시장보고서
상품코드
1660101

세계의 첨단 플라스틱 재활용 시장(2026-2040년)

The Global Advanced Plastics Recycling Market 2026-2040

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 409 Pages, 117 Tables, 54 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

규제 압력, 환경적 요구, 기술 혁신에 힘입어 전 세계 폐기물 관리 환경은 크게 변화하고 있습니다. 유럽연합(EU)은 2030년까지 포장재의 10%를 재활용 원료로 조달하도록 의무화하고 있어, 혁신적인 재활용 솔루션에 대한 필요성이 그 어느 때보다 절실합니다. 이러한 규제 프레임워크는 순환경제 원칙을 향한 세계 각국의 움직임의 한 단면일 뿐이며, 세계 각국 정부는 점점 더 심각해지는 플라스틱 폐기물 위기에 대처하기 위해 점점 더 엄격한 정책을 시행하고 있습니다.

시장의 성장 궤적은 플라스틱 생산량 증가에 비추어 볼 때 특히 설득력이 있습니다. 플라스틱 생산량은 향후 35년 동안 3배로 증가할 것으로 예상되며, 플라스틱 폐기물 관리라는 과제는 비약적으로 강화될 것으로 보입니다. 따라서 첨단 재활용 기술을 신속하고 효율적으로 확대하는 것은 그 어느 때보다 좋은 기회이자 필수적인 과제입니다.

세계 첨단 플라스틱 재활용 시장은 여러 부문에서 견조한 성장세를 보이고 있습니다. 중국이 대규모 선진 재활용에 진입한 것은 산업 발전의 중요한 이정표가 될 것입니다. 광동성 지양시에 신설된 시설은 Guangdong Dongyue Chemical Technology가 개발한 독자적인 1단계 심층 접촉 분해 기술을 사용하여 연간 20만 톤 이상의 처리 능력을 갖추고 있습니다.

기계적 재활용의 한계는 첨단 화학물질 재활용 기술에 큰 기회를 제공합니다. 기계적 재활용은 고품질의 비교적 깨끗하게 분리된 폐기물에 가장 효과적이지만, 적절한 원료 풀의 제한, 최종 시장에서의 용도를 제한하는 재료 특성 등의 구조적 한계에 직면해 있습니다. 반면, 고급 재활용은 재활용 가능한 플라스틱의 유형을 늘릴 뿐만 아니라 식품 연포장 등 고부가가치 용도에 적합한 분자량 분포와 코모노머가 조정된 플라스틱을 생산할 수 있습니다.

여러 요인이 시장 성장을 가속하고 있습니다. 플라스틱 재활용을 위한 정부의 이니셔티브와 고액의 투자로 플라스틱의 화학적 재활용에 대한 수요가 증가하고 있습니다. 또한, 소비재 및 포장 산업에서 재활용 가능하고 지속 가능한 재료로의 전환은 시장 성장을 증가시킬 것으로 예측됩니다.

첨단 기술을 통해 2030년까지 연간 1,500만 톤의 플라스틱 폐기물을 처리할 수 있으며, 이 산업은 폐기물의 흐름을 새로운 제품에 사용되는 귀중한 원료로 전환하여 실질적인 경제적 가치를 창출하면서 전 세계 플라스틱 폐기물 문제를 해결하는 데 중요한 역할을 할 수 있습니다. 중요한 역할을 할 것으로 예측됩니다.

세계의 선진 플라스틱 재활용 시장에 대해 조사 분석했으며, 신기술, 시장 역학, 경쟁 환경, 전략적 기회 등의 정보를 전해드립니다. 또한, 엄격한 규제 정책, 기업의 지속가능성 노력, 기술 발전, 세계 주요 지역의 순환 경제 채택 등 시장 성장 촉진요인에 대한 중요한 통찰력을 제공합니다.

