시장보고서
상품코드
1680888

세계의 첨단 탄소 재료 시장(2025-2035년)

The Global Market for Advanced Carbon Materials 2025-2035

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 1074 Pages, 245 Tables, 185 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

이 보고서는 전통적인 탄소섬유에서 그래핀 및 탄소나노튜브와 같은 최첨단 나노물질에 이르기까지 탄소 재료 생태계 전체를 자세히 분석합니다. 지속가능한 발전과 그린에너지로의 전환이 추진되고 있는 가운데, 첨단 탄소 재료는 차세대 기술을 실현하는데 있어서 점점 중요한 역할을 하고 있습니다. 높은 강도 대 중량비, 열 전도성, 전기 전도성, 화학적 안정성 등의 탁월한 특성은 다양한 산업에서 복잡한 엔지니어링 문제에 대응하는 데 필수적입니다.

이 보고서는 세계 첨단 탄소 재료 시장에 대한 조사 분석, 탄소 재료의 기술적, 상업적 및 시장적 측면을 검증하고, 생산 기술, 공급망, 경쟁 구도, 성장 기회에 대한 전략적 지식을 제공합니다.

목차

제1장 첨단 탄소 재료 시장

  • 시장 개요
  • 주요 용도
  • 그린이행에 있어서의 첨단 탄소 재료의 역할

제2장 탄소섬유

  • 탄소섬유의 특성
  • 전구체 재료의 유형
  • 시장과 용도
  • 시장 분석
  • 기업 프로파일

제3장 카본블랙

  • 상용 카본블랙
  • 특성
  • 제조 공정
  • 시장과 용도
  • 특수 카본블랙
  • 회수 카본블랙(rCB)
  • 시장 분석
  • 기업 프로파일(기업 51개 프로파일)

제4장 흑연

  • 흑연의 유형
  • 천연 흑연
  • 합성 흑연
  • 신기술
  • 흑연재료의 재활용
  • 시장과 용도
  • 흑연 가격
  • 세계의 흑연 생산
  • 세계의 흑연 시장 수요 : 최종 용도 시장별(2016년-2035년)
  • 흑연 수요 : 최종 용도 시장별(2023년)
  • 흑연 수요 : 최종 용도 시장별(2035년)
  • 수요 : 지역별
  • 흑연 시장의 성장 촉진요인
  • 흑연 시장의 성장 억제요인
  • 주요 시장 기업
  • 시장 공급망
  • 기업 프로파일(기업 102개 프로파일)

제5장 바이오차

  • 바이오차
  • 탄소 격리
  • 바이오차의 특성
  • 시장과 용도
  • 바이오차 생산
  • 원료
  • 생산 공정
  • 카본 크레디트
  • 바이오차 시장
  • 시장 분석
  • 세계 시장
  • 기업 프로파일(기업 130개 프로파일)

제6장 그래핀

  • 그래핀의 유형
  • 특성
  • 시장 분석
  • 기업 프로파일(기업 368개 프로파일)

제7장 탄소나노튜브

  • 특성
  • 다중벽 탄소나노튜브(MWCNT)
  • 단층 탄소나노튜브(SWCNT)
  • 기타 유형

제8장 탄소나노섬유

  • 특성
  • 합성
  • 시장
  • 시장 분석
  • 세계 시장의 수익
  • 기업(기업 12개 프로파일)

제9장 풀러렌

  • 특성
  • 시장과 용도
  • 기술성숙도(TRL)
  • 시장 분석
  • 제조업체(기업 20개 프로파일)

제10장 나노 다이아몬드

  • 소개
  • 유형
  • 시장과 용도
  • 시장 분석
  • 기업 프로파일(기업 30개 프로파일)

제11장 그래핀 양자점

  • 양자점과의 비교
  • 특성
  • 합성
  • 용도
  • 그래핀 양자점의 가격 설정
  • 그래핀 양자점 제조업체(기업 9개 프로파일)

제12장 카본폼

  • 유형
  • 특성
  • 용도
  • 기업 프로파일(기업 9개 프로파일)

