½ÃÀ庸°í¼­
»óǰÄÚµå
1660101

¼¼°èÀÇ Ã·´Ü ÇÃ¶ó½ºÆ½ ÀçȰ¿ë ½ÃÀå(2026-2040³â)

The Global Advanced Plastics Recycling Market 2026-2040

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Future Markets, Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 409 Pages, 117 Tables, 54 Figures | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

±ÔÁ¦ ¾Ð·Â, ȯ°æÀû ¿ä±¸, ±â¼ú Çõ½Å¿¡ ÈûÀÔ¾î Àü ¼¼°è Æó±â¹° °ü¸® ȯ°æÀº Å©°Ô º¯È­Çϰí ÀÖ½À´Ï´Ù. À¯·´¿¬ÇÕ(EU)Àº 2030³â±îÁö Æ÷ÀåÀçÀÇ 10%¸¦ ÀçȰ¿ë ¿ø·á·Î Á¶´ÞÇϵµ·Ï Àǹ«È­Çϰí ÀÖ¾î, Çõ½ÅÀûÀÎ ÀçȰ¿ë ¼Ö·ç¼Ç¿¡ ´ëÇÑ Çʿ伺ÀÌ ±× ¾î´À ¶§º¸´Ù Àý½ÇÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â ¼øÈ¯°æÁ¦ ¿øÄ¢À» ÇâÇÑ ¼¼°è °¢±¹ÀÇ ¿òÁ÷ÀÓÀÇ ÇÑ ´Ü¸éÀÏ »ÓÀ̸ç, ¼¼°è °¢±¹ Á¤ºÎ´Â Á¡Á¡ ´õ ½É°¢ÇØÁö´Â ÇÃ¶ó½ºÆ½ Æó±â¹° À§±â¿¡ ´ëóÇϱâ À§ÇØ Á¡Á¡ ´õ ¾ö°ÝÇÑ Á¤Ã¥À» ½ÃÇàÇϰí ÀÖ½À´Ï´Ù.

½ÃÀåÀÇ ¼ºÀå ±ËÀûÀº ÇÃ¶ó½ºÆ½ »ý»ê·® Áõ°¡¿¡ ºñÃß¾î º¼ ¶§ ƯÈ÷ ¼³µæ·ÂÀÌ ÀÖ½À´Ï´Ù. ÇÃ¶ó½ºÆ½ »ý»ê·®Àº ÇâÈÄ 35³â µ¿¾È 3¹è·Î Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÇÃ¶ó½ºÆ½ Æó±â¹° °ü¸®¶ó´Â °úÁ¦´Â ºñ¾àÀûÀ¸·Î °­È­µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. µû¶ó¼­ ÷´Ü ÀçȰ¿ë ±â¼úÀ» ½Å¼ÓÇϰí È¿À²ÀûÀ¸·Î È®´ëÇÏ´Â °ÍÀº ±× ¾î´À ¶§º¸´Ù ÁÁÀº ±âȸÀÌÀÚ ÇʼöÀûÀÎ °úÁ¦ÀÔ´Ï´Ù.

¼¼°è ÷´Ü ÇÃ¶ó½ºÆ½ ÀçȰ¿ë ½ÃÀåÀº ¿©·¯ ºÎ¹®¿¡¼­ °ßÁ¶ÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. Áß±¹ÀÌ ´ë±Ô¸ð ¼±Áø ÀçȰ¿ë¿¡ ÁøÀÔÇÑ °ÍÀº »ê¾÷ ¹ßÀüÀÇ Áß¿äÇÑ ÀÌÁ¤Ç¥°¡ µÉ °ÍÀÔ´Ï´Ù. ±¤µ¿¼º Áö¾ç½Ã¿¡ ½Å¼³µÈ ½Ã¼³Àº Guangdong Dongyue Chemical Technology°¡ °³¹ßÇÑ µ¶ÀÚÀûÀÎ 1´Ü°è ½ÉÃþ Á¢ÃË ºÐÇØ ±â¼úÀ» »ç¿ëÇÏ¿© ¿¬°£ 20¸¸ Åæ ÀÌ»óÀÇ Ã³¸® ´É·ÂÀ» °®Ãß°í ÀÖ½À´Ï´Ù.