목차

제1장 재활용 기술 분류

제2장 조사 방법

제3장 서론

  • 세계의 플라스틱 생산
  • 플라스틱 중요성
  • 플라스틱 사용에 관한 문제
  • 바이오 또는 재생플라스틱
  • 생분해성 퇴비화 가능한 플라스틱
  • 플라스틱 오염
  • 정책과 규제
  • 순환형 경제
  • 플라스틱 재활용
  • 수명주기 평가

제4장 첨단 플라스틱 재활용 시장

  • 시장 성장 촉진요인과 동향
  • 시장이 해결해야 할 과제와 억제요인
  • 산업 뉴스, 자금조달, 개발(2020년-2025년)
  • 처리 능력
  • 세계의 폴리머 수요 : 재활용 기술별(2022년-2040년)
  • 세계의 폴리머 수요 : 재활용 기술별, 지역별(2022년-2040년)
  • 화학적 재활용 플라스틱 제품
  • 시장 맵
  • 밸류체인
  • 첨단 플라스틱 재활용 프로세스 수명주기 평가(LCA)
  • 재활용 플라스틱 제품 비율과 비용

제5장 첨단 플라스틱 재활용 기술

  • 용도
  • 폴리머 폐기물 케미컬 재활용과 첨단 메커니컬 재활용에 이용하는 현재 기술과 신기술
  • 열처리 프로세스
  • 용제 베이스 재활용 기술
  • 기타 첨단 플라스틱 재활용 기술
  • 열경화성 재료 첨단 재활용
  • 기존 재활용 방법과의 비교
  • 새로운 첨단 메커니컬 기술
  • 환경에 대한 영향 평가
  • 신기술

제6장 재료 분석

  • 플라스틱
  • 금속
  • 비금속
  • 희토류 원소
  • 전자 폐기물
  • 텍스타일
  • 합성 섬유

제7장 최종 제품 분석

  • 화확원료
  • 연료
  • 원재료
  • 에너지 제품

제8장 기업 개요(기업 191개사 개요)

제9장 용어집

제10장 참고 문헌

LSH 25.08.06

The advanced plastics recycling market stands at an inflection point, driven by regulatory pressures, environmental imperatives, and technological breakthroughs that are reshaping the global waste management landscape. With the European Union mandating that 10% of packaging materials must come from recycled sources by 2030, the urgency for innovative recycling solutions has never been greater. This regulatory framework represents just one facet of a broader global movement toward circular economy principles, as governments worldwide implement increasingly stringent policies to address the mounting plastic waste crisis.

The market's growth trajectory is particularly compelling when viewed against the backdrop of escalating plastic production. With plastic manufacturing projected to potentially triple over the next 35 years, the challenge of managing plastic waste will intensify exponentially. This creates both an unprecedented opportunity and an existential necessity for advanced recycling technologies to scale rapidly and efficiently.

The global advanced plastics recycling market demonstrates robust expansion across multiple segments. China's entry into large-scale advanced recycling marks a significant milestone in the industry's evolution. The new facility in Jieyang, Guangdong province, with its capacity to process over 200,000 tonnes per year using proprietary one-step deep catalytic cracking technology developed by Guangdong Dongyue Chemical Technology, represents the kind of technological breakthrough needed to address the scale of the challenge.

The limitations of mechanical recycling have created substantial opportunities for advanced chemical recycling technologies. Mechanical recycling is most effective with high-quality, relatively clean sorted waste; it faces structural limitations such as limited pools of appropriate feedstock and resulting material properties that limit end-market applications. In contrast, advanced recycling can not only expand the types of plastics that are recyclable but also produce plastics that have tailored molecular weight distributions and comonomers that are suited for high-value applications, such as flexible packaging for food.

Several key factors are propelling market growth. Government initiatives toward recycling of plastics coupled with high investments is likely to propel demand for chemical recycling of plastics. Additionally, the shift of consumer goods and packaging industries toward recyclable and sustainable materials is expected to augment the market growth.

With advanced technologies potentially processing up to 15 million tons of additional plastic waste annually by 2030, the industry is positioned to play a crucial role in addressing the global plastic waste challenge while creating substantial economic value through the transformation of waste streams into valuable feedstock for new products.

"The Global Advanced Plastics Recycling Market 2026-2040" provides definitive analysis of the advanced plastics recycling sector, covering emerging technologies, market dynamics, competitive landscapes, and strategic opportunities through 2040. As plastic production continues its exponential growth trajectory, the urgency for sustainable waste management solutions has never been greater. Advanced plastics recycling technologies-including chemical recycling, pyrolysis, gasification, depolymerization, and dissolution processes-are revolutionizing how the industry approaches plastic waste streams that were previously considered non-recyclable. This report delivers critical insights into market drivers including stringent regulatory policies, corporate sustainability initiatives, technological advancements, and circular economy adoption across key global regions.

