI¿¡ ´ëÇÑ ¾Ð¹Ú°¨
  • GPU °¡¼Ó ½Ã½ºÅÛ ¼³°è, µµÀÔ, ¿î¿µ Àη ºÎÁ·
  • Áß¾Ó ÁýÁᫎ GPU ÆÊ µµÀÔÀ» º¹ÀâÇÏ°Ô ¸¸µå´Â µ¥ÀÌÅÍ ÁÖ±Ç ¹× ±¹°æ °£ ÄÄÇöóÀ̾𽺠¹®Á¦

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¥ÀÌÅͼ¾ÅÍ¿ë GPU ½ÃÀå¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç, ½ÃÀåÀÇ °³¿ä¿Í ¿ëµµº°, Á¦Ç°º°, ±¹°¡º° µ¿Çâ ¹× ½ÃÀå¿¡ Âü¿©ÇÏ´Â ±â¾÷ÀÇ °³¿ä µîÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

°³¿ä

Á¦1Àå ½ÃÀå

  • µ¥ÀÌÅͼ¾ÅÍ µ¿Çâ : ÇöȲ°ú ¹Ì·¡¿¡ ´ëÇÑ ¿µÇâ Æò°¡
    • µ¥ÀÌÅͼ¾ÅÍ ¿ë·® : ÇöȲ°ú ¹Ì·¡
    • AI ¿öÅ©·Îµå¿Í ±âÁ¸ ¿öÅ©·Îµå
    • µ¥ÀÌÅͼ¾ÅÍ Àü·Â ¼Òºñ ½Ã³ª¸®¿À
    • ÁÖ¸ñÇÒ ¸¸ÇÑ ÁÖ¿ä ±¹°¡
    • ±âŸ »ê¾÷ µ¿Çâ
  • µ¥ÀÌÅͼ¾ÅÍ ³Ã°¢ ½ÃÀå °³¿ä
    • ¼¼°è ¹× Áö¿ª ½ÃÀå ±Ô¸ð
    • ³Ã°¢ÀÇ µµÀÔ(µ¥ÀÌÅͼ¾ÅÍ Ãà³â¼öº°)
    • °³º¸¼ö ¹× ºê¶ó¿îÇʵå ÇÁ·ÎÁ§Æ®
    • ±×¸°Çʵå ÇÁ·ÎÁ§Æ®¿Í ½Å±Ô ¼³ºñ
    • ³Ã°¢ Àåºñ µµÀÔ¿¡ °üÇÑ ½ÇÀû ºÐ¼®(2018-2022³â)
    • 2023-2027³â µ¥ÀÌÅͼ¾ÅÍÀÇ ³Ã°¢ ±â¼ú µµÀÔ µ¿Çâ
    • µ¥ÀÌÅͼ¾ÅÍ ³Ã°¢ ÀÎÇÁ¶ó¿¡ ´ëÇÑ AI µµÀÔÀÇ ¿µÇâ
  • ¿¬±¸°³¹ß ¸®ºä
  • ÀÌÇØ°ü°èÀÚ ºÐ¼®
    • »ç¿ë »ç·Ê
    • ÃÖÁ¾»ç¿ëÀÚ¿Í ±¸ÀÔ ±âÁØ
  • ½ÃÀå ¿ªÇÐ °³¿ä
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ½ÃÀå ±âȸ

Á¦2Àå Áö¿ª

  • Áö¿ª ¿ä¾à
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áö¿ª °³¿ä
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ÀÀ¿ë
    • Á¦Ç°
    • ¾Æ½Ã¾ÆÅÂÆò¾ç(±¹°¡º°)

Á¦3Àå ½ÃÀå - °æÀï º¥Ä¡¸¶Å·°ú ±â¾÷ °³¿ä

  • ±â¾÷ °³¿ä

Á¦4Àå Á¶»ç ¹æ¹ý

KSA 25.06.11

Introduction to Asia-Pacific Data Center GPUs Market

The Asia-Pacific data center GPUs market is projected to reach $44.6 billion by 2034 from $6.7 billion in 2024, growing at a CAGR of 20.80% during the forecast period 2024-2034. In APAC, surging demand for high-performance computing-powered by AI, deep learning, and big-data analytics-is fueling GPU adoption as specialized "workhorses" for complex tasks. Advances in memory capacity, processing power, and power-efficiency are accelerating growth. Collaborations between GPU vendors and cloud providers, plus hyperscale data-center expansion, are bolstering supply-chain resilience, while R&D investment drives sustainable, compliant innovations for a scalable digital ecosystem.

