시장보고서
상품코드
1773143

세계의 소프트웨어 정의 차량(SDV) 시장(2026-2036년)

The Global Software-Defined Vehicles (SDVs) Market 2026-2036

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 323 Pages, 115 Tables, 38 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계 소프트웨어 정의 차량(SDV) 시장은 자동차 산업 역사상 가장 큰 변화 중 하나이며, 자동차의 구상, 개발, 제조 및 수익화 방식을 근본적으로 재정의하고 있습니다. 이 시장은 소프트웨어 개발, 전자/전기 아키텍처, 하드웨어 부품, 통합 서비스 등의 종합적인 생태계를 포괄하고 있으며, 이를 통해 자동차는 고정된 기능을 가진 정적인 제품이 아니라 운영 수명주기 동안 지속적으로 진화할 수 있습니다. SDV 시장은 2026년 4,700억 달러에서 2036년까지 약 1조 1,900억 달러로 확대될 것으로 예상되는 등 엄청난 성장 잠재력을 보여주고 있습니다. 이러한 성장 궤적은 기존 자동차 시장의 2.1% 성장률을 크게 상회하는 것으로, 산업 내 가치 창출 메커니즘의 근본적인 변화를 보여줍니다. 시장 확대는 5G 네트워크의 보급, AI의 발전, 클라우드 컴퓨팅의 성숙, 커넥티드 및 개인화된 모빌리티 경험에 대한 소비자 기대치의 진화 등 여러 기술 트렌드의 수렴에 의해 이루어질 것입니다.

소프트웨어 개발은 SDV 생태계에서 가장 빠르게 성장하고 있는 분야입니다. 이러한 성장은 주로 자율주행 시스템, 첨단운전자보조시스템(ADAS)의 복잡성 증가, 개인화된 사용자 경험 요구사항에 의해 주도되고 있습니다. 하드웨어 구성 요소는 중앙 집중식 컴퓨팅 플랫폼과 첨단 반도체 통합을 향한 차량 전기 아키텍처의 근본적인 변화를 반영하여 2036년까지 가장 큰 시장 부문을 구성할 것입니다. 중국이 세계 SDV 개발을 주도하고 있습니다. 중국 제조업체들은 차량과 도로 및 클라우드의 통합에 대한 정부의 지원, 자동차 용도에 대한 기술 기업의 적극적인 투자, 소프트웨어 우선의 차량 경험에 대한 소비자의 수용을 통해 경쟁 우위를 확보해 왔습니다. 등 기업이 제공하는 국내 기술 생태계의 통합은 기존 자동차 제조업체가 따라올 수 없는 종합적인 플랫폼 기능을 중국 제조업체에 제공합니다.

SDV 시장은 소프트웨어 정의 차량 기능을 구현하는 여러 상호 연결된 기술 부문을 포괄하고 있으며, 첨단운전자보조시스템(ADAS)와 자율주행 기능은 가장 높은 가치를 지닌 응용 분야로, 안전과 편의 기능에 대한 높은 가격 책정과 소비자의 높은 지불 의향을 요구하고 있습니다. 요구하고 있습니다. 이러한 시스템은 첨단 센서 융합, 실시간 처리, 지속적인 학습 기능을 필요로 하며, HPC 플랫폼과 AI 가속 하드웨어에 대한 수요를 촉진합니다. 커넥티비티와 인포테인먼트 시스템은 지속적인 고객 참여와 서비스 수익 창출의 기반을 제공하고, 제조업체가 구독 서비스, OTA, 써드파티 용도의 통합을 통해 반복적인 수익을 창출할 수 있게 합니다. Everything(V2X) 통신 기능은 안전 용도과 교통 최적화를 위해 점점 더 중요해지고 있으며, 엔터테인먼트 및 편의 기능은 장기적인 수익 창출 기회를 뒷받침하고 있습니다.

SDV 시장은 기술 기업이 전통적인 자동차 제조업체와 점점 더 직접적으로 경쟁하면서 전례 없는 밸류체인의 파괴가 특징입니다. 소프트웨어 정의 차량 아키텍처에서 테슬라의 지속적인 리더십은 OTA 기능, 수직적 통합, 소비자 소프트웨어 서비스 수익화에서 업계의 벤치마크가 되고 있으며, Baidu, Huawei, Tencent를 비롯한 중국 기술 기업들은 기존공급업체 관계에 도전하고 있습니다. 기업들은 전통적인 공급업체 관계에 도전하는 종합적인 플랫폼 솔루션으로 자동차 시장에 진입하고 있습니다. 전통적인 자동차 제조업체들은 자동차 등급의 품질, 안전, 신뢰성 기준을 유지하면서 하드웨어 중심에서 소프트웨어 우선의 개발 방식으로 전환해야 하는 과제에 직면해 있습니다. 이러한 변화는 소프트웨어 개발 역량에 대한 대규모 투자, 인재 확보 및 조직 개편을 필요로 하며, 많은 기업들이 이를 효과적으로 실행하기 위해 고군분투하고 있습니다.