±â°èÀû ÀçȰ¿ëÀÇ ÇѰè´Â ÷´Ü È­Çй°Áú ÀçȰ¿ë ±â¼ú¿¡ Å« ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ±â°èÀû ÀçȰ¿ëÀº °íǰÁúÀÇ ºñ±³Àû ±ú²ýÇÏ°Ô ºÐ¸®µÈ Æó±â¹°¿¡ °¡Àå È¿°úÀûÀÌÁö¸¸, ÀûÀýÇÑ ¿ø·á Ç®ÀÇ Á¦ÇÑ, ÃÖÁ¾ ½ÃÀå¿¡¼­ÀÇ ¿ëµµ¸¦ Á¦ÇÑÇÏ´Â Àç·á Ư¼º µîÀÇ ±¸Á¶Àû ÇѰ迡 Á÷¸éÇØ ÀÖ½À´Ï´Ù. ¹Ý¸é, °í±Þ ÀçȰ¿ëÀº ÀçȰ¿ë °¡´ÉÇÑ ÇÃ¶ó½ºÆ½ÀÇ À¯ÇüÀ» ´Ã¸± »Ó¸¸ ¾Æ´Ï¶ó ½Äǰ ¿¬Æ÷Àå µî °íºÎ°¡°¡Ä¡ ¿ëµµ¿¡ ÀûÇÕÇÑ ºÐÀÚ·® ºÐÆ÷¿Í ÄÚ¸ð³ë¸Ó°¡ Á¶Á¤µÈ ÇÃ¶ó½ºÆ½À» »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿©·¯ ¿äÀÎÀÌ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ÇÃ¶ó½ºÆ½ ÀçȰ¿ëÀ» À§ÇÑ Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê¿Í °í¾×ÀÇ ÅõÀÚ·Î ÇÃ¶ó½ºÆ½ÀÇ È­ÇÐÀû ÀçȰ¿ë¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼ÒºñÀç ¹× Æ÷Àå »ê¾÷¿¡¼­ ÀçȰ¿ë °¡´ÉÇϰí Áö¼Ó °¡´ÉÇÑ Àç·á·ÎÀÇ ÀüȯÀº ½ÃÀå ¼ºÀåÀ» Áõ°¡½Ãų °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

÷´Ü ±â¼úÀ» ÅëÇØ 2030³â±îÁö ¿¬°£ 1,500¸¸ ÅæÀÇ ÇÃ¶ó½ºÆ½ Æó±â¹°À» ó¸®ÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ »ê¾÷Àº Æó±â¹°ÀÇ È帧À» »õ·Î¿î Á¦Ç°¿¡ »ç¿ëµÇ´Â ±ÍÁßÇÑ ¿ø·á·Î ÀüȯÇÏ¿© ½ÇÁúÀûÀÎ °æÁ¦Àû °¡Ä¡¸¦ âÃâÇϸ鼭 Àü ¼¼°è ÇÃ¶ó½ºÆ½ Æó±â¹° ¹®Á¦¸¦ ÇØ°áÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖ½À´Ï´Ù. Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¼±Áø ÇÃ¶ó½ºÆ½ ÀçȰ¿ë ½ÃÀå¿¡ ´ëÇØ Á¶»ç ºÐ¼®ÇßÀ¸¸ç, ½Å±â¼ú, ½ÃÀå ¿ªÇÐ, °æÀï ȯ°æ, Àü·«Àû ±âȸ µîÀÇ Á¤º¸¸¦ ÀüÇØµå¸³´Ï´Ù. ¶ÇÇÑ, ¾ö°ÝÇÑ ±ÔÁ¦ Á¤Ã¥, ±â¾÷ÀÇ Áö¼Ó°¡´É¼º ³ë·Â, ±â¼ú ¹ßÀü, ¼¼°è ÁÖ¿ä Áö¿ªÀÇ ¼øÈ¯ °æÁ¦ äÅà µî ½ÃÀå ¼ºÀå ÃËÁø¿äÀο¡ ´ëÇÑ Áß¿äÇÑ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÀçȰ¿ë ±â¼ú ºÐ·ù

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ¼­·Ð

  • ¼¼°èÀÇ ÇÃ¶ó½ºÆ½ »ý»ê
  • ÇÃ¶ó½ºÆ½ Á߿伺
  • ÇÃ¶ó½ºÆ½ »ç¿ë¿¡ °üÇÑ ¹®Á¦
  • ¹ÙÀÌ¿À ¶Ç´Â Àç»ýÇÃ¶ó½ºÆ½
  • »ýºÐÇØ¼º ÅðºñÈ­ °¡´ÉÇÑ ÇÃ¶ó½ºÆ½
  • ÇÃ¶ó½ºÆ½ ¿À¿°
  • Á¤Ã¥°ú ±ÔÁ¦
  • ¼øÈ¯Çü °æÁ¦
  • ÇÃ¶ó½ºÆ½ ÀçȰ¿ë
  • ¼ö¸íÁÖ±â Æò°¡