제13장 DLC 코팅

  • 특성
  • 용도와 시장
  • 세계 시장 규모
  • 기업 프로파일(기업 9개 프로파일)

제14장 활성탄

  • 개요
  • 유형
  • 생산
  • 시장과 용도
  • 시장 분석
  • 세계 시장의 수익(2020년-2035년)
  • 기업(기업 22개 프로파일)

제15장 탄소 에어로젤, 제로젤

  • 개요
  • 유형
  • 시장과 용도
  • 시장 분석
  • 세계 시장
  • 기업(기업 10개 프로파일)

제16장 탄소 포집 및 활용(CCU)을 통한 탄소 소재

  • 배출지점에서 CO2 포집
  • 주요 탄소 포집 공정
  • 탄소 분리 기술
  • 대기중 이산화탄소 직접 포집(DAC)
  • 기업(기업 4개 프로파일)

제17장 조사 방법

제18장 참고문헌

SHW 25.03.26

Advanced carbon materials are transforming industries through applications in:

  • Lightweight, high-strength composites for aerospace and automotive
  • Next-generation batteries and supercapacitors
  • Thermal management in electronics
  • Medical implants and drug delivery systems
  • Water purification and environmental remediation
  • Sensors and electronic components

Their commercial importance continues to grow as manufacturing processes mature, reducing costs and enabling broader adoption across multiple sectors where conventional materials cannot meet increasingly demanding performance requirements. "The Global Market for Advanced Carbon Materials 2025-2035" provides an in-depth analysis of the entire carbon materials ecosystem, from traditional carbon fibers to cutting-edge nanomaterials like graphene and carbon nanotubes. With the push for sustainable development and the transition to green energy, advanced carbon materials are playing an increasingly critical role in enabling next-generation technologies. Their exceptional properties-including high strength-to-weight ratios, thermal and electrical conductivity, and chemical stability-make them indispensable in addressing complex engineering challenges across multiple industries.

This report examines the technical, commercial, and market aspects of carbon materials, offering strategic insights into production technologies, supply chains, competitive landscapes, and growth opportunities.

Report contents include:

  • Market Analysis and Forecasts:
    • Comprehensive market sizing and growth projections through 2035 for all advanced carbon material categories
    • Detailed regional analysis covering North America, Europe, Asia-Pacific, and emerging markets
    • End-user industry breakdown with application-specific forecasts
    • Pricing trends and cost analyses across the entire carbon materials spectrum
    • Production capacities by material type and leading manufacturers
  • Material Coverage:
    • Carbon Fibers: PAN-based, pitch-based, bio-based, and recycled carbon fibers
    • Carbon Black: Conventional, specialty, and recovered carbon black
    • Graphite: Natural flake, synthetic, spherical, and expandable graphite
    • Graphene: Few-layer, multi-layer, graphene oxide, and graphene nanoplatelets
    • Carbon Nanotubes: Single-walled, multi-walled, and vertically aligned CNTs
    • Nanodiamonds: Detonation nanodiamonds and fluorescent nanodiamonds
    • Other Carbon Materials: Carbon aerogels, fullerenes, carbon nanofibers, and biochar
  • Application Analysis:
    • Thermal Management: Interface materials, heat spreaders, and thermal solutions
    • Energy Storage: Battery additives, supercapacitors, and fuel cell components
    • Composites: Aerospace, automotive, wind energy, and sporting goods
    • Electronics: Conductive inks, sensors, EMI shielding, and flexible electronics
    • Environmental Technologies: Carbon capture, water purification, and remediation
  • Technology Assessment:
    • Manufacturing processes and innovations for each carbon material type
    • Technology readiness levels (TRL) and commercialization timelines
    • Emerging synthesis methods and their potential impact on markets
    • Key technical challenges and R&D priorities
  • Competitive Landscape:
    • Detailed profiles of 1000+ companies across the carbon materials value chain. Companies profiled include Arkema, Birla Carbon, Black Bear Carbon, Black Semiconductor GmbH, C12, Carbon Conversions, Carbice, Cabot Corporation, Directa Plus, DowAksa, Eden Innovations, First Graphene, Fujitsu Laboratories, GrafTech International, Graphene Manufacturing Group, Graphenea, GraphEnergy Tech, Graphjet Technology, Hexcel Corporation, Huntsman Corporation, HydroGraph, Imerys, INBRAIN Neuroelectronics, Levidian Nanosystems, Lyten, Mersen, Nanocomp Technologies, Naieel Technology, NanoXplore, NDB Technology, OCSiAl Group, Paragraf, Perpetuus Carbon Group, Premier Graphene, Resonac, Samsung, SGL Carbon, Skeleton Technologies, Syrah Resources, Talga Resources, Teijin Limited, Thomas Swan, Toray Industries, TrimTabs, Universal Matter, Vartega, Versarien, and Zeon Specialty Materials.
    • Strategic analysis of key market players including producers and product developers, including product portfolios and business models
    • Mergers, acquisitions, and strategic partnerships reshaping the industry
    • Emerging start-ups and innovators disrupting traditional markets
  • Sustainability and Regulatory Analysis:
    • Environmental impact assessments of production processes
    • Carbon footprint comparisons across material types
    • Regulatory frameworks affecting carbon materials globally
    • Recycling and circular economy initiatives