세계의 소프트웨어 정의 차량(SDV) 시장을 조사 분석했으며, 시장 성장 촉진요인, 기술 발전, 경쟁 역학, 지역별 차이점, 전략적 기회 등의 정보를 전해드립니다.

목차

제1장 주요 요약

  • 주요 시장 조사 결과와 전략적 영향
  • SDV 플랫폼의 이점
  • SDV 시장 규모와 성장 예측(2026년-2036년)
  • 지역 시장 리더십 분석
  • 투자 기회와 리스크 평가
  • 결론 : 중요 성공 요인
  • SDV 레벨 가이드, 평가 프레임워크
  • 세계 시장 예측(-2036년)
  • 급속한 채택을 촉진하는 시장 가속요인

제2장 시장 개요와 세계의 동향

  • 자동차 산업을 둘러싸는 시장 변화
  • 통합과 파트너십
  • SDV 플랫폼 통합
  • 클라우드 네이티브 개발
  • 안전과 보안 초점
  • AI와 실시간 처리
  • 시장 투입까지 시간 단축
  • SDV란
  • 자동차 산업을 재형성하는 중요한 아키텍처 동향

제3장 SDV 아키텍처와 기술 스택

  • SDV 아키텍처 스택
  • 하드웨어와 E/E 집중형 아키텍처
  • 존 아키텍처 마이크로컨트롤러 유닛(MCU)

제4장 SDV 성숙도 평가와 벤치마크

  • SDV 성숙도 프레임워크
  • 세계의 SDV 성숙도 평가
    • 중국
    • 미국
    • 유럽

제5장 세계 시장 규모와 예측(2026년-2036년)

  • SDV 시장 전체 예측
  • 시장 세분화 : 도메인별
  • SDV 판매와 매출 예측

제6장 SDV 서비스와 용도

  • 코어 SDV 서비스
  • SDV 하드웨어 요건

제7장 OEM SDV 전략과 플랫폼 분석

  • OEM과 모델/플랫폼
    • BMW
    • Tesla
    • Volkswagen Group
    • Toyota
    • Stellantis
    • Mercedes-Benz
    • AWS
    • Xpeng
    • Ford
    • MG(SAIC)

제8장 V2X와 커넥티드카 기술

  • V2X 기술의 기초
  • V2X 통신이 중요한 이유
  • V2V와 V2I 통신
  • V2X 하드웨어와 인프라
  • 지역의 V2X 개발

제9장 자율주행차 접속성과 SDV 통합

  • 자율주행 기술 통합
  • 센서 기술
  • 접속성 요건 : 자율 레벨별
  • 매핑 및 로컬라이제이션
  • 원격 조작 및 원격 지원

제10장 생성형 AI와 첨단 기술

  • SDV 생성형 AI 통합
  • 자동차 제조업체용 생성형 AI
  • 디지털 트윈 및 시뮬레이션

제11장 경쟁 구도와 밸류체인 분석

  • SDV 밸류체인 재구축
  • SDV 시장 시나리오 분석(2036년)
  • 아키텍처 주도 SDV 플랫폼 개발
  • 경쟁 평가

제12장 지역 시장

  • 유럽
  • 미국
  • 중국

제13장 신흥 시장 기회

  • Software-as-a-Service 모델
  • 데이터 수익화
  • 에코시스템 플랫폼 개발
  • Mobility-as-a-Service 통합

제14장 SDV 관련 규제와 기준

  • 세계의 규제 상황
  • 산업 표준과 상호운용성

제15장 과제와 리스크 분석

  • 기술적 과제
  • 시장과 기업 과제
  • 공급망과 지정학적 리스크

제16장 기업 개요(기업 63개사 개요)

