½ÃÀ庸°í¼­
»óǰÄÚµå
1734000

¼¼°èÀÇ ¾çÀÚ ¸Ó½Å·¯´×(QML) ½ÃÀå(2026-2040³â)

The Global Quantum Machine Learning Market 2026-2040

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Future Markets, Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 143 Pages, 50 Tables, 21 Figures | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¾çÀÚ ¸Ó½Å·¯´×(QML)Àº ¾çÀÚ ¿ªÇÐÀÇ °íÀ¯ÇÑ Æ¯¼ºÀÎ Áßø, ¾ôÈû, ¾çÀÚ °£¼·À» ÀÌ¿ëÇÏ¿© °íÀü ÄÄÇ»Åͺ¸´Ù ±âÇϱ޼öÀûÀ¸·Î ºü¸¥ ¼Óµµ·Î ¸Ó½Å·¯´× ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ¾çÀÚ ¸Ó½Å·¯´×Àº ¾çÀÚ ¾Ë°í¸®ÁòÀÌ ¾çÀÚ ÁßøÀ» ÅëÇØ ¹æ´ëÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ µ¿½Ã¿¡ ó¸®ÇÏ°í ¿©·¯ °è»êÀ» º´·Ä·Î ¼öÇàÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â °è»ê Áö´ÉÀÇ ÆÐ·¯´ÙÀÓ ÀüȯÀ» ÀǹÌÇÕ´Ï´Ù. 0°ú 1ÀÇ °áÁ¤ÀûÀÎ »óÅ·ΠÁ¸ÀçÇÏ´Â °íÀü ºñÆ®¿Í ´Þ¸®, ¾çÀÚ ºñÆ®(qubit)´Â ÁßøµÈ »óÅ·ΠÁ¸ÀçÇÒ ¼ö Àֱ⠶§¹®¿¡ ¾çÀÚ ÄÄÇ»ÅÍ´Â ¿©·¯ ÇØ´äÀÇ °æ·Î¸¦ µ¿½Ã¿¡ Ž»öÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾çÀÚ ÄÄÇ»ÅÍÀÇ ÀåÁ¡Àº ÃÖÀûÈ­ ¹®Á¦, ÆÐÅÏ ÀνÄ, ¸Ó½Å·¯´× ¾ÖÇø®ÄÉÀ̼ÇÀÇ ÇÙ½ÉÀÎ º¹ÀâÇÑ µ¥ÀÌÅÍ ºÐ¼® ÀÛ¾÷¿¡¼­ ƯÈ÷ µÎµå·¯Áý´Ï´Ù.

ÀÌ ºÐ¾ß¿¡´Â ¾çÀÚ ÇÁ·Î¼¼¼­¸¦ »ç¿ëÇÏ¿© °íÀü ¾Ë°í¸®ÁòÀ» °¡¼ÓÈ­ÇÏ´Â ¾çÀÚ °­È­ ¸Ó½Å·¯´×, ¾çÀÚ ¿ªÇÐÀû Ư¼ºÀ» Ȱ¿ëÇÑ ¿ÏÀüÈ÷ »õ·Î¿î ¾Ë°í¸®ÁòÀÎ ¾çÀÚ ³×ÀÌÆ¼ºê ¸Ó½Å·¯´× µî ¿©·¯ °¡Áö Áß¿äÇÑ Á¢±Ù¹ýÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù. ¾çÀÚ ½Å°æ¸Á, ¾çÀÚ Áö¿ø º¤ÅÍ ¸Ó½Å, ¾çÀÚ °­È­ ÇнÀÀº AI ½Ã½ºÅÛÀÇ ÇнÀ ¹æ¹ý°ú ÀÇ»ç°áÁ¤ ¹æ½ÄÀ» ±Ùº»ÀûÀ¸·Î ¹Ù²Ü ¼ö ÀÖ´Â »õ·Î¿î ¹æ¹ýÀÔ´Ï´Ù.