TABLE OF CONTENTS

1. THE ADVANCED CARBON MATERIALS MARKET

  • 1.1. Market overview
  • 1.2. Main Applications
    • 1.2.1. Thermal Management in Electronics
    • 1.2.2. Conductive Battery Additives and Electrodes
    • 1.2.3. Composites
  • 1.3. Role of advanced carbon materials in the green transition

2. CARBON FIBERS

  • 2.1. Properties of carbon fibers
    • 2.1.1. Types by modulus
    • 2.1.2. Types by the secondary processing
  • 2.2. Precursor material types
    • 2.2.1. PAN: Polyacrylonitrile
      • 2.2.1.1. Spinning
      • 2.2.1.2. Stabilizing
      • 2.2.1.3. Carbonizing
      • 2.2.1.4. Surface treatment
      • 2.2.1.5. Sizing
      • 2.2.1.6. Pitch-based carbon fibers
      • 2.2.1.7. Isotropic pitch
      • 2.2.1.8. Mesophase pitch
      • 2.2.1.9. Viscose (Rayon)-based carbon fibers
    • 2.2.2. Bio-based and alternative precursors
      • 2.2.2.1. Lignin
      • 2.2.2.2. Polyethylene
      • 2.2.2.3. Vapor grown carbon fiber (VGCF)
      • 2.2.2.4. Textile PAN
    • 2.2.3. Recycled carbon fibers (r-CF)
      • 2.2.3.1. Recycling processes
      • 2.2.3.2. Companies
    • 2.2.4. Carbon Fiber 3D Printing
    • 2.2.5. Plasma oxidation
    • 2.2.6. Carbon fiber reinforced polymer (CFRP)
      • 2.2.6.1. Applications
  • 2.3. Markets and applications
    • 2.3.1. Aerospace
    • 2.3.2. Wind energy
    • 2.3.3. Sports & leisure
    • 2.3.4. Automotive
    • 2.3.5. Pressure vessels
    • 2.3.6. Oil and gas
  • 2.4. Market analysis
    • 2.4.1. Market Growth Drivers and Trends
    • 2.4.2. Regulations
    • 2.4.3. Price and Costs Analysis
    • 2.4.4. Supply Chain
    • 2.4.5. Competitive Landscape
      • 2.4.5.1. Annual capacity, by producer
      • 2.4.5.2. Market share, by capacity
    • 2.4.6. Future Outlook
    • 2.4.7. Addressable Market Size
    • 2.4.8. Risks and Opportunities
    • 2.4.9. Global market
      • 2.4.9.1. Global carbon fiber demand 2016-2035, by industry (MT)
      • 2.4.9.2. Global carbon fiber revenues 2016-2035, by industry (billions USD)
      • 2.4.9.3. Global carbon fiber demand 2016-2035, by region (MT)
  • 2.5. Company profiles
    • 2.5.1. Carbon fiber producers (29 company profiles)
    • 2.5.2. Carbon Fiber composite producers (62 company profiles)
    • 2.5.3. Carbon fiber recyclers (16 company profiles)