Á¦4Àå ÷´Ü ÇÃ¶ó½ºÆ½ ÀçȰ¿ë ½ÃÀå

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀΰú µ¿Çâ
  • ½ÃÀåÀÌ ÇØ°áÇØ¾ß ÇÒ °úÁ¦¿Í ¾ïÁ¦¿äÀÎ
  • »ê¾÷ ´º½º, ÀÚ±ÝÁ¶´Þ, °³¹ß(2020³â-2025³â)
  • ó¸® ´É·Â
  • ¼¼°èÀÇ Æú¸®¸Ó ¼ö¿ä : ÀçȰ¿ë ±â¼úº°(2022³â-2040³â)
  • ¼¼°èÀÇ Æú¸®¸Ó ¼ö¿ä : ÀçȰ¿ë ±â¼úº°, Áö¿ªº°(2022³â-2040³â)
  • È­ÇÐÀû ÀçȰ¿ë ÇÃ¶ó½ºÆ½ Á¦Ç°
  • ½ÃÀå ¸Ê
  • ¹ë·ùüÀÎ
  • ÷´Ü ÇÃ¶ó½ºÆ½ ÀçȰ¿ë ÇÁ·Î¼¼½º ¼ö¸íÁÖ±â Æò°¡(LCA)
  • ÀçȰ¿ë ÇÃ¶ó½ºÆ½ Á¦Ç° ºñÀ²°ú ºñ¿ë

Á¦5Àå ÷´Ü ÇÃ¶ó½ºÆ½ ÀçȰ¿ë ±â¼ú

  • ¿ëµµ
  • Æú¸®¸Ó Æó±â¹° ÄɹÌÄà ÀçȰ¿ë°ú ÷´Ü ¸ÞÄ¿´ÏÄà ÀçȰ¿ë¿¡ ÀÌ¿ëÇÏ´Â ÇöÀç ±â¼ú°ú ½Å±â¼ú
  • ¿­Ã³¸® ÇÁ·Î¼¼½º
  • ¿ëÁ¦ º£À̽º ÀçȰ¿ë ±â¼ú
  • ±âŸ ÷´Ü ÇÃ¶ó½ºÆ½ ÀçȰ¿ë ±â¼ú
  • ¿­°æÈ­¼º Àç·á ÷´Ü ÀçȰ¿ë
  • ±âÁ¸ ÀçȰ¿ë ¹æ¹ý°úÀÇ ºñ±³
  • »õ·Î¿î ÷´Ü ¸ÞÄ¿´ÏÄà ±â¼ú
  • ȯ°æ¿¡ ´ëÇÑ ¿µÇâ Æò°¡
  • ½Å±â¼ú

Á¦6Àå Àç·á ºÐ¼®

  • ÇÃ¶ó½ºÆ½
  • ±Ý¼Ó
  • ºñ±Ý¼Ó
  • ÈñÅä·ù ¿ø¼Ò
  • ÀüÀÚ Æó±â¹°
  • ÅØ½ºÅ¸ÀÏ
  • ÇÕ¼º ¼¶À¯

Á¦7Àå ÃÖÁ¾ Á¦Ç° ºÐ¼®

  • È­È®¿ø·á
  • ¿¬·á
  • ¿øÀç·á
  • ¿¡³ÊÁö Á¦Ç°

Á¦8Àå ±â¾÷ °³¿ä(±â¾÷ 191°³»ç °³¿ä)

Á¦9Àå ¿ë¾îÁý

Á¦10Àå Âü°í ¹®Çå

LSH 25.08.06

The advanced plastics recycling market stands at an inflection point, driven by regulatory pressures, environmental imperatives, and technological breakthroughs that are reshaping the global waste management landscape. With the European Union mandating that 10% of packaging materials must come from recycled sources by 2030, the urgency for innovative recycling solutions has never been greater. This regulatory framework represents just one facet of a broader global movement toward circular economy principles, as governments worldwide implement increasingly stringent policies to address the mounting plastic waste crisis.

The market's growth trajectory is particularly compelling when viewed against the backdrop of escalating plastic production. With plastic manufacturing projected to potentially triple over the next 35 years, the challenge of managing plastic waste will intensify exponentially. This creates both an unprecedented opportunity and an existential necessity for advanced recycling technologies to scale rapidly and efficiently.

The global advanced plastics recycling market demonstrates robust expansion across multiple segments. China's entry into large-scale advanced recycling marks a significant milestone in the industry's evolution. The new facility in Jieyang, Guangdong province, with its capacity to process over 200,000 tonnes per year using proprietary one-step deep catalytic cracking technology developed by Guangdong Dongyue Chemical Technology, represents the kind of technological breakthrough needed to address the scale of the challenge.