ÇöÀç ±¸ÇöÀº ¾çÀÚ ÇÁ·Î¼¼¼­°¡ ƯÁ¤ °è»ê ÀÛ¾÷À» ó¸®ÇÏ°í °íÀü ÄÄÇ»ÅͰ¡ µ¥ÀÌÅÍ Àüó¸®, ÈÄó¸® ¹× ½Ã½ºÅÛ Á¦¾î¸¦ °ü¸®ÇÏ´Â ¾çÀÚ °íÀü ÇÏÀ̺긮µå ½Ã½ºÅÛÀÌ ÁÖ¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù ¹æ½ÄÀº ³ëÀÌÁî, µðÄÚÈ÷¾î·±½º, ¾çÀÚ ºñÆ® ¼ö Á¦ÇѰú °°Àº ÇöÀç ¾çÀÚ Çϵå¿þ¾îÀÇ ÇѰ踦 ¿ÏÈ­Çϸ鼭 µÎ ÆÐ·¯´ÙÀÓÀÇ ÀåÁ¡À» ÃÖ´ëÇÑ È°¿ëÇÕ´Ï´Ù.

¾çÀÚ ¸Ó½Å·¯´×ÀÌ Å« ÀÌÁ¡À» °¡Á®´Ù ÁÙ ¼ö ÀÖ´Â ¼ö¸¹Àº °íºÎ°¡°¡Ä¡ ÀÀ¿ë ºÐ¾ß·Î ½ÃÀåÀÇ ÀáÀç·ÂÀº ¹«±Ã¹«ÁøÇÕ´Ï´Ù. ±ÝÀ¶ ±â°üÀº Æ÷Æ®Æú¸®¿À ÃÖÀûÈ­, À§Çè ºÐ¼®, »ç±â ŽÁö µî¿¡ »ç¿ëµÇ´Â ¾çÀÚ ¾Ë°í¸®ÁòÀ» ¿¬±¸Çϰí ÀÖÀ¸¸ç, ¿©·¯ ½ÃÀå ½Ã³ª¸®¿À¸¦ µ¿½Ã¿¡ ó¸®ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ ¿ì¼öÇÑ ÅõÀÚ Àü·«À» ¼ö¸³ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÇ·á ¹× Á¦¾à ±â¾÷¿¡¼­´Â ¾çÀÚ ÄÄÇ»ÅͰ¡ ºÐÀÚ °£ »óÈ£ÀÛ¿ëÀ» Àü·Ê ¾ø´Â Á¤È®µµ·Î ½Ã¹Ä·¹À̼ÇÇÒ ¼ö ÀÖ´Â °¡´É¼ºÀÌ Àֱ⠶§¹®¿¡ ¾çÀÚ¸¦ ÀÌ¿ëÇÑ ½Å¾à °³¹ß, ´Ü¹éÁú Æúµù ¿¹Ãø, ¸ÂÃãÇü ÀÇ·á¿¡ÀÇ Àû¿ëÀÌ °ËÅäµÇ°í ÀÖ½À´Ï´Ù.

Á¦Á¶ ºÎ¹®¿¡¼­´Â °ø±Þ¸Á °ü¸®, ǰÁú °ü¸®, ¿¹Áöº¸ÀüÀ» À§ÇÑ ¾çÀÚ ÃÖÀûÈ­°¡ Æò°¡¹Þ°í ÀÖÀ¸¸ç, »çÀ̹ö º¸¾È ºÐ¾ß¿¡¼­´Â ¾çÀÚ ³»¾Ïȣȭ ±â¼ú°ú ÷´Ü À§Çù ŽÁö ½Ã½ºÅÛÀÌ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀÇ ÀáÀç·ÂÀº ±âÈÄ ¸ðµ¨¸µ, ±³Åë ÃÖÀûÈ­, °úÇÐ ¿¬±¸ µî ±âÁ¸ ÄÄÇ»Åͷδ ÇѰ谡 ÀÖ´Â ºÐ¾ß·Î È®ÀåµÇ°í ÀÖ½À´Ï´Ù.