3. CARBON BLACK

  • 3.1. Commercially available carbon black
  • 3.2. Properties
    • 3.2.1. Particle size distribution
    • 3.2.2. Structure-Aggregate size
    • 3.2.3. Surface chemistry
    • 3.2.4. Agglomerates
    • 3.2.5. Colour properties
    • 3.2.6. Porosity
    • 3.2.7. Physical form
  • 3.3. Manufacturing processes
  • 3.4. Markets and applications
    • 3.4.1. Tires and automotive
    • 3.4.2. Non-Tire Rubber (Industrial rubber)
    • 3.4.3. Other markets
  • 3.5. Specialty carbon black
    • 3.5.1. Global market size for specialty CB
  • 3.6. Recovered carbon black (rCB)
    • 3.6.1. Pyrolysis of End-of-Life Tires (ELT)
    • 3.6.2. Discontinuous ("batch") pyrolysis
    • 3.6.3. Semi-continuous pyrolysis
    • 3.6.4. Continuous pyrolysis
    • 3.6.5. Key players
    • 3.6.6. Global market size for Recovered Carbon Black
  • 3.7. Market analysis
    • 3.7.1. Market Growth Drivers and Trends
    • 3.7.2. Regulations
    • 3.7.3. Supply chain
    • 3.7.4. Price and Costs Analysis
      • 3.7.4.1. Feedstock
      • 3.7.4.2. Commercial carbon black
    • 3.7.5. Competitive Landscape
      • 3.7.5.1. Production capacities
    • 3.7.6. Future Outlook
    • 3.7.7. Customer Segmentation
    • 3.7.8. Addressable Market Size
    • 3.7.9. Risks and Opportunities
    • 3.7.10. Global market
      • 3.7.10.1. By market (tons)
      • 3.7.10.2. By market (revenues)
      • 3.7.10.3. By region (Tons)
  • 3.8. Company profiles (51 company profiles)

4. GRAPHITE

  • 4.1. Types of graphite
    • 4.1.1. Natural vs synthetic graphite
  • 4.2. Natural graphite
    • 4.2.1. Classification
    • 4.2.2. Processing
    • 4.2.3. Flake
      • 4.2.3.1. Grades
      • 4.2.3.2. Applications
      • 4.2.3.3. Spherical graphite
      • 4.2.3.4. Expandable graphite
    • 4.2.4. Amorphous graphite
      • 4.2.4.1. Applications
    • 4.2.5. Crystalline vein graphite
      • 4.2.5.1. Applications
  • 4.3. Synthetic graphite
    • 4.3.1. Classification
      • 4.3.1.1. Primary synthetic graphite
      • 4.3.1.2. Secondary synthetic graphite
    • 4.3.2. Processing
      • 4.3.2.1. Processing for battery anodes
    • 4.3.3. Issues with synthetic graphite production
    • 4.3.4. Isostatic Graphite
      • 4.3.4.1. Description
      • 4.3.4.2. Markets
      • 4.3.4.3. Producers and production capacities
    • 4.3.5. Graphite electrodes
    • 4.3.6. Extruded Graphite
    • 4.3.7. Vibration Molded Graphite
    • 4.3.8. Die-molded graphite
  • 4.4. New technologies
  • 4.5. Recycling of graphite materials
  • 4.6. Markers and applications
  • 4.7. Graphite pricing (ton)
    • 4.7.1. Pricing in 2024
  • 4.8. Global production of graphite
    • 4.8.1. The graphite market in 2024 and beyond
    • 4.8.2. China dominance
    • 4.8.3. United States subsidies/loans and tariffs on Chinese imports
    • 4.8.4. Global mine production and reserves of natural graphite
    • 4.8.5. Global graphite production in tonnes, 2016-2023
    • 4.8.6. Estimated global graphite production in tonnes, 2024-2035
    • 4.8.7. Synthetic graphite supply
  • 4.9. Global market demand for graphite by end use market 2016-2035, tonnes
    • 4.9.1. Natural graphite
    • 4.9.2. Synthetic graphite
  • 4.10. Demand for graphite by end use markets, 2023
  • 4.11. Demand for graphite by end use markets, 2035
  • 4.12. Demand by region
    • 4.12.1. China
      • 4.12.1.1. Diversification of global supply and production
    • 4.12.2. Asia-Pacific
      • 4.12.2.1. Synthetic graphite
      • 4.12.2.2. Natural graphite
    • 4.12.3. North America
      • 4.12.3.1. Synthetic graphite
      • 4.12.3.2. Natural graphite
    • 4.12.4. Europe
      • 4.12.4.1. Natural graphite
    • 4.12.5. Brazil
  • 4.13. Factors that aid graphite market growth
  • 4.14. Factors that hinder graphite market growth
  • 4.15. Main market players
    • 4.15.1. Natural graphite
    • 4.15.2. Synthetic graphite
  • 4.16. Market supply chain
  • 4.17. Company profiles (102 company profiles)