Market Introduction

KEY MARKET STATISTICS
Forecast Period2024 - 2034
2024 Evaluation$6.7 Billion
2034 Forecast$44.6 Billion
CAGR20.8%

The data-center GPU industry in Asia-Pacific (APAC) is expanding at a revolutionary rate as businesses in the region compete to use graphics processing units' (GPUs') parallel processing capabilities. Previously limited to graphic rendering, GPUs have become essential tools for speeding up compute-intensive tasks like big data analytics, high-performance computing (HPC), machine learning (ML), and artificial intelligence (AI). Rapid industry digital transformation in APAC, including in the fields of finance, healthcare, manufacturing, e-commerce, and public services, is creating an unprecedented need for GPU-accelerated infrastructure that can power real-time inference, train large language models, and simulate challenging scientific and engineering problems.

Key market players, including global leaders and rising regional vendors, are increasing their reach through strategic alliances with cloud service providers and system integrators. Virtualised GPU instances are being introduced by public-cloud platforms such as AWS, Microsoft Azure, Google Cloud, Alibaba Cloud, and Tencent Cloud, allowing businesses to use high-performance computing on a pay-as-you-go basis. In the meantime, hyperscalers, academic institutions, and major corporations looking for specialised GPU clusters for predictable workloads and data-sovereignty needs are increasingly adopting on-premises deployments.

APAC's infrastructure trends are influenced by both efficiency and performance. In order to maintain ideal thermal profiles in high-density racks, cutting-edge cooling techniques like liquid immersion and direct-to-chip cold plates are used in conjunction with advancements in GPU architectures, which provide increased memory bandwidth, tensor cores for AI matrix operations, and mixed-precision computing. Simultaneously, the emergence of disaggregated and composable GPU fabrics allows for dynamic accelerator resource pooling, increasing utilisation rates and reducing total cost of ownership.

Investments in GPU-driven data centres are being stimulated by government initiatives and incentive programs, including Singapore's Green Data Centre Grant, South Korea's Digital New Deal, India's National AI Mission, and China's "New Infrastructure" plan. These regulations are speeding up research and development of next-generation GPU designs, software toolchains, and management platforms, as well as increasing venture capital investments in AI firms. APAC is positioned to become a global centre for GPU-accelerated innovation, propelling both economic growth and technological leadership, as businesses and public sector entities continue to boost GPU deployments.

Market Segmentation

Segmentation 1: Data Center GPUs Market (by Application)

  • Hyperscale
  • Colocation
  • Enterprise
  • Others

Segmentation 2: Data Center GPUs Market (by Product)

  • Conventional GPUs
  • Accelerated GPUs

Segmentation 3: Data Center GPUs Market (by Country)

  • Japan
  • India
  • China
  • Australia
  • South Korea
  • Rest-of-Asia-Pacific

APAC Data Center GPUs Market Trends, Drivers and Challenges

Trends

  • Rapid uptake of AI-optimized GPUs (NVIDIA Blackwell, AMD MI300) for generative AI and LLM training
  • Disaggregated and composable GPU architectures enabling flexible resource pooling
  • Growth of virtualized GPU instances in public clouds (AWS, Azure, GCP) across APAC regions
  • Deployment of "micro-clusters" at edge and regional PoPs for localized inference
  • Increased use of liquid-cooled and immersion-cooled GPU racks to manage rising power densities

Drivers

  • Explosive demand for AI/ML workloads in finance, healthcare, and manufacturing
  • National AI strategies (e.g., China's AI 2.0 roadmap, India's AI Mission) fueling data-center upgrades
  • Cloud provider expansion into APAC, offering GPU-as-a-Service and hybrid-cloud GPU solutions
  • Growth in high-performance computing (HPC) for scientific research and digital twins
  • Enterprise digital transformation and competitive pressure to leverage real-time analytics

Challenges

  • Skyrocketing power consumption and cooling requirements driving OPEX up
  • Global GPU supply constraints and long lead times for next-gen accelerators
  • High capital expenditure for dense GPU deployments, with ROI pressure
  • Talent shortages in GPU-accelerated systems design, deployment, and operations
  • Data-sovereignty and cross-border compliance complicating centralized GPU farm deployments