The limitations of mechanical recycling have created substantial opportunities for advanced chemical recycling technologies. Mechanical recycling is most effective with high-quality, relatively clean sorted waste; it faces structural limitations such as limited pools of appropriate feedstock and resulting material properties that limit end-market applications. In contrast, advanced recycling can not only expand the types of plastics that are recyclable but also produce plastics that have tailored molecular weight distributions and comonomers that are suited for high-value applications, such as flexible packaging for food.

Several key factors are propelling market growth. Government initiatives toward recycling of plastics coupled with high investments is likely to propel demand for chemical recycling of plastics. Additionally, the shift of consumer goods and packaging industries toward recyclable and sustainable materials is expected to augment the market growth.

With advanced technologies potentially processing up to 15 million tons of additional plastic waste annually by 2030, the industry is positioned to play a crucial role in addressing the global plastic waste challenge while creating substantial economic value through the transformation of waste streams into valuable feedstock for new products.

"The Global Advanced Plastics Recycling Market 2026-2040" provides definitive analysis of the advanced plastics recycling sector, covering emerging technologies, market dynamics, competitive landscapes, and strategic opportunities through 2040. As plastic production continues its exponential growth trajectory, the urgency for sustainable waste management solutions has never been greater. Advanced plastics recycling technologies-including chemical recycling, pyrolysis, gasification, depolymerization, and dissolution processes-are revolutionizing how the industry approaches plastic waste streams that were previously considered non-recyclable. This report delivers critical insights into market drivers including stringent regulatory policies, corporate sustainability initiatives, technological advancements, and circular economy adoption across key global regions.

The market analysis encompasses detailed examination of thermal processes, solvent-based recycling technologies, chemical depolymerization methods, and emerging technologies such as AI-driven sorting optimization, robotics integration, and novel catalyst development. With over 190 company profiles spanning the entire value chain from technology developers to end-product manufacturers, this report provides unparalleled competitive intelligence for strategic decision-making.

Regional analysis covers Europe, North America, South America, Asia, Oceania, and Africa, with polymer-specific demand forecasts for polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), nylon, and other specialized materials. The report includes comprehensive capacity projections, technology comparisons, cost analyses, and sustainability metrics essential for investment planning and market entry strategies.

Report contents include:

  • Classification of recycling technologies and comprehensive research methodology
  • Global plastics production trends, environmental impact assessment, and policy landscape
  • Bio-based and biodegradable plastics market integration with recycling ecosystems
  • Circular economy frameworks and plastic waste management systems
  • Advanced vs. mechanical recycling comparison with life cycle assessments
  • Environmental concerns and regulatory compliance requirements driving market expansion
  • Corporate sustainability initiatives and extended producer responsibility programs
  • Technological advancement analysis including breakthrough innovations and patent landscapes
  • Market challenges including high initial investment costs and technical implementation barriers
  • Infrastructure limitations, supply chain complexities, and cost competitiveness analysis
  • Comprehensive industry news, funding developments, and merger & acquisition activity (2020-2025)
  • Global capacity analysis by technology type with current and planned facility databases
  • Regional polymer demand forecasts segmented by recycling technology (2022-2040)
  • Market mapping and value chain analysis from feedstock to end products
  • Pricing analysis and yield optimization strategies for chemical recycling technologies
  • Technology Analysis
    • Thermal processes: pyrolysis (catalytic and non-catalytic), gasification, and steam cracking technologies
    • Solvent-based recycling: dissolution, delamination, and polymer-specific solvent systems
    • Chemical depolymerization: hydrolysis, enzymolysis, methanolysis, glycolysis, and aminolysis processes
    • Emerging technologies: hydrothermal liquefaction, microwave-assisted pyrolysis, plasma processing
    • Advanced thermoset recycling and carbon fiber recovery technologies
  • Materials & End Products Analysis
    • Comprehensive analysis of plastic types: PE, PP, PET, PS, PVC, PC, ABS, and mixed plastic streams
    • Metals recovery including precious metals, base metals, and rare earth elements
    • Electronic waste processing for circuit boards, batteries, displays, and components
    • Textile recycling for natural and synthetic fibers with advanced recovery technologies
    • Chemical feedstocks, fuels, raw materials, and energy products from recycling processes
  • Technology Comparison & Environmental Impact
    • Advanced vs. traditional recycling methods with energy efficiency comparisons
    • Quality of output analysis and cost-benefit assessments
    • Carbon footprint analysis and waste reduction potential evaluation
    • Sustainability metrics and environmental impact assessments
    • Emerging AI, machine learning, and robotics applications in recycling operations
  • Competitive Intelligence
    • SWOT analysis for major technology categories and market segments
    • Innovation pipeline analysis and technology readiness levels
    • Commercial development timelines and scale-up challenges
    • Investment requirements and economic viability assessments
    • Market entry strategies and partnership opportunities
  • Company Profiles. Comprehensive profiles of 191 leading companies shaping the advanced plastics recycling landscape, covering products/technology, funding, TRL, collaborations etc. Companies profiled include Aduro Clean Technologies, Advanced Plastic Purification International (APPI), Aeternal Upcycling, Agilyx, Alpha Recyclage Composites, Alterra Energy, Ambercycle, Anellotech, Anhui Oursun Resource Technology, APChemi, Aquafil, ARCUS Greencycling, Arkema, Axens, BASF, Bcircular, BioBTX, Biofabrik Technologies, Birch Biosciences, Blest, Blue Cycle, BlueAlp Technology, Borealis, Boston Materials, Braven Environmental, Breaking, Brightmark, Cadel Deinking, Carbios, Carboliq, Carbon Fiber Recycling, Cassandra Oil, CIRC, Chian Tianying, Chevron Phillips Chemical, Clariter, Clean Energy Enterprises, Clean Planet Energy, Corsair Group International, Covestro, CreaCycle, CuRe Technology, Cyclic Materials, Cyclize, DeepTech Recycling, DePoly, Dow Chemical Company, DyeRecycle, Eastman Chemical Company, Eco Fuel Technology, Ecopek, Ecoplasteam, Eeden, Emery Oleochemicals, Encina Development Group, Enerkem, Enespa, Enval, Environmental Solutions (Asia), Epoch Biodesign, Equipolymers, ESTER Biotech, Evonik Industries, Evoralis, Evrnu, Extracthive, ExxonMobil, Fairmat, Fulcrum BioEnergy, Futerro, Freepoint Eco-Systems, Fych Technologies, Garbo, GreenMantra Technologies, Greyparrot, Gr3n, Guangdong Dongyue Chemical Technology, Handerek Technologies, Hanwha Solutions, Honeywell, Hyundai Chemical, Impact Recycling, Indaver, InEnTec, INEOS Styrolution, Infinited Fiber Company, Ioncell, Ioniqa Technologies, Itero Technologies, Jeplan, JFE Chemical Corporation, Kaneka Corporation, Khepra, Klean Industries, Lanzatech, Licella, Loop Industries, LOTTE Chemical, Lummus Technology, LyondellBasell Industries, MacroCycle Technologies, Metaspectral, Mint Innovation, Microwave Chemical, Mitsubishi Chemical, MolyWorks Materials, Mote, Mura Technology, Nanya Plastics Corporation, NatureWorks, Neste, New Hope Energy, Nexus Circular, Next Generation Group (NGR), Novoloop, Olefy Technologies, OMV, and more....

TABLE OF CONTENTS

1. CLASSIFICATION OF RECYCLING TECHNOLOGIES

2. RESEARCH METHODOLOGY

3. INTRODUCTION

  • 3.1. Global production of plastics
  • 3.2. The importance of plastic
  • 3.3. Issues with plastics use
  • 3.4. Bio-based or renewable plastics
    • 3.4.1. Drop-in bio-based plastics
    • 3.4.2. Novel bio-based plastics
  • 3.5. Biodegradable and compostable plastics
    • 3.5.1. Biodegradability
    • 3.5.2. Compostability
  • 3.6. Plastic pollution
  • 3.7. Policy and regulations
  • 3.8. The circular economy
  • 3.9. Plastic recycling
    • 3.9.1. Mechanical recycling
      • 3.9.1.1. Closed-loop mechanical recycling
      • 3.9.1.2. Open-loop mechanical recycling
      • 3.9.1.3. Polymer types, use, and recovery
    • 3.9.2. Advanced recycling (molecular recycling, chemical recycling)
      • 3.9.2.1. Main streams of plastic waste
      • 3.9.2.2. Comparison of mechanical and advanced chemical recycling
  • 3.10. Life cycle assessment