º» º¸°í¼­¿¡¼­´Â 50-1,000 ¾çÀÚ ºñÆ®ÀÇ ¾çÀÚ ½Ã½ºÅÛÀ» Ư¡À¸·Î ÇÏ´Â ÇöÀçÀÇ Noisy Intermediate-Scale Quantum(NISQ) ½Ã´ë¸¦ »ìÆìº¾´Ï´Ù. ÀÌ·¯ÇÑ ¾çÀÚ ½Ã½ºÅÛÀº ¾ÆÁ÷ º¸ÆíÀûÀÎ ¾çÀÚ ¿ìÀ§¸¦ º¸¿©ÁÖÁö´Â ¸øÇÏÁö¸¸, º¹ÀâÇÑ QML ¾Ë°í¸®ÁòÀ» ¾ÈÁ¤ÀûÀ¸·Î ½ÇÇàÇÒ ¼ö ÀÖ´Â ³»°áÇÔ¼º ¾çÀÚ ÄÄÇ»ÅÍ·Î °¡´Â Áß¿äÇÑ µðµõµ¹ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

ÁÖ¿ä °úÁ¦´Â ȯ°æ °£¼·À¸·Î ÀÎÇØ ¾çÀÚ »óŰ¡ ºü¸£°Ô ÀúÇϵǴ ¾çÀÚ µðÄÚÈ÷¾î·±½º, °íÀüÀû °è»êÀ» ´É°¡ÇÏ´Â ¾çÀÚ ¿À·ùÀ², ¾çÀÚ ÇÁ·Î±×·¡¹Ö Àü¹®°¡ ºÎÁ· µîÀÔ´Ï´Ù. ¶ÇÇÑ, ¸¹Àº ±â¾÷µé¿¡°Ô Çϵå¿þ¾î ºñ¿ëÀÌ ¿©ÀüÈ÷ ºñ½Î±â ¶§¹®¿¡ Ŭ¶ó¿ìµå ±â¹Ý ¾×¼¼½º ¸ðµ¨À̳ª QaaS(Quantum-as-a-Service)°¡ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù.

°æÀï ±¸µµ¿¡´Â ¾çÀÚ Çϵå¿þ¾î ¹× ¾çÀÚ ¼ÒÇÁÆ®¿þ¾î Ç÷§ÆûÀ» °³¹ßÇÏ´Â ´ëÇü ±â¼ú ±â¾÷, ¾çÀÚ ÄÄÇ»ÆÃ Àü¹® ±â¾÷, ±âÁ¸ Á¦Ç°¿¡ ¾çÀÚ ±â´ÉÀ» ÅëÇÕÇÏ´Â ÀüÅë ±â¼ú ±â¾÷ µîÀÌ ÀÖ½À´Ï´Ù. Á¤ºÎ ÅõÀÚ, Çмú ¿¬±¸ ÇÁ·Î±×·¥, º¥Ã³ ijÇÇÅ»ÀÇ ÀÚ±Ý Áö¿øÀ¸·Î °³¹ß ÀÏÁ¤°ú »ó¾÷Àû Ȱ¿ëÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

¼¼°èÀÇ ¾çÀÚ ¸Ó½Å·¯´×(QML) ½ÃÀå¿¡ ´ëÇØ Á¶»ç ºÐ¼®ÇßÀ¸¸ç, ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø, ¾Ë°í¸®Áò ¹× ¼ÒÇÁÆ®¿þ¾î µ¿Çâ, ÅõÀÚ ¹× ÀÚ±Ý Á¶´Þ ¿¡ÄڽýºÅÛ, ÁÖ¿ä ±â¾÷ 49°³»çÀÇ ÇÁ·ÎÇÊ µîÀÇ Á¤º¸¸¦ ÀüÇØµå¸³´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

  • ¾çÀÚ ¸Ó½Å·¯´× ½ÃÀå ÃËÁø¿äÀÎ
  • QML ¾Ë°í¸®Áò°ú ¼ÒÇÁÆ®¿þ¾î
  • ¸Ó½Å·¯´×¿¡¼­ ¾çÀÚ ¸Ó½Å·¯´×À¸·Î
  • QML ´Ü°è
  • ÀÌÁ¡
  • °úÁ¦
  • QML ·Îµå¸Ê

Á¦2Àå ¼Ò°³

  • ¾çÀÚ ¸Ó½Å·¯´×À̶õ?
  • °íÀüÀû ÄÄÇ»ÆÃ ÆÐ·¯´ÙÀÓ°ú ¾çÀÚ ÄÄÇ»ÆÃ ÆÐ·¯´ÙÀÓ
  • ¾çÀÚ ¿ªÇÐ ¿ø¸®
  • ¸Ó½Å·¯´× ±âÃÊ
  • ±³Â÷Á¡ : ¾çÀÚ¿Í MLÀ» °áÇÕÇÏ´Â ÀÌÀ¯
  • ½ÃÀåÀÇ ÁøÈ­
  • ÀÌ ºÐ¾ß ÇöȲ
  • ¿ëµµ¿Í ÀÌ¿ë »ç·Ê
  • °úÁ¦¿Í ÇѰè
  • ±â¼ú°ú ¼º´É ·Îµå¸Ê