Table of Contents

Executive Summary

Scope and Definition

1 Markets

  • 1.1 Data Center Trends: Current and Future Impact Assessment
    • 1.1.1 Data Center Capacities: Current and Future
    • 1.1.2 AI Workloads vs. Conventional Workloads
    • 1.1.3 Data Center Power Consumption Scenario
    • 1.1.4 Key Countries to Focus
    • 1.1.5 Other Industrial Trends
      • 1.1.5.1 HPC Cluster Developments
      • 1.1.5.2 Blockchain Initiatives
      • 1.1.5.3 Super Computing
      • 1.1.5.4 5G and 6G Developments
      • 1.1.5.5 Impact of Server/Rack Density
  • 1.2 Data Center Cooling Market Overview
    • 1.2.1 Global and Regional Market size
    • 1.2.2 Adoption of Cooling (by Data Center Age)
    • 1.2.3 Retrofitting and Brownfield Projects
    • 1.2.4 Green Field Projects and New Installation
    • 1.2.5 Historical Analysis of Cooling Equipment Deployment, 2018-2022
    • 1.2.6 New Data Center Trends toward Adoption of Cooling Technology Type, 2023-2027
    • 1.2.7 Impact of AI Adoption on Data Center Cooling Infrastructure
  • 1.3 Research and Development Review
    • 1.3.1 Patent Filing Trend (by Country, by Company)
  • 1.4 Stakeholder Analysis
    • 1.4.1 Use Case
    • 1.4.2 End User and Buying Criteria
  • 1.5 Market Dynamics Overview
    • 1.5.1 Market Drivers
      • 1.5.1.1 Surging Demand for Cryptocurrency Mining
      • 1.5.1.2 Rising Enterprise Adoption of Data Center GPUs for High-Performance Computing Applications
    • 1.5.2 Market Restraints
      • 1.5.2.1 High Bargaining Power of GPU Manufacturers
    • 1.5.3 Market Opportunities
      • 1.5.3.1 Technological Advancement in High-Performing Computing (HPC)
      • 1.5.3.2 Government Support for Smart City Development and Digitalization

2 Regions

  • 2.1 Regional Summary
  • 2.2 Asia-Pacific
    • 2.2.1 Regional Overview
    • 2.2.2 Driving Factors for Market Growth
    • 2.2.3 Factors Challenging the Market
    • 2.2.4 Application
    • 2.2.5 Product
    • 2.2.6 Asia-Pacific (by Country)
      • 2.2.6.1 China
        • 2.2.6.1.1 Application
        • 2.2.6.1.2 Product
      • 2.2.6.2 Japan
        • 2.2.6.2.1 Application
        • 2.2.6.2.2 Product
      • 2.2.6.3 Australia
        • 2.2.6.3.1 Application
        • 2.2.6.3.2 Product
      • 2.2.6.4 India
        • 2.2.6.4.1 Application
        • 2.2.6.4.2 Product
      • 2.2.6.5 South Korea
        • 2.2.6.5.1 Application
        • 2.2.6.5.2 Product
      • 2.2.6.6 Rest-of-Asia-Pacific
        • 2.2.6.6.1 Application
        • 2.2.6.6.2 Product

3 Markets - Competitive Benchmarking and Company Profiles

  • 3.1 Company Profiles
      • 3.1.1.1 Huawei Technologies Co., Ltd.
        • 3.1.1.1.1 Overview
        • 3.1.1.1.2 Top Products/Product Portfolio
        • 3.1.1.1.3 Top Competitors
        • 3.1.1.1.4 Target Customers/End Users
        • 3.1.1.1.5 Key Personnel
        • 3.1.1.1.6 Analyst View
      • 3.1.1.2 Alibaba
        • 3.1.1.2.1 Overview
        • 3.1.1.2.2 Top Products/Product Portfolio
        • 3.1.1.2.3 Top Competitors
        • 3.1.1.2.4 Target Customers/End Users
        • 3.1.1.2.5 Key Personnel
        • 3.1.1.2.6 Analyst View

4 Research Methodology

  • 4.1 Data Sources
    • 4.1.1 Primary Data Sources
    • 4.1.2 Secondary Data Sources
    • 4.1.3 Data Triangulation
  • 4.2 Market Estimation and Forecast
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