4. THE ADVANCED PLASTICS RECYCLING MARKET

  • 4.1. Market drivers and trends
    • 4.1.1. Growing Environmental Concerns
    • 4.1.2. Stringent Regulatory Policies
    • 4.1.3. Corporate Sustainability Initiatives
    • 4.1.4. Technological Advancements
    • 4.1.5. Circular Economy Adoption
  • 4.2. Market Challenges and Restraints
    • 4.2.1. High Initial Investment Costs
    • 4.2.2. Technical Challenges
    • 4.2.3. Infrastructure Limitations
    • 4.2.4. Technological Barriers
    • 4.2.5. Supply Chain Complexities
    • 4.2.6. Cost Competitiveness
  • 4.3. Industry news, funding and developments 2020-2025
  • 4.4. Capacities
  • 4.5. Global polymer demand 2022-2040, segmented by recycling technology
    • 4.5.1. PE
    • 4.5.2. PP
    • 4.5.3. PET
    • 4.5.4. PS
    • 4.5.5. Nylon
    • 4.5.6. Others
  • 4.6. Global polymer demand 2022-2040, segmented by recycling technology, by region
    • 4.6.1. Europe
    • 4.6.2. North America
    • 4.6.3. South America
    • 4.6.4. Asia
    • 4.6.5. Oceania
    • 4.6.6. Africa
  • 4.7. Chemically recycled plastic products
  • 4.8. Market map
  • 4.9. Value chain
  • 4.10. Life Cycle Assessments (LCA) of advanced plastics recycling processes
    • 4.10.1. PE
    • 4.10.2. PP
    • 4.10.3. PET
  • 4.11. Recycled plastic yield and cost
    • 4.11.1. Plastic yield of each chemical recycling technologies
    • 4.11.2. Prices

