시장보고서
상품코드
1688974

세계의 바이오 숙신산 시장 : 프로세스 유형별, 용도별, 최종사용자별, 지역별 분석, 규모, 동향, COVID-19의 영향, 예측(-2030년)

Global Bio-Succinic Acid Market: Analysis By Process Type, By Application, By End-User, By Region Size and Trends with Impact of COVID-19 and Forecast up to 2030

발행일: | 리서치사: Daedal Research | 페이지 정보: 영문 161 Pages | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계 바이오 숙신산 시장 규모는 2024년 1억 4,767만 달러였으며, 2030년에는 3억 1,139만 달러에 달할 것으로 예상됩니다. 바이오 숙신산은 석유에서 추출한 숙신산을 대체할 수 있는 재생 가능한 식물 유래의 대안으로, 식물의 당을 발효시켜 생산됩니다. 바이오플라스틱, 의약품, 식품, 퍼스널케어 제품 등 다양한 산업에서 사용되며 석유화학 기반 화학제품을 대체할 수 있는 친환경적인 솔루션을 제공합니다.

향후 몇 년 동안 바이오 숙신산 시장은 여러 가지 추세의 수렴으로 인해 지속적으로 성장할 것으로 예상됩니다. 주요 요인 중 하나는 석유화학 기반 제품을 대체할 수 있는 지속가능하고 친환경적인 제품에 대한 수요 증가입니다. 재생 가능한 바이오매스 자원에서 추출한 바이오 숙신산은 플라스틱, 용제 및 기타 화학제품 생산에 친환경적인 솔루션을 제공하여 탄소 배출과 화석 연료 의존도를 줄이려는 전 세계적인 노력에 부합합니다. 지속가능성에 대한 관심이 높아지고 특히 포장 및 소비재 산업에서 생분해성 플라스틱의 필요성이 증가함에 따라 바이오 숙신산에 대한 수요가 더욱 증가하고 있습니다. 생물공학 및 발효 공정의 기술 발전은 바이오 숙신산 생산의 효율성과 비용 효율성을 높이고 있습니다. 또한, 세계 각국 정부는 재생 가능 자원과 녹색 화학의 도입을 촉진하기 위해 유리한 정책과 인센티브를 시행하고 있으며, 이는 바이오 숙신산과 같은 바이오 기반 화학제품으로의 전환을 가속화하고 있습니다. 이러한 요인들이 복합적으로 작용하여 세계 바이오 숙신산 시장은 향후 몇 년 동안 안정적으로 성장할 것으로 예상됩니다. 시장은 2025-2030년 예측 기간 동안 약 13%의 CAGR로 성장할 것으로 예상됩니다.

세계의 바이오 숙신산 시장에 대해 조사 분석했으며, 시장 역학, COVID-19의 영향, 경쟁 상황 등의 정보를 전해드립니다.

목차

제1장 주요 요약

제2장 소개

  • 바이오 숙신산 : 개요
    • 바이오 숙신산 소개
    • 기존 숙신산에 대한 바이오 숙신산 사용의 주요 이점
  • 바이오 숙신산 세분화 : 개요
    • 바이오 숙신산 세분화