5. BIOCHAR

  • 5.1. What is biochar?
  • 5.2. Carbon sequestration
  • 5.3. Properties of biochar
  • 5.4. Markets and applications
  • 5.5. Biochar production
  • 5.6. Feedstocks
  • 5.7. Production processes
    • 5.7.1. Sustainable production
    • 5.7.2. Pyrolysis
      • 5.7.2.1. Slow pyrolysis
      • 5.7.2.2. Fast pyrolysis
    • 5.7.3. Gasification
    • 5.7.4. Hydrothermal carbonization (HTC)
    • 5.7.5. Torrefaction
    • 5.7.6. Equipment manufacturers
  • 5.8. Carbon credits
    • 5.8.1. Overview
    • 5.8.2. Removal and reduction credits
    • 5.8.3. The advantage of biochar
    • 5.8.4. Price
    • 5.8.5. Buyers of biochar credits
    • 5.8.6. Competitive materials and technologies
      • 5.8.6.1. Geologic carbon sequestration
      • 5.8.6.2. Bioenergy with Carbon Capture and Storage (BECCS)
      • 5.8.6.3. Direct Air Carbon Capture and Storage (DACCS)
      • 5.8.6.4. Enhanced mineral weathering with mineral carbonation
      • 5.8.6.5. Ocean alkalinity enhancement
      • 5.8.6.6. Forest preservation and afforestation
  • 5.9. Markets for biochar
    • 5.9.1. Agriculture & livestock farming
      • 5.9.1.1. Market drivers and trends
      • 5.9.1.2. Applications
    • 5.9.2. Construction materials
      • 5.9.2.1. Market drivers and trends
      • 5.9.2.2. Applications
    • 5.9.3. Wastewater treatment
      • 5.9.3.1. Market drivers and trends
      • 5.9.3.2. Applications
    • 5.9.4. Filtration
      • 5.9.4.1. Market drivers and trends
      • 5.9.4.2. Applications
    • 5.9.5. Carbon capture
      • 5.9.5.1. Market drivers and trends
      • 5.9.5.2. Applications
    • 5.9.6. Cosmetics
      • 5.9.6.1. Market drivers and trends
      • 5.9.6.2. Applications
    • 5.9.7. Textiles
      • 5.9.7.1. Market drivers and trends
      • 5.9.7.2. Applications
    • 5.9.8. Additive manufacturing
      • 5.9.8.1. Market drivers and trends
      • 5.9.8.2. Applications
    • 5.9.9. Ink
      • 5.9.9.1. Market drivers and trends
      • 5.9.9.2. Applications
    • 5.9.10. Polymers
      • 5.9.10.1. Market drivers and trends
      • 5.9.10.2. Applications
    • 5.9.11. Packaging
      • 5.9.11.1. Market drivers and trends
      • 5.9.11.2. Applications
    • 5.9.12. Steel and metal
      • 5.9.12.1. Market drivers and trends
      • 5.9.12.2. Applications
    • 5.9.13. Energy
      • 5.9.13.1. Market drivers and trends
      • 5.9.13.2. Applications
  • 5.10. Market analysis
    • 5.10.1. Market Growth Drivers and Trends
    • 5.10.2. Regulations
    • 5.10.3. Price and Costs Analysis
    • 5.10.4. Supply Chain
    • 5.10.5. Competitive Landscape
    • 5.10.6. Future Outlook
    • 5.10.7. Customer Segmentation
    • 5.10.8. Addressable Market Size
    • 5.10.9. Risks and Opportunities
  • 5.11. Global market
    • 5.11.1. By market
    • 5.11.2. By region
    • 5.11.3. By feedstocks
      • 5.11.3.1. China and Asia-Pacific
      • 5.11.3.2. North America
      • 5.11.3.3. Europe
      • 5.11.3.4. South America
      • 5.11.3.5. Africa
      • 5.11.3.6. Middle East
  • 5.12. Company profiles (130 company profiles)