Á¦3Àå QML ¾Ë°í¸®Áò°ú ¼ÒÇÁÆ®¿þ¾î

  • ¸Ó½Å·¯´×
  • ¸Ó½Å·¯´× À¯Çü
  • ¾çÀÚ µö·¯´×°ú ¾çÀÚ ½Å°æ¸Á
  • ¾çÀÚ ¿ªÀüÆÄ
  • QMLÀÇ Transformer
  • QDLÀÇ Perceptron
  • ML µ¥ÀÌÅͼ¼Æ®
  • ¾çÀÚ ¾Ïȣȭ
  • ¾çÀÚ °íÀü ÇÏÀ̺긮µå ¸Ó½Å·¯´×°ú ÁøÁ¤ÇÑ QMLÀÇ ±æ
  • ÃÖÀûÈ­ ¹æ¹ý
  • QML-over-the-Cloud¿Í QML-as-a-Service
  • QMLÀÇ º¸¾È°ú ÇÁ¶óÀ̹ö½Ã
  • AI, ¸Ó½Å·¯´×, µö·¯´×, ¾çÀÚ ÄÄÇ»ÆÃ
  • Æ®·¹ÀÌ´×°ú Ãß·Ð ´Ü°èÀÇ QML Ãë¾à¼º Áõ´ë
  • QML Cloud¿Í QML-as-a-Service º¸¾È
  • ƯÇã »óȲ
  • QML ¾ÆÅ°ÅØÃ³ º¸¾È
  • ±â¾÷

Á¦4Àå QML Çϵå¿þ¾î¿Í ÀÎÇÁ¶ó

  • °³¿ä
  • ·Îµå¸Ê
  • ºñ¿ë
  • ¾çÀÚ ¾î´Ò¸µ
  • NISQ ÄÄÇ»ÅÍ¿Í QML
  • NISQ¸¦ ³Ñ¾î¼± QML
  • QML¸¦ ÀÌ¿ëÇÑ ¾çÀÚ Çϵå¿þ¾î Á¦Á¶¿Í ÃÖÀûÈ­
  • ¸Ó½Å·¯´×°ú QRNG

Á¦5Àå QML ½ÃÀå°ú ¿ëµµ

  • QML ±âȸ
  • ±ÝÀ¶¡¤ÀºÇà
    • °³¿ä
    • ¿ëµµ
    • ±â¾÷
  • ÇコÄɾ»ý¸í°úÇÐ
    • °³¿ä
    • ¿ëµµ
    • ¼¾¼­
    • ¸ÂÃãÇü ÀÇ·á
    • Drug Discovery
    • Á¦¾à¡¤QML
    • ±â¾÷
  • Á¦Á¶
    • °³¿ä
    • ¿ëµµ
  • ±âŸ ¿ëµµ
  • »ê¾÷ Ⱦ´ÜÀûÀÎ QML ÇýÅà ºÐ¼®
  • ½ÃÀå ±Ô¸ð¿Í ¼ºÀå ¿¹Ãø(2026-2040³â)
  • Áö¿ª ½ÃÀå
    • ºÏ¹Ì
    • À¯·´
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ±âŸ Áö¿ª
    • Áö¿ª ÅõÀÚ¿Í Á¤Ã¥ ¹üÀ§ Á¶
  • QML ½ÃÀå ¼¼ºÐÈ­
    • ±â¼ú À¯Çüº°
    • ÀÀ¿ë ºÐ¾ßº°
  • ½ÃÀå ÃËÁø¿äÀΰú ¾ïÁ¦¿äÀÎ
  • QML ±â¼ú Áغñµµ Æò°¡
  • ½ÃÀå ¼ºÀå ½Ã³ª¸®¿À