제3장 세계 시장 분석

  • 세계의 바이오 숙신산 시장 : 분석
    • 세계의 바이오 숙신산 시장 : 개요
    • 세계의 바이오 숙신산 시장 규모
    • 세계의 바이오 숙신산 시장 : 프로세스 유형별(황산암모늄 프로세스, 직접 결정화 프로세스, 전기투석 프로세스)
    • 세계의 바이오 숙신산 시장 : 용도별(1,4-부탄디올, 폴리에스테르 폴리올, 가소제, 폴리부틸렌 석시네이트, 용제·코팅, 기타)
    • 세계의 바이오 숙신산 시장 : 최종사용자별(산업, 식품 및 음료, 의약품, 퍼스널케어·화장품, 기타)
    • 바이오 숙신산 시장 : 지역별(유럽, 북미, 아시아태평양, 기타 지역)
  • 세계의 바이오 숙신산 시장 : 프로세스 유형 분석
    • 세계의 바이오 숙신산 시장 개요 : 프로세스 유형별
    • 세계의 황산암모늄 프로세스 바이오 숙신산 시장 규모
    • 세계의 직접 결정화 프로세스 바이오 숙신산 시장 규모
    • 세계의 전기투석 프로세스 바이오 숙신산 시장 규모
  • 세계의 바이오 숙신산 시장 : 용도 분석
    • 세계의 바이오 숙신산 시장 : 용도별, 개요
    • 세계의 1,4-부탄디올용 바이오 숙신산 시장 규모
    • 세계의 폴리에스테르 폴리올용 바이오 숙신산 시장 규모
    • 세계의 가소제용 바이오 숙신산 시장 규모
    • 세계의 폴리부틸렌 석시네이트용 바이오 숙신산 시장 규모
    • 세계의 용제·코팅용 바이오 숙신산 시장 규모
    • 세계의 기타 바이오 숙신산 시장 규모
  • 세계의 바이오 숙신산 시장 : 최종사용자 분석
    • 세계의 바이오 숙신산 시장 : 최종사용자별, 개요
    • 세계의 공업용 바이오 숙신산 시장 규모
    • 세계의 식품 및 음료용 바이오 숙신산 시장 규모
    • 세계의 의약품용 바이오 숙신산 시장 규모
    • 세계의 퍼스널케어·화장품용 바이오 숙신산 시장 규모
    • 세계의 기타 바이오 숙신산 시장 규모

제4장 지역 시장 분석

  • 유럽의 바이오 숙신산 시장 : 분석
    • 유럽의 바이오 숙신산 시장 : 개요
    • 유럽의 바이오 숙신산 시장 규모
    • 유럽의 바이오 숙신산 시장 : 지역별
    • 독일의 바이오 숙신산 시장 규모
    • 프랑스의 바이오 숙신산 시장 규모
    • 영국의 바이오 숙신산 시장 규모
    • 이탈리아의 바이오 숙신산 시장 규모
    • 스페인의 바이오 숙신산 시장 규모
    • 기타 유럽의 바이오 숙신산 시장 규모
  • 북미의 바이오 숙신산 시장 : 분석
    • 북미의 바이오 숙신산 시장 : 개요
    • 북미의 바이오 숙신산 시장 규모
    • 북미의 바이오 숙신산 시장 : 지역별
    • 미국의 바이오 숙신산 시장 규모
    • 캐나다의 바이오 숙신산 시장 규모
    • 멕시코의 바이오 숙신산 시장 규모
  • 아시아태평양의 바이오 숙신산 시장 : 분석
    • 아시아태평양의 바이오 숙신산 시장 : 개요
    • 아시아태평양의 바이오 숙신산 시장 규모
    • 아시아태평양의 바이오 숙신산 시장
    • 중국의 바이오 숙신산 시장 규모
    • 일본의 바이오 숙신산 시장 규모
    • 인도의 바이오 숙신산 시장 규모
    • 한국의 바이오 숙신산 시장 규모
    • 기타 아시아태평양의 바이오 숙신산 시장 규모
  • 기타 지역의 바이오 숙신산 시장 : 분석
    • 기타 지역의 바이오 숙신산 시장 : 개요
    • 기타 지역의 바이오 숙신산 시장 규모