6. GRAPHENE

  • 6.1. Types of graphene
  • 6.2. Properties
  • 6.3. Market analysis
    • 6.3.1. Market Growth Drivers and Trends
    • 6.3.2. Regulations
    • 6.3.3. Price and Costs Analysis
      • 6.3.3.1. Pristine graphene flakes pricing/CVD graphene
      • 6.3.3.2. Few-Layer graphene pricing
      • 6.3.3.3. Graphene nanoplatelets pricing
      • 6.3.3.4. Graphene oxide (GO) and reduced Graphene Oxide (rGO) pricing
      • 6.3.3.5. Multi-Layer graphene (MLG) pricing
      • 6.3.3.6. Graphene ink
    • 6.3.4. Markets and applications
      • 6.3.4.1. Batteries
      • 6.3.4.2. Supercapacitors
      • 6.3.4.3. Polymer additives
      • 6.3.4.4. Sensors
      • 6.3.4.5. Conductive inks
      • 6.3.4.6. Transparent conductive films
      • 6.3.4.7. Transistors and integrated circuits
      • 6.3.4.8. Filtration
      • 6.3.4.9. Thermal management
      • 6.3.4.10. 3D printing
      • 6.3.4.11. Adhesives
      • 6.3.4.12. Aerospace
      • 6.3.4.13. Automotive
      • 6.3.4.14. Fuel cells
      • 6.3.4.15. Biomedical and healthcare
      • 6.3.4.16. Paints and coatings
      • 6.3.4.17. Photovoltaics
    • 6.3.5. Supply Chain
    • 6.3.6. Future Outlook
    • 6.3.7. Addressable Market Size
    • 6.3.8. Risks and Opportunities
    • 6.3.9. Global demand 2018-2035, tons
      • 6.3.9.1. Global demand by graphene material (tons)
      • 6.3.9.2. Global demand by end user market
      • 6.3.9.3. Graphene market, by region
  • 6.4. Company profiles (368 company profiles)

7. CARBON NANOTUBES

  • 7.1. Properties
    • 7.1.1. Comparative properties of CNTs
  • 7.2. Multi-walled carbon nanotubes (MWCNTs)
    • 7.2.1. Properties
    • 7.2.2. Markets and applications
  • 7.3. Single-walled carbon nanotubes (SWCNTs)
    • 7.3.1. Properties
    • 7.3.2. Markets and applications
    • 7.3.3. Company profiles (152 company profiles)
  • 7.4. Other types
    • 7.4.1. Double-walled carbon nanotubes (DWNTs)
      • 7.4.1.1. Properties
      • 7.4.1.2. Applications
    • 7.4.2. Vertically aligned CNTs (VACNTs)
      • 7.4.2.1. Properties
      • 7.4.2.2. Applications
    • 7.4.3. Few-walled carbon nanotubes (FWNTs)
      • 7.4.3.1. Properties
      • 7.4.3.2. Applications
    • 7.4.4. Carbon Nanohorns (CNHs)
      • 7.4.4.1. Properties
      • 7.4.4.2. Applications
    • 7.4.5. Carbon Onions
      • 7.4.5.1. Properties
      • 7.4.5.2. Applications
    • 7.4.6. Boron Nitride nanotubes (BNNTs)
      • 7.4.6.1. Properties
      • 7.4.6.2. Applications
      • 7.4.6.3. Production
    • 7.4.7. Companies (6 company profiles)