The market analysis encompasses detailed examination of thermal processes, solvent-based recycling technologies, chemical depolymerization methods, and emerging technologies such as AI-driven sorting optimization, robotics integration, and novel catalyst development. With over 190 company profiles spanning the entire value chain from technology developers to end-product manufacturers, this report provides unparalleled competitive intelligence for strategic decision-making.

Regional analysis covers Europe, North America, South America, Asia, Oceania, and Africa, with polymer-specific demand forecasts for polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), nylon, and other specialized materials. The report includes comprehensive capacity projections, technology comparisons, cost analyses, and sustainability metrics essential for investment planning and market entry strategies.

Report contents include:

  • Classification of recycling technologies and comprehensive research methodology
  • Global plastics production trends, environmental impact assessment, and policy landscape
  • Bio-based and biodegradable plastics market integration with recycling ecosystems
  • Circular economy frameworks and plastic waste management systems
  • Advanced vs. mechanical recycling comparison with life cycle assessments
  • Environmental concerns and regulatory compliance requirements driving market expansion
  • Corporate sustainability initiatives and extended producer responsibility programs
  • Technological advancement analysis including breakthrough innovations and patent landscapes
  • Market challenges including high initial investment costs and technical implementation barriers
  • Infrastructure limitations, supply chain complexities, and cost competitiveness analysis
  • Comprehensive industry news, funding developments, and merger & acquisition activity (2020-2025)
  • Global capacity analysis by technology type with current and planned facility databases
  • Regional polymer demand forecasts segmented by recycling technology (2022-2040)
  • Market mapping and value chain analysis from feedstock to end products
  • Pricing analysis and yield optimization strategies for chemical recycling technologies
  • Technology Analysis
    • Thermal processes: pyrolysis (catalytic and non-catalytic), gasification, and steam cracking technologies
    • Solvent-based recycling: dissolution, delamination, and polymer-specific solvent systems
    • Chemical depolymerization: hydrolysis, enzymolysis, methanolysis, glycolysis, and aminolysis processes
    • Emerging technologies: hydrothermal liquefaction, microwave-assisted pyrolysis, plasma processing
    • Advanced thermoset recycling and carbon fiber recovery technologies
  • Materials & End Products Analysis
    • Comprehensive analysis of plastic types: PE, PP, PET, PS, PVC, PC, ABS, and mixed plastic streams
    • Metals recovery including precious metals, base metals, and rare earth elements
    • Electronic waste processing for circuit boards, batteries, displays, and components
    • Textile recycling for natural and synthetic fibers with advanced recovery technologies
    • Chemical feedstocks, fuels, raw materials, and energy products from recycling processes
  • Technology Comparison & Environmental Impact
    • Advanced vs. traditional recycling methods with energy efficiency comparisons
    • Quality of output analysis and cost-benefit assessments
    • Carbon footprint analysis and waste reduction potential evaluation
    • Sustainability metrics and environmental impact assessments
    • Emerging AI, machine learning, and robotics applications in recycling operations
  • Competitive Intelligence
    • SWOT analysis for major technology categories and market segments
    • Innovation pipeline analysis and technology readiness levels
    • Commercial development timelines and scale-up challenges
    • Investment requirements and economic viability assessments
    • Market entry strategies and partnership opportunities
  • Company Profiles. Comprehensive profiles of 191 leading companies shaping the advanced plastics recycling landscape, covering products/technology, funding, TRL, collaborations etc. Companies profiled include Aduro Clean Technologies, Advanced Plastic Purification International (APPI), Aeternal Upcycling, Agilyx, Alpha Recyclage Composites, Alterra Energy, Ambercycle, Anellotech, Anhui Oursun Resource Technology, APChemi, Aquafil, ARCUS Greencycling, Arkema, Axens, BASF, Bcircular, BioBTX, Biofabrik Technologies, Birch Biosciences, Blest, Blue Cycle, BlueAlp Technology, Borealis, Boston Materials, Braven Environmental, Breaking, Brightmark, Cadel Deinking, Carbios, Carboliq, Carbon Fiber Recycling, Cassandra Oil, CIRC, Chian Tianying, Chevron Phillips Chemical, Clariter, Clean Energy Enterprises, Clean Planet Energy, Corsair Group International, Covestro, CreaCycle, CuRe Technology, Cyclic Materials, Cyclize, DeepTech Recycling, DePoly, Dow Chemical Company, DyeRecycle, Eastman Chemical Company, Eco Fuel Technology, Ecopek, Ecoplasteam, Eeden, Emery Oleochemicals, Encina Development Group, Enerkem, Enespa, Enval, Environmental Solutions (Asia), Epoch Biodesign, Equipolymers, ESTER Biotech, Evonik Industries, Evoralis, Evrnu, Extracthive, ExxonMobil, Fairmat, Fulcrum BioEnergy, Futerro, Freepoint Eco-Systems, Fych Technologies, Garbo, GreenMantra Technologies, Greyparrot, Gr3n, Guangdong Dongyue Chemical Technology, Handerek Technologies, Hanwha Solutions, Honeywell, Hyundai Chemical, Impact Recycling, Indaver, InEnTec, INEOS Styrolution, Infinited Fiber Company, Ioncell, Ioniqa Technologies, Itero Technologies, Jeplan, JFE Chemical Corporation, Kaneka Corporation, Khepra, Klean Industries, Lanzatech, Licella, Loop Industries, LOTTE Chemical, Lummus Technology, LyondellBasell Industries, MacroCycle Technologies, Metaspectral, Mint Innovation, Microwave Chemical, Mitsubishi Chemical, MolyWorks Materials, Mote, Mura Technology, Nanya Plastics Corporation, NatureWorks, Neste, New Hope Energy, Nexus Circular, Next Generation Group (NGR), Novoloop, Olefy Technologies, OMV, and more....