제5장 COVID-19의 영향

  • 세계의 바이오 숙신산 시장에 대한 COVID-19의 영향
  • 세계의 바이오 숙신산 시장에 대한 COVID-19 이후의 영향

제6장 시장 역학

  • 성장 촉진요인
    • 바이오 기반 플라스틱과 폴리머 수요 가속
    • 식품첨가물에 대한 응용 확대
    • 바이오 기반 제품을 우대하는 정부 규제와 정책
    • 재생에너지원과의 통합 확대
    • 지속가능성과 친환경 제품으로의 이동 진행
  • 과제
    • 숙신산 가격 변동
    • 석유 유래 대체품에 비해 높은 생산 비용
    • 비용 효율적 원료의 한정된 이용 가능성
  • 시장 동향
    • 의약품에 대한 응용 확대
    • 생산 공정의 기술 진보
    • 재생 원료에 대한 주목 상승
    • 순환경제 모델 채용
    • 바이오테크놀러지와 화학 산업 제휴

제7장 경쟁 구도

  • 세계의 바이오 숙신산 시장 : 경쟁 구도
  • 세계의 바이오 숙신산 시장 기업 : 제품의 비교

제8장 기업 개요

  • BASF SE
  • DSM-Firmenich AG
  • Roquette Freres SA
  • Mitsui & Co., Ltd.
  • Mitsubishi Chemical Group Corporation
  • PTT Global Chemical Public Company Limited(PTTGC)
  • Nippon Shokubai Co., Ltd
  • Dow Inc.(The Dow Chemical Company)
  • Corbion N.V.
  • Air Water Inc.(Air Water Performance Chemical Inc.)
  • LCY Chemical Corp.
  • Wego Chemical Group
ksm 25.04.07

The global bio-succinic acid market was valued at US$147.67 million in 2024. The market value is expected to reach US$311.39 million by 2030. Bio-succinic acid is a renewable, plant-based alternative to petroleum-derived succinic acid, produced through fermentation of plant sugars. It is used in various industries such as bioplastics, pharmaceuticals, food, and personal care products, offering an eco-friendly solution to replace petrochemical-based chemicals.

In the forthcoming years, the bio-succinic acid market is expected to continue growing due to several converging trends. One key factor is the increasing demand for sustainable and eco-friendly alternatives to petrochemical-based products. Bio-succinic acid, derived from renewable biomass sources, offers a greener solution for the production of plastics, solvents, and other chemicals, aligning with global efforts to reduce carbon emissions and dependence on fossil fuels. The growing emphasis on sustainability and the need for biodegradable plastics, particularly in packaging and consumer goods industries, is further fueling the demand for bio-succinic acid. Technological advancements in bioengineering and fermentation processes are also enhancing the efficiency and cost-effectiveness of bio-succinic acid production. Moreover, governments worldwide are implementing favorable policies and incentives to promote the adoption of renewable resources and green chemistry, which are accelerating the shift toward bio-based chemicals like bio-succinic acid. Together, these factors position the global bio-succinic acid market for steady growth in the years ahead. The market is expected to grow at a CAGR of approx. 13% during the forecasted period of 2025-2030.

Market Segmentation Analysis:

By Process Type: The report provides the bifurcation of the bio-succinic acid market into three segments on the basis of process type: Ammonium Sulphate Process, Direct Crystallization Process, and Electrodialysis Process. The ammonium sulphate process segment held a significant share of the global market. The method's simplicity, lower energy consumption, and the growing demand for sustainable, bio-based chemicals contribute to its continued dominance. Additionally, governmental incentives for green chemistry and the rising preference for eco-friendly alternatives to petrochemical-based products support its growth. As industries seek greener solutions, the ammonium sulfate process remains a preferred choice for large-scale bio-succinic acid production, with potential for further improvements in sustainability and cost-efficiency.

By Application: The report provides the bifurcation of the bio-succinic acid market into six segments on the basis of application: 1, 4-Butanediol, Polyester Polyols, Plasticizers, Polybutylene Succinate, Solvents & Coatings, and Others. 1, 4-Butanediol is the largest segment of the global bio-succinic acid market. The demand for bio-based BDO is driven by the growing need for eco-friendly chemicals and materials, particularly in industries like automotive, textiles, and electronics. The increasing adoption of green chemistry and rising regulatory pressure to reduce carbon footprints are key factors supporting the growth of the bio-based BDO segment. As industries shift toward sustainable production methods, the 1, 4-butanediol segment is poised for continuous growth, driven by advancements in bio-based production processes.