5. ADVANCED PLASTICS RECYCLING TECHNOLOGIES

  • 5.1. Applications
  • 5.2. Current and Emerging Technologies for Chemical and Advanced Mechanical Recycling of Polymer Waste
  • 5.3. Thermal Processes
    • 5.3.1. Pyrolysis
      • 5.3.1.1. Technical Process and Variations
      • 5.3.1.2. Non-catalytic
      • 5.3.1.3. Catalytic
      • 5.3.1.4. Steam Cracking of Polymer Waste
        • 5.3.1.4.1. Technology Overview
        • 5.3.1.4.2. Process Conditions and Product Yields
        • 5.3.1.4.3. Integration with Refineries
        • 5.3.1.4.4. Commercial Applications
        • 5.3.1.4.5. Polystyrene pyrolysis
        • 5.3.1.4.6. Pyrolysis for production of bio fuel
        • 5.3.1.4.7. Used tires pyrolysis
          • 5.3.1.4.7.1. Conversion to biofuel
        • 5.3.1.4.8. Co-pyrolysis of biomass and plastic wastes
      • 5.3.1.5. Commercial Development and Investment
      • 5.3.1.6. Challenges and Considerations
      • 5.3.1.7. SWOT analysis
      • 5.3.1.8. Companies and capacities
    • 5.3.2. Gasification
      • 5.3.2.1. Technology overview
        • 5.3.2.1.1. Syngas conversion to methanol
        • 5.3.2.1.2. Biomass gasification and syngas fermentation
        • 5.3.2.1.3. Biomass gasification and syngas thermochemical conversion
      • 5.3.2.2. Applications and Potential
      • 5.3.2.3. Multilayer Packaging
      • 5.3.2.4. SWOT analysis
      • 5.3.2.5. Companies and capacities (current and planned)
  • 5.4. Solvent-Based Recycling Technologies
    • 5.4.1. Dissolution
      • 5.4.1.1. Technology overview
      • 5.4.1.2. Selective Dissolution and Precipitation
      • 5.4.1.3. Supercritical Fluid Technologies
      • 5.4.1.4. Advanced Solvent Systems for Mixed Plastics
      • 5.4.1.5. Switchable Solvent Technologies
      • 5.4.1.6. SWOT analysis
      • 5.4.1.7. Companies and capacities (current and planned)
    • 5.4.2. Delamination Technologies for Multilayer Packaging
      • 5.4.2.1. Technical Approaches
      • 5.4.2.2. Switchable Hydrophilicity Solvents (SHS)
      • 5.4.2.3. Chemical Recycling of "Polyal" (Polyethylene-Aluminum Composites)
      • 5.4.2.4. Delamination Process for Carton Packages
      • 5.4.2.5. Aluminum Recovery Methods
      • 5.4.2.6. Polyethylene Purification and Recycling
      • 5.4.2.7. Economic and Environmental Benefits
      • 5.4.2.8. Novel Approaches
    • 5.4.3. Solvent-Based Plastic Recycling
      • 5.4.3.1. Solvent Selection and Classification
        • 5.4.3.1.1. Conventional Organic Solvents
        • 5.4.3.1.2. Ionic Liquids
        • 5.4.3.1.3. Supercritical Fluids
        • 5.4.3.1.4. Deep Eutectic Solvents (DES)
      • 5.4.3.2. Polymer-Specific Solvent Recycling
        • 5.4.3.2.1. Polyolefin Dissolution Systems
        • 5.4.3.2.2. Polystyrene Solvent Recovery
        • 5.4.3.2.3. PET and Polyester Solvolysis
        • 5.4.3.2.4. Mixed Polymer Stream Processing
      • 5.4.3.3. Solvent Recovery and Recycling Systems
        • 5.4.3.3.1. Distillation and Purification
        • 5.4.3.3.2. Membrane Separation Technologies
        • 5.4.3.3.3. Economic Optimization
      • 5.4.3.4. Environmental Considerations
        • 5.4.3.4.1. Solvent Emissions Control
        • 5.4.3.4.2. Waste Stream Management
        • 5.4.3.4.3. Life Cycle Assessment of Solvent Systems
      • 5.4.3.5. Commercial Development and Scale-Up
        • 5.4.3.5.1. Pilot and Demonstration Plants
        • 5.4.3.5.2. Industrial Implementation Challenges
        • 5.4.3.5.3. Economic Viability Assessment
    • 5.4.4. Chemical Depolymerisation
      • 5.4.4.1. Hydrolysis
        • 5.4.4.1.1. Technology overview
        • 5.4.4.1.2. SWOT analysis
      • 5.4.4.2. Enzymolysis
        • 5.4.4.2.1. Technology overview
        • 5.4.4.2.2. SWOT analysis
      • 5.4.4.3. Methanolysis
        • 5.4.4.3.1. Technology overview
        • 5.4.4.3.2. SWOT analysis
      • 5.4.4.4. Glycolysis
        • 5.4.4.4.1. Technology overview
        • 5.4.4.4.2. SWOT analysis
      • 5.4.4.5. Aminolysis
        • 5.4.4.5.1. Technology overview
        • 5.4.4.5.2. SWOT analysis
      • 5.4.4.6. Companies and capacities (current and planned)
  • 5.5. Other advanced plastics recycling technologies
    • 5.5.1. Hydrothermal Liquefaction (HTL)
      • 5.5.1.1. Technical Mechanisms
      • 5.5.1.2. Performance and Application
      • 5.5.1.3. Commercial Development
      • 5.5.1.4. Hydrothermal Liquefaction Targeting Multilayer Packaging Waste
    • 5.5.2. Pyrolysis with in-line reforming
    • 5.5.3. Microwave-assisted pyrolysis
    • 5.5.4. Plasma pyrolysis
    • 5.5.5. Plasma gasification
    • 5.5.6. Carbon fiber recycling
      • 5.5.6.1. Processes
      • 5.5.6.2. Companies
  • 5.6. Advanced recycling of thermoset materials
    • 5.6.1. Thermal recycling
      • 5.6.1.1. Energy Recovery Combustion
      • 5.6.1.2. Anaerobic Digestion
      • 5.6.1.3. Pyrolysis Processing
      • 5.6.1.4. Microwave Pyrolysis
    • 5.6.2. Solvolysis
    • 5.6.3. Catalyzed Glycolysis
    • 5.6.4. Alcoholysis and Hydrolysis
    • 5.6.5. Ionic liquids
    • 5.6.6. Supercritical fluids
    • 5.6.7. Plasma
    • 5.6.8. Chemical Vapor Infiltration (CVI)
    • 5.6.9. Companies
  • 5.7. Comparison with Traditional Recycling Methods
    • 5.7.1. Mechanical Recycling Limitations
    • 5.7.2. Energy Efficiency Comparison
    • 5.7.3. Quality of Output Comparison
    • 5.7.4. Cost Analysis
  • 5.8. Emerging Advanced Mechanical Technologies
    • 5.8.1. Chemical Upcycling Integration
    • 5.8.2. Computational Modelling
    • 5.8.3. Hybrid Approaches
  • 5.9. Environmental Impact Assessment
    • 5.9.1. Carbon Footprint Analysis
    • 5.9.2. Energy Consumption Assessment
    • 5.9.3. Waste Reduction Potential
      • 5.9.3.1. Wastewater
      • 5.9.3.2. Atmospheric Emissions
      • 5.9.3.3. Catalyst and Media Waste
      • 5.9.3.4. Maintenance and Cleaning Waste
      • 5.9.3.5. Waste Management Approaches
      • 5.9.3.6. Regulatory Considerations and Classification
      • 5.9.3.7. Comparative Waste Production
      • 5.9.3.8. Environmental Impact and Future Directions
    • 5.9.4. Sustainability Metrics
  • 5.10. Emerging Technologies
    • 5.10.1. AI and Machine Learning Applications
      • 5.10.1.1. Sorting Optimization
      • 5.10.1.2. Process Control
      • 5.10.1.3. Quality Prediction
      • 5.10.1.4. Maintenance Prediction
    • 5.10.2. Robotics in Sorting
      • 5.10.2.1. Vision Systems
      • 5.10.2.2. Picking Mechanisms
      • 5.10.2.3. Control Systems
      • 5.10.2.4. Integration Methods
    • 5.10.3. Novel Catalyst Development
      • 5.10.3.1. Nano-catalysts
      • 5.10.3.2. Bio-catalysts
      • 5.10.3.3. Hybrid Catalysts