TABLE OF CONTENTS

1. CLASSIFICATION OF RECYCLING TECHNOLOGIES

2. RESEARCH METHODOLOGY

3. INTRODUCTION

  • 3.1. Global production of plastics
  • 3.2. The importance of plastic
  • 3.3. Issues with plastics use
  • 3.4. Bio-based or renewable plastics
    • 3.4.1. Drop-in bio-based plastics
    • 3.4.2. Novel bio-based plastics
  • 3.5. Biodegradable and compostable plastics
    • 3.5.1. Biodegradability
    • 3.5.2. Compostability
  • 3.6. Plastic pollution
  • 3.7. Policy and regulations
  • 3.8. The circular economy
  • 3.9. Plastic recycling
    • 3.9.1. Mechanical recycling
      • 3.9.1.1. Closed-loop mechanical recycling
      • 3.9.1.2. Open-loop mechanical recycling
      • 3.9.1.3. Polymer types, use, and recovery
    • 3.9.2. Advanced recycling (molecular recycling, chemical recycling)
      • 3.9.2.1. Main streams of plastic waste
      • 3.9.2.2. Comparison of mechanical and advanced chemical recycling
  • 3.10. Life cycle assessment

4. THE ADVANCED PLASTICS RECYCLING MARKET

  • 4.1. Market drivers and trends
    • 4.1.1. Growing Environmental Concerns
    • 4.1.2. Stringent Regulatory Policies
    • 4.1.3. Corporate Sustainability Initiatives
    • 4.1.4. Technological Advancements
    • 4.1.5. Circular Economy Adoption
  • 4.2. Market Challenges and Restraints
    • 4.2.1. High Initial Investment Costs
    • 4.2.2. Technical Challenges
    • 4.2.3. Infrastructure Limitations
    • 4.2.4. Technological Barriers
    • 4.2.5. Supply Chain Complexities
    • 4.2.6. Cost Competitiveness
  • 4.3. Industry news, funding and developments 2020-2025
  • 4.4. Capacities
  • 4.5. Global polymer demand 2022-2040, segmented by recycling technology
    • 4.5.1. PE
    • 4.5.2. PP
    • 4.5.3. PET
    • 4.5.4. PS
    • 4.5.5. Nylon
    • 4.5.6. Others
  • 4.6. Global polymer demand 2022-2040, segmented by recycling technology, by region
    • 4.6.1. Europe
    • 4.6.2. North America
    • 4.6.3. South America
    • 4.6.4. Asia
    • 4.6.5. Oceania
    • 4.6.6. Africa
  • 4.7. Chemically recycled plastic products
  • 4.8. Market map
  • 4.9. Value chain
  • 4.10. Life Cycle Assessments (LCA) of advanced plastics recycling processes
    • 4.10.1. PE
    • 4.10.2. PP
    • 4.10.3. PET
  • 4.11. Recycled plastic yield and cost
    • 4.11.1. Plastic yield of each chemical recycling technologies
    • 4.11.2. Prices