By End User: The report provides the split of global bio-succinic acid market into five segments in terms of end-user: Industrial, Food & Beverages, Pharmaceuticals, Personal Care & Cosmetics and Others. The industrial segment holds the highest market share in the global bio-succinic acid market due to several factors. First, bio-succinic acid is widely used in the production of bio-based plastics, which are increasingly in demand for their eco-friendly properties. Second, it serves as a key intermediate in manufacturing solvents, coatings, and adhesives, all of which are integral to various industrial applications. Third, the growing emphasis on sustainable materials in industries such as packaging, automotive, and textiles further drives demand. Additionally, technological advancements in bio-succinic acid production processes have made it a more cost-effective and scalable option for industrial uses. These factors collectively position the industrial segment as the largest contributor to the bio-succinic acid market.

By Region: In the report, the global bio-succinic acid market is divided into four regions: North America (the US, Canada, and Mexico), Europe (Germany, UK, France, Italy, and Rest of Europe), Asia Pacific (China, Japan, India, South Korea, and rest of Asia Pacific), and Rest of the World. In 2024, the Europe region led the bio-succinic acid market, propelled by propelled by several key factors. Europe has a strong commitment to sustainability, with stringent environmental regulations that promote the use of renewable, bio-based chemicals like bio-succinic acid. The region also hosts major bio-succinic acid producers and has well-established bio-manufacturing infrastructure, which supports the growth of the market. In addition, policies across the European Union focus on reducing carbon emissions and promoting green chemistry, encouraging the adoption of bio-succinic acid in industries such as packaging, automotive, and consumer good.

During 2025-2030, the US is forecasted to maintain its lead within the North America bio-succinic acid market, due to a strong focus on sustainability driven by consumer demand and government policies promoting renewable energy and green chemistry, advanced manufacturing capabilities, and leading bio-succinic acid producers. The growing adoption of bio-based chemicals in industries such as packaging, and consumer goods, along with increasing investments in research and development to improve bio-succinic acid production technologies, also contribute to the US maintaining its dominant position in the region.

Market Dynamics:

Growth Drivers: The global bio-succinic acid market growth is predicted to be supported by numerous growth drivers such as accelerating demand for bio-based plastics and polymers, growing application in food additives, government regulations and policies favoring bio-based products, rising integration with renewable energy sources, and many other factors. The growing shift toward sustainability and eco-friendly products is a key driver of the global bio-succinic acid market. As environmental concerns rise, consumers, businesses, and governments are focusing on reducing carbon footprints and adopting renewable alternatives to petroleum-based products. Bio-succinic acid, derived from renewable resources like corn and sugarcane, offers a biodegradable and environmentally friendly option with lower greenhouse gas emissions and energy requirements compared to petrochemical-based succinic acid. This demand for sustainable products is evident across industries like packaging, automotive, textiles, and personal care. Stricter environmental regulations and the push for a circular economy further drive the adoption of bio-based chemicals like bio-succinic acid, accelerating its market growth.

Challenges: However, the market growth would be negatively impacted by various challenges such as high production costs compared to petroleum-based alternatives, limited availability of cost-effective feedstocks, etc.

Trends: The market is projected to grow at a fast pace during the forecast period, due to various latest trends such as expanding applications in pharmaceuticals, technological advancements in the production processes, adoption of circular economy models, collaboration between biotechnology and chemical industries, etc. The surging focus on renewable feedstocks is becoming a key trend in the bio-succinic acid market due to the shift from food-based feedstocks like corn and sugarcane to non-food biomass such as agricultural waste, forest residues, and algae, which reduces competition with food resources and addresses sustainability concerns. The use of lignocellulosic biomass, including materials like straw and wood, provides a more cost-effective and environmentally friendly source of carbon. This change also lowers greenhouse gas emissions and production costs, leading to more efficient and eco-friendly manufacturing processes. As renewable feedstocks become more accessible and economically viable, they enable larger-scale production of bio-succinic acid, meeting the rising demand for sustainable products in industries like packaging and consumer goods. This focus on renewable feedstocks accelerates the adoption of bio-succinic acid, driving market growth.