Á¦6Àå ÅõÀÚ¿Í ÀÚ±Ý Á¶´Þ

  • º¥Ã³ ijÇÇÅаú ¹Î°£ÅõÀÚ µ¿Çâ
  • Á¤ºÎÀÇ ÀÚ±Ý Áö¿ø°ú ±¹°¡ÀÇ ´ëó
  • ±â¾÷ ¿¬±¸°³¹ß ÅõÀÚ

Á¦7Àå ±â¾÷ °³¿ä(±â¾÷ 47°³»ç ÇÁ·ÎÆÄÀÏ)

Á¦8Àå ¿ë¾îÁý

Á¦9Àå Á¶»ç ¹æ¹ý

Á¦10Àå Âü°í¹®Çå

ksm

Quantum Machine Learning (QML) harnesses the unique properties of quantum mechanics-superposition, entanglement, and quantum interference-to potentially solve machine learning problems exponentially faster than classical computers. Quantum Machine Learning represents a paradigm shift in computational intelligence, where quantum algorithms can process vast datasets simultaneously through quantum superposition, enabling multiple calculations to occur in parallel. Unlike classical bits that exist in definitive states of 0 or 1, quantum bits (qubits) can exist in superposition states, allowing quantum computers to explore multiple solution paths simultaneously. This quantum advantage becomes particularly pronounced in optimization problems, pattern recognition, and complex data analysis tasks that form the core of machine learning applications.

The field encompasses several key approaches including quantum-enhanced machine learning, where classical algorithms are accelerated using quantum processors, and quantum-native machine learning, where entirely new algorithms leverage quantum mechanical properties. Quantum neural networks, quantum support vector machines, and quantum reinforcement learning represent emerging methodologies that could fundamentally transform how artificial intelligence systems learn and make decisions.

Current implementations focus on hybrid quantum-classical systems, where quantum processors handle specific computational tasks while classical computers manage data preprocessing, post-processing, and system control. This approach maximizes the strengths of both paradigms while mitigating current quantum hardware limitations such as noise, decoherence, and limited qubit counts.

The market potential spans numerous high-value applications where quantum machine learning could provide significant advantages. Financial institutions are exploring quantum algorithms for portfolio optimization, risk analysis, and fraud detection, where the ability to process multiple market scenarios simultaneously could yield superior investment strategies. Healthcare and pharmaceutical companies are investigating quantum-enhanced drug discovery, protein folding prediction, and personalized medicine applications, where quantum computers could simulate molecular interactions with unprecedented accuracy.

Manufacturing sectors are evaluating quantum optimization for supply chain management, quality control, and predictive maintenance, while cybersecurity applications include quantum-resistant cryptography and advanced threat detection systems. The technology's potential extends to climate modeling, traffic optimization, and scientific research applications where classical computational limitations currently constrain progress.

The report examines the current Noisy Intermediate-Scale Quantum (NISQ) era, characterized by quantum systems with 50-1000 qubits that exhibit significant noise and limited error correction. While these systems cannot yet demonstrate universal quantum advantage, they serve as crucial stepping stones toward fault-tolerant quantum computers capable of running complex QML algorithms reliably.

Key challenges include quantum decoherence, where quantum states deteriorate rapidly due to environmental interference, quantum error rates that currently exceed classical computation, and the scarcity of quantum programming expertise. Hardware costs remain prohibitive for most organizations, necessitating cloud-based access models and quantum-as-a-service offerings.

The competitive landscape includes technology giants developing quantum hardware and software platforms, specialized quantum computing companies, and traditional technology firms integrating quantum capabilities into existing products. Government investments, academic research programs, and venture capital funding are accelerating development timelines and commercial applications.

Report contents include:

  • Detailed market evolution analysis from 2020 through 2040
  • Comprehensive pros and cons assessment of quantum machine learning
  • Technology and performance roadmap with key development milestones
  • Market segmentation by technology type and application sectors
  • Growth projections with multiple scenario analysis
  • Technology readiness assessment across different quantum platforms
  • Algorithm and Software Landscape
    • Machine learning fundamentals and quantum integration approaches
    • Comprehensive analysis of machine learning types and quantum applications
    • Quantum deep learning and quantum neural network architectures
    • Training methodologies for quantum neural networks
    • Applications and use cases for quantum neural networks across industries
    • Neural network types suitable for quantum implementation
    • Quantum generative adversarial networks development and applications
    • Quantum backpropagation techniques and optimization methods
    • Transformers implementation in quantum machine learning systems
    • Perceptrons in quantum deep learning architectures
    • Dataset characteristics and quantum data encoding requirements
    • Quantum encoding schemes and their performance characteristics
    • Hybrid quantum/classical ML development pathways
    • Advanced optimization techniques for quantum machine learning
    • Cloud-based QML services and quantum-as-a-service platforms
    • Security and privacy considerations in quantum machine learning
    • Patent landscape analysis for QML algorithms and implementations
    • Comprehensive profiles of leading QML software companies
  • Hardware Infrastructure Analysis
    • Quantum computing hardware overview and market assessment
    • Hardware development roadmap through 2040
    • Comprehensive cost analysis for quantum computing systems
    • Quantum annealing systems and their ML applications
    • Comparison between quantum annealing and gate-based systems
    • NISQ computers specifications for machine learning applications
    • Error rates and coherence times across different platforms
    • Hardware optimization using quantum machine learning techniques
    • Quantum random number generators for ML applications
    • Leading hardware companies and their technology approaches
  • Application Sector Analysis
    • Comprehensive QML opportunities across multiple industries
    • Financial services and banking applications including risk analysis and optimization
    • Healthcare and life sciences applications for drug discovery and diagnostics
    • Sensor integration for quantum ML-based diagnostic systems
    • Personalized medicine implementation using quantum algorithms
    • Pharmaceutical applications and drug discovery acceleration
    • Manufacturing sector applications for optimization and quality control
    • Additional applications across various industries and use cases
    • Cross-industry benefit analysis and performance comparisons
  • Market Forecasts and Projections
    • Global QML market size projections by year (2026-2040)
    • Regional market growth rates and compound annual growth rate analysis
    • Market segmentation by technology type with revenue projections
    • Application sector segmentation with detailed revenue forecasts
    • Market drivers versus restraints impact analysis
    • Technology readiness assessment matrix across platforms
    • Hardware versus software revenue split projections
    • Market penetration rates by industry sector
    • Technology adoption milestones and timeline analysis
    • Market growth scenarios including conservative, base, and optimistic projections
    • Technology maturity curve analysis and commercial viability assessment
  • Investment and Funding Ecosystem
    • Venture capital investment trends in QML companies
    • Government funding programs and national quantum initiatives
    • Corporate R&D spending patterns and investment strategies
    • Investment trends segmented by technology focus areas
    • Public-private partnership models and collaboration frameworks
  • Company Profiles and Competitive Analysis
    • Comprehensive profiles of 49 leading companies in the QML ecosystem. Companies profiled include AbaQus, Adaptive Finance, Aliro Quantum, Amazon/AWS, Atom Computing, Baidu Inc., BlueQubit Inc., Cambridge Quantum Computing (CQC), D-Wave, GenMat, Google Quantum AI, IBM, IonQ, Kuano, MentenAI, MicroAlgo, Microsoft, Mind Foundry, Mphasis, Nordic Quantum Computing Group, ORCA Computing, Origin Quantum Computing Technology, OTI Lumionics, Oxford Quantum Circuits, Pasqal, PennyLane/Xanadu, planqc GmbH, Polaris Quantum Biotech (POLARISqb), ProteinQure, and more....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Quantum Machine Learning Market Drivers
  • 1.2. Algorithms and Software for QML
  • 1.3. Machine Learning to Quantum Machine Learning
  • 1.4. QML Phases
    • 1.4.1. The First Phase of QML
    • 1.4.2. The Second Phase of QML
  • 1.5. Advantages
    • 1.5.1. Improved Optimization and Generalization
    • 1.5.2. Quantum Advantage
    • 1.5.3. Training Advantages and Opportunities
    • 1.5.4. Quantum Advantage and ML
    • 1.5.5. Improved Accuracy
  • 1.6. Challenges
    • 1.6.1. Costs
    • 1.6.2. Nascent Technology
    • 1.6.3. Training
    • 1.6.4. Quantum Memory Issues
  • 1.7. QML Roadmap