제17장 부록

제18장 참고 문헌

LSH 25.07.28

The global Software-Defined Vehicles market represents one of the most transformative shifts in automotive industry history, fundamentally redefining how vehicles are conceived, developed, manufactured, and monetized. The market encompasses a comprehensive ecosystem of software development, electronic/electrical architecture, hardware components, and integrated services that collectively enable vehicles to evolve continuously throughout their operational lifecycle rather than remaining static products with fixed capabilities. The SDV market demonstrates exceptional growth potential, expanding from $470 billion in 2026 to an estimated $1.19 trillion by 2036, representing a robust compound annual growth rate of 7.0%. This growth trajectory significantly outpaces traditional automotive market expansion of 2.1%, indicating a fundamental shift in value creation mechanisms within the industry. The market's expansion is driven by convergence of multiple technology trends including 5G network proliferation, artificial intelligence advancement, cloud computing maturation, and evolving consumer expectations for connected, personalized mobility experiences.

Software development represents the fastest-growing segment within the SDV ecosystem. This growth is primarily driven by increasing complexity of autonomous driving systems, advanced driver assistance features, and personalized user experience requirements. Hardware components constitute the largest market segment by 2036, reflecting the fundamental transformation of vehicle electrical architectures toward centralized computing platforms and advanced semiconductor integration. China leads global SDV market development. Chinese manufacturers have established competitive advantages through government support for vehicle-road-cloud integration, aggressive technology company investment in automotive applications, and consumer acceptance of software-first vehicle experiences. The integration of domestic technology ecosystems from companies like Baidu, Tencent, and Alibaba provides Chinese manufacturers with comprehensive platform capabilities that traditional automotive companies struggle to match.

The SDV market encompasses multiple interconnected technology segments that collectively enable software-defined vehicle functionality. Advanced Driver Assistance Systems (ADAS) and autonomous driving capabilities represent the highest-value applications, commanding premium pricing and high consumer willingness to pay for safety and convenience features. These systems require sophisticated sensor fusion, real-time processing, and continuous learning capabilities that drive demand for high-performance computing platforms and AI acceleration hardware. Connectivity and infotainment systems provide the foundation for ongoing customer engagement and service monetization, enabling manufacturers to generate recurring revenue through subscription services, over-the-air updates, and third-party application integration. Vehicle-to-everything (V2X) communication capabilities are increasingly important for safety applications and traffic optimization, while entertainment and comfort features support long-term monetization opportunities.

The SDV market is characterized by unprecedented value chain disruption as technology companies increasingly compete directly with traditional automotive manufacturers. Tesla's continued leadership in software-defined vehicle architecture provides the industry benchmark for over-the-air update capabilities, vertical integration, and direct-to-consumer software service monetization. Chinese technology companies including Baidu, Huawei, and Tencent have entered automotive markets with comprehensive platform solutions that challenge traditional supplier relationships. Traditional automotive manufacturers face the challenge of transforming from hardware-centric to software-first development approaches while maintaining automotive-grade quality, safety, and reliability standards. This transformation requires significant investment in software development capabilities, talent acquisition, and organizational restructuring that many companies are struggling to implement effectively.

The market's evolution toward software-defined vehicles creates new business model opportunities for subscription services, feature-on-demand offerings, and data monetization while simultaneously disrupting traditional automotive value chains. Success in this market requires mastery of software development, ecosystem integration, and continuous innovation capabilities that extend far beyond traditional automotive engineering expertise.

"The Global Software-Defined Vehicles (SDV) Market 2026-2036" provides an exhaustive analysis of the transformative shift reshaping the automotive industry through software-centric vehicle architectures. The report delivers critical insights into market drivers, technology evolution, competitive dynamics, regional variations, and strategic opportunities across software development, E/E architecture, hardware components, and integrated services that collectively enable continuous vehicle capability evolution throughout operational lifecycles. Featuring detailed analysis of 71 leading companies, extensive market forecasting models, and strategic recommendations for OEMs, suppliers, and technology providers, this report serves as an essential resource for stakeholders navigating the SDV transformation. The study incorporates comprehensive coverage of autonomous driving integration, V2X connectivity, generative AI applications, cybersecurity frameworks, and regulatory compliance requirements across major automotive markets including China, Europe, and North America.