Impact Analysis of COVID-19 and Way Forward:

The COVID-19 pandemic significantly disrupted the global bio-succinic acid market due to supply chain disruptions, reduced demand in key industries, and delays in production. Many bio-succinic acid manufacturers faced challenges in sourcing raw materials and maintaining production schedules. However, post-pandemic recovery, along with a renewed focus on sustainability and green chemistry, is driving the market's rebound. The growing demand for eco-friendly alternatives to petroleum-based chemicals, coupled with advancements in bio-manufacturing technologies, is fueling market growth. Additionally, the increasing adoption of renewable feedstocks and stricter environmental regulations in the post-COVID era are further accelerating the adoption of bio-succinic acid across industries like packaging, textiles, and consumer goods. The post-COVID impact has also led to increased investments in sustainable practices, creating a favorable environment for the bio-succinic acid market to thrive in the coming years.

Competitive Landscape:

The global bio-succinic acid market is primarily concentrated among leading chemical manufacturers, however, the presence of smaller companies introduces a level of fragmentation, resulting in a market that is largely concentrated with pockets of fragmentation. The key players in the global bio-succinic acid market are:

BASF SE

DSM-Firmenich AG

Roquette Freres SA

Mitsui & Co., Ltd.

Mitsubishi Chemical Group Corporation

PTT Global Chemical Public Company Limited (PTTGC)

Nippon Shokubai Co., Ltd

Dow Inc. (The Dow Chemical Company)

Corbion N.V.

Air Water Inc. (Air Water Performance Chemical Inc.)

LCY Chemical Corp.

Wego Chemical Group

The key players also focus on strategies such as investments in research and development activities, and expanding production capacities. For instance, in September 2024, Mitsubishi Corporation and Exxon Mobil Corporation have signed a Project Framework Agreement for Mitsubishi Corporation's participation in ExxonMobil's facility in Baytown, Texas which is expected to produce virtually carbon-free hydrogen with approximately 98% of carbon dioxide (CO2) removed and low-carbon ammonia. Similarly, in July 2024, BASF and ENGIE signed a 7-year Biomethane Purchase Agreement (BPA). Under the BPA, ENGIE will supply BASF with 2.7 to 3.0 terawatt hours of biomethane throughout the term of the agreement. BASF uses certified biomethane at its Ludwigshafen/Germany and Antwerp/Belgium sites as a sustainable alternative to fossil raw materials in its manufacturing process.

Table of Contents

1. Executive Summary

2. Introduction

  • 2.1 Bio-Succinic Acid: An Overview
    • 2.1.1 Introduction to Bio-Succinic Acid
    • 2.1.2 Key Benefits of Using Bio-Succinic Acid over Traditional Succinic Acid
  • 2.2 Bio-Succinic Acid Segmentation: An Overview
    • 2.2.1 Bio-Succinic Acid Segmentation