8. CARBON NANOFIBERS

  • 8.1. Properties
  • 8.2. Synthesis
    • 8.2.1. Chemical vapor deposition
    • 8.2.2. Electrospinning
    • 8.2.3. Template-based
    • 8.2.4. From biomass
  • 8.3. Markets
    • 8.3.1. Energy storage
      • 8.3.1.1. Batteries
      • 8.3.1.2. Supercapacitors
      • 8.3.1.3. Fuel cells
    • 8.3.2. CO2 capture
    • 8.3.3. Composites
    • 8.3.4. Filtration
    • 8.3.5. Catalysis
    • 8.3.6. Sensors
    • 8.3.7. Electromagnetic Interference (EMI) Shielding
    • 8.3.8. Biomedical
    • 8.3.9. Concrete
  • 8.4. Market analysis
    • 8.4.1. Market Growth Drivers and Trends
    • 8.4.2. Price and Costs Analysis
    • 8.4.3. Supply Chain
    • 8.4.4. Future Outlook
    • 8.4.5. Addressable Market Size
    • 8.4.6. Risks and Opportunities
  • 8.5. Global market revenues
  • 8.6. Companies (12 company profiles)

9. FULLERENES

  • 9.1. Properties
  • 9.2. Markets and applications
  • 9.3. Technology Readiness Level (TRL)
  • 9.4. Market analysis
    • 9.4.1. Market Growth Drivers and Trends
    • 9.4.2. Price and Costs Analysis
    • 9.4.3. Supply Chain
    • 9.4.4. Future Outlook
    • 9.4.5. Customer Segmentation
    • 9.4.6. Addressable Market Size
    • 9.4.7. Risks and Opportunities
    • 9.4.8. Global market demand
  • 9.5. Producers (20 company profiles)

10. NANODIAMONDS

  • 10.1. Introduction
  • 10.2. Types
    • 10.2.1. Detonation Nanodiamonds
    • 10.2.2. Fluorescent nanodiamonds (FNDs)
  • 10.3. Markets and applications
  • 10.4. Market analysis
    • 10.4.1. Market Growth Drivers and Trends
    • 10.4.2. Regulations
    • 10.4.3. Price and Costs Analysis
    • 10.4.4. Supply Chain
    • 10.4.5. Future Outlook
    • 10.4.6. Risks and Opportunities
    • 10.4.7. Global demand 2018-2035, tonnes
  • 10.5. Company profiles (30 company profiles)

11. GRAPHENE QUANTUM DOTS

  • 11.1. Comparison to quantum dots
  • 11.2. Properties
  • 11.3. Synthesis
    • 11.3.1. Top-down method
    • 11.3.2. Bottom-up method
  • 11.4. Applications
  • 11.5. Graphene quantum dots pricing
  • 11.6. Graphene quantum dot producers (9 company profiles)

12. CARBON FOAM

  • 12.1. Types
    • 12.1.1. Carbon aerogels
      • 12.1.1.1. Carbon-based aerogel composites
  • 12.2. Properties
  • 12.3. Applications
  • 12.4. Company profiles (9 company profiles)

13. DIAMOND-LIKE CARBON (DLC) COATINGS

  • 13.1. Properties
  • 13.2. Applications and markets
  • 13.3. Global market size
  • 13.4. Company profiles (9 company profiles)