2. INTRODUCTION

  • 2.1. What is Quantum Machine Learning?
  • 2.2. Classical vs. Quantum Computing Paradigms
  • 2.3. Quantum Mechanical Principles
  • 2.4. Machine Learning Fundamentals
  • 2.5. The Intersection: Why Combine Quantum and ML?
  • 2.6. Market evolution
  • 2.7. Current State of the Field
  • 2.8. Applications and Use Cases
  • 2.9. Challenges and Limitations
  • 2.10. Technology and Performance Roadmap

3. QML ALGORITHMS AND SOFTWARE

  • 3.1. Machine Learning
  • 3.2. Types of Machine Learning
  • 3.3. Quantum Deep Learning and Quantum Neural Networks
    • 3.3.1. Quantum Deep Learning
    • 3.3.2. Training Quantum Neural Networks
    • 3.3.3. Applications for Quantum Neural Networks
    • 3.3.4. Types of Neural Networks
    • 3.3.5. Quantum Generative Adversarial Networks
  • 3.4. Quantum Backpropagation
  • 3.5. Transformers in QML
  • 3.6. Perceptrons in QDL
  • 3.7. ML Datasets
  • 3.8. Quantum Encoding
  • 3.9. Hybrid Quantum/Classical ML and the Path to True QML
    • 3.9.1. Quantum Principal Component Analysis
      • 3.9.1.1. Handling Larger Data Sets
      • 3.9.1.2. Dimensionality Reduction
      • 3.9.1.3. Uses of Grover's Algorithm
  • 3.10. Optimization Techniques
  • 3.11. QML-over-the-Cloud and QML-as-a-Service
  • 3.12. Security and Privacy in QML
  • 3.13. AI, Machine Learning, Deep Learning and Quantum Computing
  • 3.14. Growing QML Vulnerabilities During the Training and Inference Phases
  • 3.15. Security on QML Clouds and QML-as-a-Service
  • 3.16. Patent Landscape
    • 3.16.1. Quantum Machine Learning Patents by Type (2020-2025)
    • 3.16.2. QML Algorithms
  • 3.17. Security on QML Architecture
  • 3.18. Companies

4. QML HARDWARE AND INFRASTRUCTURE

  • 4.1. Overview
  • 4.2. Roadmap
  • 4.3. Costs
  • 4.4. Quantum Annealing
    • 4.4.1. Quantum Annealing vs. Gate-based Systems
    • 4.4.2. Companies
  • 4.5. NISQ Computers and QML
    • 4.5.1. NISQ System Specifications for QML
    • 4.5.2. Companies
  • 4.6. QML beyond NISQ
  • 4.7. Fabricating and Optimizing Quantum Hardware Using QML
  • 4.8. Machine Learning and QRNGs

5. QML MARKETS AND APPLICATIONS

  • 5.1. QML Opportunities
  • 5.2. Finance and Banking
    • 5.2.1. Overview
    • 5.2.2. Applications
    • 5.2.3. Companies
  • 5.3. Healthcare and Life Sciences
    • 5.3.1. Overview
    • 5.3.2. Applications
    • 5.3.3. Sensors
    • 5.3.4. Personalized Medicine
    • 5.3.5. Drug Discovery
    • 5.3.6. Pharma and QML
    • 5.3.7. Companies
  • 5.4. Manufacturing
    • 5.4.1. Overview
    • 5.4.2. Applications
  • 5.5. Other Applications
  • 5.6. Cross-Industry QML Benefit Analysis
  • 5.7. Market Size and Growth Projections (2026-2040)
  • 5.8. Regional Market
    • 5.8.1. North America
    • 5.8.2. Europe
    • 5.8.3. Asia-Pacific
    • 5.8.4. Rest of World
    • 5.8.5. Regional Investment and Policy Framework
  • 5.9. QML Market Segmentation
    • 5.9.1. By Technology Type
    • 5.9.2. By Application Sector
  • 5.10. Market Drivers vs. Restraints
  • 5.11. QML Technology Readiness Assessment
  • 5.12. Market Growth Scenarios

6. INVESTMENT AND FUNDING

  • 6.1. Venture Capital and Private Investment Trends
  • 6.2. Government Funding and National Initiatives
  • 6.3. Corporate R&D Investment

7. COMPANY PROFILES (47 company profiles)

8. GLOSSARY OF TERMS

9. RESEARCH METHODOLOGY

10. REFERENCES

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