5. ADVANCED PLASTICS RECYCLING TECHNOLOGIES

  • 5.1. Applications
  • 5.2. Current and Emerging Technologies for Chemical and Advanced Mechanical Recycling of Polymer Waste
  • 5.3. Thermal Processes
    • 5.3.1. Pyrolysis
      • 5.3.1.1. Technical Process and Variations
      • 5.3.1.2. Non-catalytic
      • 5.3.1.3. Catalytic
      • 5.3.1.4. Steam Cracking of Polymer Waste
        • 5.3.1.4.1. Technology Overview
        • 5.3.1.4.2. Process Conditions and Product Yields
        • 5.3.1.4.3. Integration with Refineries
        • 5.3.1.4.4. Commercial Applications
        • 5.3.1.4.5. Polystyrene pyrolysis
        • 5.3.1.4.6. Pyrolysis for production of bio fuel
        • 5.3.1.4.7. Used tires pyrolysis
          • 5.3.1.4.7.1. Conversion to biofuel
        • 5.3.1.4.8. Co-pyrolysis of biomass and plastic wastes
      • 5.3.1.5. Commercial Development and Investment
      • 5.3.1.6. Challenges and Considerations
      • 5.3.1.7. SWOT analysis
      • 5.3.1.8. Companies and capacities
    • 5.3.2. Gasification
      • 5.3.2.1. Technology overview
        • 5.3.2.1.1. Syngas conversion to methanol
        • 5.3.2.1.2. Biomass gasification and syngas fermentation
        • 5.3.2.1.3. Biomass gasification and syngas thermochemical conversion
      • 5.3.2.2. Applications and Potential
      • 5.3.2.3. Multilayer Packaging
      • 5.3.2.4. SWOT analysis
      • 5.3.2.5. Companies and capacities (current and planned)
  • 5.4. Solvent-Based Recycling Technologies
    • 5.4.1. Dissolution
      • 5.4.1.1. Technology overview
      • 5.4.1.2. Selective Dissolution and Precipitation
      • 5.4.1.3. Supercritical Fluid Technologies
      • 5.4.1.4. Advanced Solvent Systems for Mixed Plastics
      • 5.4.1.5. Switchable Solvent Technologies
      • 5.4.1.6. SWOT analysis
      • 5.4.1.7. Companies and capacities (current and planned)
    • 5.4.2. Delamination Technologies for Multilayer Packaging
      • 5.4.2.1. Technical Approaches
      • 5.4.2.2. Switchable Hydrophilicity Solvents (SHS)
      • 5.4.2.3. Chemical Recycling of "Polyal" (Polyethylene-Aluminum Composites)
      • 5.4.2.4. Delamination Process for Carton Packages
      • 5.4.2.5. Aluminum Recovery Methods
      • 5.4.2.6. Polyethylene Purification and Recycling
      • 5.4.2.7. Economic and Environmental Benefits
      • 5.4.2.8. Novel Approaches
    • 5.4.3. Solvent-Based Plastic Recycling
      • 5.4.3.1. Solvent Selection and Classification
        • 5.4.3.1.1. Conventional Organic Solvents
        • 5.4.3.1.2. Ionic Liquids
        • 5.4.3.1.3. Supercritical Fluids
        • 5.4.3.1.4. Deep Eutectic Solvents (DES)
      • 5.4.3.2. Polymer-Specific Solvent Recycling
        • 5.4.3.2.1. Polyolefin Dissolution Systems
        • 5.4.3.2.2. Polystyrene Solvent Recovery
        • 5.4.3.2.3. PET and Polyester Solvolysis
        • 5.4.3.2.4. Mixed Polymer Stream Processing
      • 5.4.3.3. Solvent Recovery and Recycling Systems
        • 5.4.3.3.1. Distillation and Purification
        • 5.4.3.3.2. Membrane Separation Technologies
        • 5.4.3.3.3. Economic Optimization
      • 5.4.3.4. Environmental Considerations
        • 5.4.3.4.1. Solvent Emissions Control
        • 5.4.3.4.2. Waste Stream Management
        • 5.4.3.4.3. Life Cycle Assessment of Solvent Systems
      • 5.4.3.5. Commercial Development and Scale-Up