6. MATERIALS ANALYSIS

  • 6.1. Plastics
    • 6.1.1. Polyethylene (PE)
      • 6.1.1.1. HDPE Analysis
      • 6.1.1.2. LLDPE Analysis
      • 6.1.1.3. Recovery Methods
    • 6.1.2. Polypropylene (PP)
      • 6.1.2.1. Homopolymer
      • 6.1.2.2. Copolymer
      • 6.1.2.3. Processing Methods
      • 6.1.2.4. Quality Grades
    • 6.1.3. Polyethylene Terephthalate (PET)
      • 6.1.3.1. Bottle Grade
      • 6.1.3.2. Fiber Grade
      • 6.1.3.3. Film Grade
      • 6.1.3.4. Recovery Technologies
    • 6.1.4. Polystyrene (PS)
      • 6.1.4.1. General Purpose PS
      • 6.1.4.2. High Impact PS
      • 6.1.4.3. Expanded PS
      • 6.1.4.4. Processing Methods
    • 6.1.5. Other Plastics
      • 6.1.5.1. PVC
      • 6.1.5.2. PC
      • 6.1.5.3. ABS
      • 6.1.5.4. Mixed Plastics
  • 6.2. Metals
    • 6.2.1. Precious Metals
      • 6.2.1.1. Gold
      • 6.2.1.2. Silver
      • 6.2.1.3. Platinum Group Metals
      • 6.2.1.4. Recovery Methods
  • 6.3. Base Metals
    • 6.3.1. Copper
    • 6.3.2. Aluminium
    • 6.3.3. Steel
    • 6.3.4. Processing Technologies
  • 6.4. Rare Earth Elements
    • 6.4.1. Light REEs
    • 6.4.2. Heavy REEs
    • 6.4.3. Extraction Methods
  • 6.5. Electronic Waste
    • 6.5.1. Circuit Boards
      • 6.5.1.1. PCB Types
      • 6.5.1.2. Component Separation
      • 6.5.1.3. Metal Recovery
      • 6.5.1.4. Waste Management
    • 6.5.2. Batteries
      • 6.5.2.1. Lithium-ion
      • 6.5.2.2. Lead-acid
      • 6.5.2.3. Nickel-based
      • 6.5.2.4. Recovery Processes
    • 6.5.3. Displays
      • 6.5.3.1. LCD
      • 6.5.3.2. LED
      • 6.5.3.3. OLED
      • 6.5.3.4. Material Recovery
    • 6.5.4. Other Components
      • 6.5.4.1. Capacitors
      • 6.5.4.2. Resistors
      • 6.5.4.3. Semiconductors
      • 6.5.4.4. Connectors
  • 6.6. Textiles
    • 6.6.1. Natural Fibers
    • 6.6.2. Cotton
    • 6.6.3. Wool
    • 6.6.4. Silk
    • 6.6.5. Processing Methods
  • 6.7. Synthetic Fibers
    • 6.7.1. Polyester
    • 6.7.2. Nylon
    • 6.7.3. Acrylic
    • 6.7.4. Recovery Technologies

7. END PRODUCT ANALYSIS

  • 7.1. Chemical Feedstocks
    • 7.1.1. Monomers
    • 7.1.2. Oligomers
    • 7.1.3. Specialty Chemicals
  • 7.2. Fuels
    • 7.2.1. Diesel
    • 7.2.2. Gasoline
    • 7.2.3. Synthetic Gas
  • 7.3. Raw Materials
    • 7.3.1. Recycled Plastics
    • 7.3.2. Recovered Metals
    • 7.3.3. Other Materials
  • 7.4. Energy Products
    • 7.4.1. Electricity
    • 7.4.2. Heat
    • 7.4.3. Biofuels

8. COMPANY PROFILES (191 company profiles)

9. GLOSSARY OF TERMS

10. REFERENCES

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