14. ACTIVATED CARBON

  • 14.1. Overview
  • 14.2. Types
    • 14.2.1. Powdered Activated Carbon (PAC)
    • 14.2.2. Granular Activated Carbon (GAC)
    • 14.2.3. Extruded Activated Carbon (EAC)
    • 14.2.4. Impregnated Activated Carbon
    • 14.2.5. Bead Activated Carbon (BAC
    • 14.2.6. Polymer Coated Carbon
  • 14.3. Production
    • 14.3.1. Coal-based Activated Carbon
    • 14.3.2. Wood-based Activated Carbon
    • 14.3.3. Coconut Shell-based Activated Carbon
    • 14.3.4. Fruit Stone and Nutshell-based Activated Carbon
    • 14.3.5. Polymer-based Activated Carbon
    • 14.3.6. Activated Carbon Fibers (ACFs)
  • 14.4. Markets and applications
    • 14.4.1. Water Treatment
    • 14.4.2. Air Purification
    • 14.4.3. Food and Beverage Processing
    • 14.4.4. Pharmaceutical and Medical Applications
    • 14.4.5. Chemical and Petrochemical Industries
    • 14.4.6. Mining and Precious Metal Recovery
    • 14.4.7. Environmental Remediation
  • 14.5. Market analysis
    • 14.5.1. Market Growth Drivers and Trends
    • 14.5.2. Regulations
    • 14.5.3. Price and Costs Analysis
    • 14.5.4. Supply Chain
    • 14.5.5. Future Outlook
    • 14.5.6. Customer Segmentation
    • 14.5.7. Addressable Market Size
    • 14.5.8. Risks and Opportunities
  • 14.6. Global market revenues 2020-2035
  • 14.7. Companies (22 company profiles)

15. CARBON AEROGELS AND XEROGELS

  • 15.1. Overview
  • 15.2. Types
    • 15.2.1. Resorcinol-Formaldehyde (RF) Carbon Aerogels and Xerogels
    • 15.2.2. Phenolic-Furfural (PF) Carbon Aerogels and Xerogels
    • 15.2.3. Melamine-Formaldehyde (MF) Carbon Aerogels and Xerogels
    • 15.2.4. Biomass-derived Carbon Aerogels and Xerogels
    • 15.2.5. Doped Carbon Aerogels and Xerogels
    • 15.2.6. Composite Carbon Aerogels and Xerogels
  • 15.3. Markets and applications
    • 15.3.1. Energy Storage
    • 15.3.2. Thermal Insulation
    • 15.3.3. Catalysis
    • 15.3.4. Environmental Remediation
    • 15.3.5. Other Applications
  • 15.4. Market analysis
    • 15.4.1. Market Growth Drivers and Trends
    • 15.4.2. Regulations
    • 15.4.3. Price and Costs Analysis
    • 15.4.4. Supply Chain
    • 15.4.5. Future Outlook
    • 15.4.6. Customer Segmentation
    • 15.4.7. Addressable Market Size
    • 15.4.8. Risks and Opportunities
  • 15.5. Global market
  • 15.6. Companies(10 company profiles)

16. CARBON MATERIALS FROM CARBON CAPTURE AND UTILIZATION

  • 16.1. CO2 capture from point sources
    • 16.1.1. Transportation
    • 16.1.2. Global point source CO2 capture capacities
    • 16.1.3. By source
    • 16.1.4. By endpoint
  • 16.2. Main carbon capture processes
    • 16.2.1. Materials
    • 16.2.2. Post-combustion
    • 16.2.3. Oxy-fuel combustion
    • 16.2.4. Liquid or supercritical CO2: Allam-Fetvedt Cycle
    • 16.2.5. Pre-combustion
  • 16.3. Carbon separation technologies
    • 16.3.1. Absorption capture
    • 16.3.2. Adsorption capture
    • 16.3.3. Membranes
    • 16.3.4. Liquid or supercritical CO2 (Cryogenic) capture
    • 16.3.5. Chemical Looping-Based Capture
    • 16.3.6. Calix Advanced Calciner
    • 16.3.7. Other technologies
      • 16.3.7.1. Solid Oxide Fuel Cells (SOFCs)
    • 16.3.8. Comparison of key separation technologies
    • 16.3.9. Electrochemical conversion of CO2
      • 16.3.9.1. Process overview
  • 16.4. Direct air capture (DAC)
    • 16.4.1. Description
  • 16.5. Companies (4 company profiles)

17. RESEARCH METHODOLOGY

18. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제