        • 5.4.3.5.1. Pilot and Demonstration Plants
        • 5.4.3.5.2. Industrial Implementation Challenges
        • 5.4.3.5.3. Economic Viability Assessment
    • 5.4.4. Chemical Depolymerisation
      • 5.4.4.1. Hydrolysis
        • 5.4.4.1.1. Technology overview
        • 5.4.4.1.2. SWOT analysis
      • 5.4.4.2. Enzymolysis
        • 5.4.4.2.1. Technology overview
        • 5.4.4.2.2. SWOT analysis
      • 5.4.4.3. Methanolysis
        • 5.4.4.3.1. Technology overview
        • 5.4.4.3.2. SWOT analysis
      • 5.4.4.4. Glycolysis
        • 5.4.4.4.1. Technology overview
        • 5.4.4.4.2. SWOT analysis
      • 5.4.4.5. Aminolysis
        • 5.4.4.5.1. Technology overview
        • 5.4.4.5.2. SWOT analysis
      • 5.4.4.6. Companies and capacities (current and planned)
  • 5.5. Other advanced plastics recycling technologies
    • 5.5.1. Hydrothermal Liquefaction (HTL)
      • 5.5.1.1. Technical Mechanisms
      • 5.5.1.2. Performance and Application
      • 5.5.1.3. Commercial Development
      • 5.5.1.4. Hydrothermal Liquefaction Targeting Multilayer Packaging Waste
    • 5.5.2. Pyrolysis with in-line reforming
    • 5.5.3. Microwave-assisted pyrolysis
    • 5.5.4. Plasma pyrolysis
    • 5.5.5. Plasma gasification
    • 5.5.6. Carbon fiber recycling
      • 5.5.6.1. Processes
      • 5.5.6.2. Companies
  • 5.6. Advanced recycling of thermoset materials
    • 5.6.1. Thermal recycling
      • 5.6.1.1. Energy Recovery Combustion
      • 5.6.1.2. Anaerobic Digestion
      • 5.6.1.3. Pyrolysis Processing
      • 5.6.1.4. Microwave Pyrolysis
    • 5.6.2. Solvolysis
    • 5.6.3. Catalyzed Glycolysis
    • 5.6.4. Alcoholysis and Hydrolysis
    • 5.6.5. Ionic liquids
    • 5.6.6. Supercritical fluids
    • 5.6.7. Plasma
    • 5.6.8. Chemical Vapor Infiltration (CVI)
    • 5.6.9. Companies
  • 5.7. Comparison with Traditional Recycling Methods
    • 5.7.1. Mechanical Recycling Limitations
    • 5.7.2. Energy Efficiency Comparison
    • 5.7.3. Quality of Output Comparison
    • 5.7.4. Cost Analysis
  • 5.8. Emerging Advanced Mechanical Technologies
    • 5.8.1. Chemical Upcycling Integration
    • 5.8.2. Computational Modelling
    • 5.8.3. Hybrid Approaches
  • 5.9. Environmental Impact Assessment
    • 5.9.1. Carbon Footprint Analysis
    • 5.9.2. Energy Consumption Assessment
    • 5.9.3. Waste Reduction Potential
      • 5.9.3.1. Wastewater
      • 5.9.3.2. Atmospheric Emissions
      • 5.9.3.3. Catalyst and Media Waste
      • 5.9.3.4. Maintenance and Cleaning Waste
      • 5.9.3.5. Waste Management Approaches
      • 5.9.3.6. Regulatory Considerations and Classification
      • 5.9.3.7. Comparative Waste Production
      • 5.9.3.8. Environmental Impact and Future Directions
    • 5.9.4. Sustainability Metrics
  • 5.10. Emerging Technologies
    • 5.10.1. AI and Machine Learning Applications
      • 5.10.1.1. Sorting Optimization
      • 5.10.1.2. Process Control
      • 5.10.1.3. Quality Prediction
      • 5.10.1.4. Maintenance Prediction
    • 5.10.2. Robotics in Sorting
      • 5.10.2.1. Vision Systems
      • 5.10.2.2. Picking Mechanisms
      • 5.10.2.3. Control Systems
      • 5.10.2.4. Integration Methods
    • 5.10.3. Novel Catalyst Development
      • 5.10.3.1. Nano-catalysts
      • 5.10.3.2. Bio-catalysts
      • 5.10.3.3. Hybrid Catalysts