Report contents include:

  • Analysis of fundamental paradigm shifts, growth trajectories, and strategic implications for automotive industry stakeholders
  • SDV Benefits Analysis: Comprehensive evaluation of improved user experiences, reduced development costs, new business models, enhanced safety/security, and customization capabilities
  • Global Market Projections
  • Regional Leadership Assessment
  • Investment Opportunities: Risk-adjusted ROI analysis across software platforms, autonomous driving, connectivity infrastructure, and cybersecurity solutions
  • Critical Success Factors: Five essential capabilities for SDV market leadership including software excellence, partnership strategies, and regional adaptation
  • Technology Architecture & Platform Analysis:
    • SDV Architecture Stack: In-depth examination of layered software/hardware architectures, service-oriented design, and standardized API integration
    • E/E Centralization Strategies: Comprehensive analysis of domain vs. zonal architecture paths, hybrid approaches, and OEM implementation strategies
    • MCU Platform Comparison: Detailed evaluation of leading microcontroller platforms from Infineon, NXP, Renesas, STMicroelectronics, and Intel
    • Hardware-Software Decoupling: Analysis of principles enabling independent evolution of vehicle capabilities without hardware modifications
    • Cloud Integration: Assessment of distributed computing architectures balancing real-time vehicle processing with cloud-based analytics and services
  • Market Segmentation & Forecasting:
    • Technology Segment Analysis
    • Domain-Specific Markets: ADAS/autonomous driving, infotainment/connectivity, powertrain optimization, chassis control, and body/comfort systems
    • Regional Market Dynamics
    • Vehicle Sales Forecasts: Unit sales projections across passenger, commercial, and specialty vehicle segments with SDV penetration rates
    • Revenue Model Evolution: Transition from hardware-centric to service-based monetization including subscriptions and feature-on-demand
  • SDV Maturity Assessment & Benchmarking:
    • Maturity Framework: Five-level assessment methodology covering software architecture, updatability, safety/security, user experience, and ecosystem integration
    • Global Competitive Positioning: Comparative analysis of Chinese leadership, US autonomous driving capabilities, and European safety/security excellence
    • OEM Benchmarking: Detailed evaluation of Tesla, BMW, Volkswagen, Toyota, Stellantis, Mercedes-Benz, and Chinese manufacturers' SDV strategies
    • Technology Readiness Levels: Assessment of current capabilities versus future requirements across different SDV implementation approaches
  • V2X & Connected Vehicle Technologies:
    • V2X Technology Fundamentals: Comprehensive analysis of vehicle-to-everything communication technologies, protocols, and applications
    • 5G vs 4G Performance: Detailed comparison of cellular technologies for automotive connectivity with latency, bandwidth, and reliability metrics
    • DSRC vs C-V2X: Regulatory status analysis and technology adoption patterns across major automotive markets
    • Hardware Infrastructure: V2X chipsets, modules, and roadside unit (RSU) technology from leading suppliers including Qualcomm, Huawei, and Autotalks
    • Implementation Roadmap: Day 1/Day 2/Day 3 application deployment timeline for safety-critical and convenience features
  • Autonomous Driving Integration:
    • Autonomy Level Requirements: Detailed analysis of connectivity, computing, and sensor requirements across SAE Levels 2-5
    • Sensor Technology Evolution: Comprehensive assessment of camera, radar, LiDAR, and ultrasonic sensor integration for autonomous driving
    • HD Mapping & Localization: Analysis of high-definition mapping requirements, business models, and service provider strategies
    • Teleoperation Systems: Three-level teleoperation framework for remote assistance, monitoring, and control capabilities
    • AI Processing Requirements: Edge computing, cloud integration, and real-time processing capabilities for autonomous vehicle operation
  • Generative AI & Advanced Technologies:
    • AI Integration Opportunities: In-vehicle generative AI applications for personalized assistance, predictive maintenance, and user experience enhancement
    • Smart Cockpit Development: AI-powered voice interfaces, gesture recognition, and contextual information delivery systems
    • Digital Twin Applications: Virtual vehicle modeling for development, testing, and predictive maintenance capabilities
    • Automotive Design AI: Generative AI applications for vehicle design, engineering optimization, and manufacturing process improvement
  • Competitive Landscape & Value Chain Analysis:
    • Market Scenario Modeling: Five future scenarios including OEM-driven, tech-driven, and balanced power distribution approaches