3. Global Market Analysis

  • 3.1 Global Bio-Succinic Acid Market: An Analysis
    • 3.1.1 Global Bio-Succinic Acid Market: An Overview
    • 3.1.2 Global Bio-Succinic Acid Market by Value
    • 3.1.3 Global Bio-Succinic Acid Market by Process Type (Ammonium Sulphate Process, Direct Crystallization Process, and Electrodialysis Process)
    • 3.1.4 Global Bio-Succinic Acid Market by Application (1, 4-Butanediol, Polyester Polyols, Plasticizers, Polybutylene Succinate, Solvents & Coatings, and Others)
    • 3.1.5 Global Bio-Succinic Acid Market by End-User (Industrial, Food & Beverages, Pharmaceuticals, Personal Care & Cosmetics and Others)
    • 3.1.6 Global Bio-Succinic Acid Market by Region (Europe, North America, Asia Pacific, and rest of the World)
  • 3.2 Global Bio-Succinic Acid Market: Process Type Analysis
    • 3.2.1 Global Bio-Succinic Acid Market by Process Type: An Overview
    • 3.2.2 Global Ammonium Sulphate Process Bio-Succinic Acid Market by Value
    • 3.2.3 Global Direct Crystallization Process Bio-Succinic Acid Market by Value
    • 3.2.4 Global Electrodialysis Process Bio-Succinic Acid Market by Value
  • 3.3 Global Bio-Succinic Acid Market: Application Analysis
    • 3.3.1 Global Bio-Succinic Acid Market by Application: An Overview
    • 3.3.2 Global 1, 4-Butanediol Bio-Succinic Acid Market by Value
    • 3.3.3 Global Polyester Polyols Bio-Succinic Acid Market by Value
    • 3.3.4 Global Plasticizers Bio-Succinic Acid Market by Value
    • 3.3.5 Global Polybutylene Succinate Bio-Succinic Acid Market by Value
    • 3.3.6 Global Solvents & Coatings Bio-Succinic Acid Market by Value
    • 3.3.7 Global Others Bio-Succinic Acid Market by Value
  • 3.4 Global Bio-Succinic Acid Market: End-User Analysis
    • 3.4.1 Global Bio-Succinic Acid Market by End-User: An Overview
    • 3.4.2 Global Industrial Bio-Succinic Acid Market by Value
    • 3.4.3 Global Food & Beverages Bio-Succinic Acid Market by Value
    • 3.4.4 Global Pharmaceuticals Bio-Succinic Acid Market by Value
    • 3.4.5 Global Personal Care & Cosmetics Bio-Succinic Acid Market by Value
    • 3.4.6 Global Others Bio-Succinic Acid Market by Value

4. Regional Market Analysis

  • 4.1 Europe Bio-Succinic Acid Market: An Analysis
    • 4.1.1 Europe Bio-Succinic Acid Market: An Overview
    • 4.2.2 Europe Bio-Succinic Acid Market by Value
    • 4.2.3 Europe Bio-Succinic Acid Market by Region
    • 4.2.4 Germany Bio-Succinic Acid Market by Value
    • 4.2.5 France Bio-Succinic Acid Market by Value
    • 4.2.6 The UK Bio-Succinic Acid Market by Value
    • 4.2.7 Italy Bio-Succinic Acid Market by Value
    • 4.2.8 Spain Bio-Succinic Acid Market by Value
    • 4.2.9 Rest of Europe Bio-Succinic Acid Market by Value
  • 4.2 North America Bio-Succinic Acid Market: An Analysis
    • 4.2.1 North America Bio-Succinic Acid Market: An Overview
    • 4.2.2 North America Bio-Succinic Acid Market by Value
    • 4.2.3 North America Bio-Succinic Acid Market by Region
    • 4.2.4 The US Bio-Succinic Acid Market by Value
    • 4.2.5 Canada Bio-Succinic Acid Market by Value
    • 4.2.6 Mexico Bio-Succinic Acid Market by Value
  • 4.3 Asia Pacific Bio-Succinic Acid Market: An Analysis
    • 4.3.1 Asia Pacific Bio-Succinic Acid Market: An Overview
    • 4.3.2 Asia Pacific Bio-Succinic Acid Market by Value
    • 4.3.3 Asia Pacific Bio-Succinic Acid Market by Region
    • 4.3.4 China Bio-Succinic Acid Market by Value
    • 4.3.5 Japan Bio-Succinic Acid Market by Value
    • 4.3.6 India Bio-Succinic Acid Market by Value
    • 4.3.7 South Korea Bio-Succinic Acid Market by Value
    • 4.3.8 Rest of Asia Pacific Bio-Succinic Acid Market by Value
  • 4.4 Rest of the World Bio-Succinic Acid Market: An Analysis
    • 4.4.1 Rest of the World Bio-Succinic Acid Market: An Overview
    • 4.4.2 Rest of the World Bio-Succinic Acid Market by Value