6. MATERIALS ANALYSIS

  • 6.1. Plastics
    • 6.1.1. Polyethylene (PE)
      • 6.1.1.1. HDPE Analysis
      • 6.1.1.2. LLDPE Analysis
      • 6.1.1.3. Recovery Methods
    • 6.1.2. Polypropylene (PP)
      • 6.1.2.1. Homopolymer
      • 6.1.2.2. Copolymer
      • 6.1.2.3. Processing Methods
      • 6.1.2.4. Quality Grades
    • 6.1.3. Polyethylene Terephthalate (PET)
      • 6.1.3.1. Bottle Grade
      • 6.1.3.2. Fiber Grade
      • 6.1.3.3. Film Grade
      • 6.1.3.4. Recovery Technologies
    • 6.1.4. Polystyrene (PS)
      • 6.1.4.1. General Purpose PS
      • 6.1.4.2. High Impact PS
      • 6.1.4.3. Expanded PS
      • 6.1.4.4. Processing Methods
    • 6.1.5. Other Plastics
      • 6.1.5.1. PVC
      • 6.1.5.2. PC
      • 6.1.5.3. ABS
      • 6.1.5.4. Mixed Plastics
  • 6.2. Metals
    • 6.2.1. Precious Metals
      • 6.2.1.1. Gold
      • 6.2.1.2. Silver
      • 6.2.1.3. Platinum Group Metals
      • 6.2.1.4. Recovery Methods
  • 6.3. Base Metals
    • 6.3.1. Copper
    • 6.3.2. Aluminium
    • 6.3.3. Steel
    • 6.3.4. Processing Technologies
  • 6.4. Rare Earth Elements
    • 6.4.1. Light REEs
    • 6.4.2. Heavy REEs
    • 6.4.3. Extraction Methods
  • 6.5. Electronic Waste
    • 6.5.1. Circuit Boards
      • 6.5.1.1. PCB Types
      • 6.5.1.2. Component Separation
      • 6.5.1.3. Metal Recovery
      • 6.5.1.4. Waste Management
    • 6.5.2. Batteries
      • 6.5.2.1. Lithium-ion
      • 6.5.2.2. Lead-acid
      • 6.5.2.3. Nickel-based
      • 6.5.2.4. Recovery Processes
    • 6.5.3. Displays
      • 6.5.3.1. LCD
      • 6.5.3.2. LED
      • 6.5.3.3. OLED
      • 6.5.3.4. Material Recovery
    • 6.5.4. Other Components
      • 6.5.4.1. Capacitors
      • 6.5.4.2. Resistors
      • 6.5.4.3. Semiconductors
      • 6.5.4.4. Connectors
  • 6.6. Textiles
    • 6.6.1. Natural Fibers
    • 6.6.2. Cotton
    • 6.6.3. Wool
    • 6.6.4. Silk
    • 6.6.5. Processing Methods
  • 6.7. Synthetic Fibers
    • 6.7.1. Polyester
    • 6.7.2. Nylon
    • 6.7.3. Acrylic
    • 6.7.4. Recovery Technologies

7. END PRODUCT ANALYSIS

  • 7.1. Chemical Feedstocks
    • 7.1.1. Monomers
    • 7.1.2. Oligomers
    • 7.1.3. Specialty Chemicals
  • 7.2. Fuels
    • 7.2.1. Diesel
    • 7.2.2. Gasoline
    • 7.2.3. Synthetic Gas
  • 7.3. Raw Materials
    • 7.3.1. Recycled Plastics
    • 7.3.2. Recovered Metals
    • 7.3.3. Other Materials
  • 7.4. Energy Products
    • 7.4.1. Electricity
    • 7.4.2. Heat
    • 7.4.3. Biofuels

8. COMPANY PROFILES (191 company profiles)

9. GLOSSARY OF TERMS

10. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제