5. Impact of COVID-19

  • 5.1 Impact of COVID-19 on Global Bio-Succinic Acid Market
  • 5.2 Post COVID-19 Impact on Global Bio-Succinic Acid Market

6. Market Dynamics

  • 6.1 Growth Drivers
    • 6.1.1 Accelerating Demand for Bio-based Plastics and Polymers
    • 6.1.2 Growing Application in Food Additives
    • 6.1.3 Government Regulations and Policies Favoring Bio-based Products
    • 6.1.4 Rising Integration with Renewable Energy Sources
    • 6.1.5 Increasing Shift Towards Sustainability and Eco-friendly Products
  • 6.2 Challenges
    • 6.2.1 Fluctuations in Succinic Acid Prices
    • 6.2.2 High Production Costs Compared to Petroleum-Based Alternatives
    • 6.2.3 Limited Availability of Cost-Effective Feedstocks
  • 6.3 Market Trends
    • 6.3.1 Expanding Applications in Pharmaceuticals
    • 6.3.2 Technological Advancements in the Production Processes
    • 6.3.3 Surging Focus on Renewable Feedstocks
    • 6.3.4 Adoption of Circular Economy Models
    • 6.3.5 Collaboration Between Biotechnology and Chemical Industries

7. Competitive Landscape

  • 7.1 Global Bio-Succinic Acid Market: Competitive Landscape
  • 7.2 Global Bio-Succinic Acid Market Players: Product Comparison

8. Company Profiles

  • 8.1 BASF SE
    • 8.1.1 Business Overview
    • 8.1.2 Operating Segments
    • 8.1.3 Business Strategy
  • 8.2 DSM-Firmenich AG
    • 8.2.1 Business Overview
    • 8.2.2 Operating Segments
    • 8.2.3 Business Strategy
  • 8.3 Roquette Freres SA
    • 8.3.1 Business Overview
    • 8.3.2 Operating Segments
    • 8.3.3 Business Strategy
  • 8.4 Mitsui & Co., Ltd.
    • 8.4.1 Business Overview
    • 8.4.2 Operating Segments
    • 8.4.3 Business Strategy
  • 8.5 Mitsubishi Chemical Group Corporation
    • 8.5.1 Business Overview
    • 8.5.2 Operating Segments
    • 8.5.3 Business Strategy
  • 8.6 PTT Global Chemical Public Company Limited (PTTGC)
    • 8.6.1 Business Overview
    • 8.6.2 Operating Segments
    • 8.6.3 Business Strategies
  • 8.7 Nippon Shokubai Co., Ltd
    • 8.7.1 Business Overview
    • 8.7.2 Operating Segments
    • 8.7.3 Business Strategy
  • 8.8 Dow Inc. (The Dow Chemical Company)
    • 8.8.1 Business Overview
    • 8.8.2 Operating Segments
    • 8.8.3 Business Strategy
  • 8.9 Corbion N.V.
    • 8.9.1 Business Overview
    • 8.9.2 Operating Segments
    • 8.9.3 Business Strategy
  • 8.10 Air Water Inc. (Air Water Performance Chemical Inc.)
    • 8.10.1 Business Overview
    • 8.10.2 Operating Segments
    • 8.10.3 Business Strategy
  • 8.11 LCY Chemical Corp.
    • 8.11.1 Business Overview
    • 8.11.2 Business Strategy
  • 8.12 Wego Chemical Group
    • 8.12.1 Business Overview
    • 8.12.2 Business Strategy
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제