    • Value Chain Restructuring: Analysis of traditional automotive supplier relationships versus technology platform ecosystems
    • Strategic Positioning Options: Way-to-play frameworks for OEMs, suppliers, and technology companies entering automotive markets
    • Partnership Strategies: Collaboration models, IP sharing frameworks, and ecosystem orchestration approaches
  • Regional Market Analysis:
    • China Market Dynamics: Government support, technology integration, regulatory coordination, and competitive advantages of Chinese manufacturers
    • European Market Characteristics: Premium positioning, safety focus, regulatory compliance, and transformation challenges for traditional OEMs
    • North American Innovation: Silicon Valley influence, autonomous driving leadership, regulatory fragmentation, and market development patterns
    • Emerging Markets: Infrastructure development, adoption patterns, and growth opportunities in Asia-Pacific and other regions
  • Services & Business Models:
    • Software-as-a-Service: Subscription models, feature activation, and recurring revenue opportunities throughout vehicle lifecycles
    • Data Monetization: Privacy-compliant approaches to vehicle and user data commercialization including analytics and insights services
    • Mobility Platform Integration: Integration with ride-sharing, fleet management, and multi-modal transportation services
    • Hardware-as-a-Service: Leasing models, upgrade pathways, and lifecycle management for SDV hardware components
  • Regulatory & Standards Analysis:
  • Global Regulatory Framework: Comparative analysis of EU, US, and Chinese approaches to SDV regulation, safety standards, and approval processes
  • Cybersecurity Requirements: Industry standards, compliance frameworks, and best practices for SDV security implementation
  • Data Privacy Regulations: GDPR, CCPA, and regional data protection requirements affecting SDV development and deployment
  • OTA Update Compliance: Regulatory approval processes, safety validation requirements, and liability frameworks for software updates
  • Risk Assessment & Market Challenges:
    • Technical Implementation Risks: Integration complexity, legacy system compatibility, and performance optimization challenges
    • Market Adoption Barriers: Consumer acceptance, infrastructure requirements, and cost considerations affecting SDV deployment
    • Supply Chain Vulnerabilities: Semiconductor dependencies, geopolitical risks, and supply chain resilience strategies
    • Cybersecurity Threats: Evolving threat landscape, protection strategies, and incident response frameworks
  • Company Profiles: 63 leading companies across the SDV ecosystem, including established automotive manufacturers, technology platform providers, semiconductor suppliers, and emerging software specialists. Companies profiled include ADASTEC Corporation, AiDEN Auto (Aiden Automotive Technologies), Ambarella Inc., Ampere Computing LLC, Aptiv, Audi AG, AUO (AU Optronics), Autocrypt Co. Ltd., Aurora Innovation, AVL List GmbH, BlackBerry QNX, Black Sesame Technologies, Bosch Mobility, Canonical Ltd., Cerebras Systems, Commsignia, Continental AG, Danlaw, dSPACE GmbH, Elektrobit (EB), ETAS GmbH, Ethernovia Inc., Fujitsu Limited, Garmin, GlobalLogic, Green Hills Software, Harman International, HERE Technologies, Honda Motor Co. Ltd., Horizon Robotics, Huawei Technologies, Hyundai Motor Group, Infineon Technologies AG, Intel Corporation, KPIT Technologies, Monumo, NIO, NVIDIA Corporation, Ottopia and more.....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Key Market Findings and Strategic Implications
  • 1.2. Benefits of SDV Platforms
    • 1.2.1. Improved user experience
    • 1.2.2. Reduced development costs
    • 1.2.3. New business models
    • 1.2.4. Enhanced safety and security
    • 1.2.5. Greater flexibility and customization
  • 1.3. SDV Market Size and Growth Projections (2026-2036)
  • 1.4. Regional Market Leadership Analysis
  • 1.5. Investment Opportunities and Risk Assessment
  • 1.6. Bottom Line Up Front: Critical Success Factors
  • 1.7. SDV Level Guide and Evaluation Framework
  • 1.8. Global Market Forecasts to 2036
  • 1.9. Market Accelerators Driving Rapid Adoption

2. MARKET OVERVIEW AND GLOBAL TRENDS

  • 2.1. Changes in Markets Surrounding the Automotive Industry
    • 2.1.1. Recent trends in Automotive Market Worldwide
      • 2.1.1.1. Battery electric vehicle (BEV) adoption
      • 2.1.1.2. Deceleration in BEV adoption rates
      • 2.1.1.3. Fossil Fuel Promotions in the United States
      • 2.1.1.4. European Union's commitment
      • 2.1.1.5. China's BEV promotions
    • 2.1.2. Features and Services Required in Automobiles
  • 2.2. Consolidation and Partnerships
    • 2.2.1. Launch Timeline of SDVs by OEMs
  • 2.3. SDV Platform Convergence
  • 2.4. Cloud-Native Development
  • 2.5. Safety and Security Focus
  • 2.6. AI and Real-Time Processing
  • 2.7. Time-to-Market Acceleration
  • 2.8. What Are SDVs?
    • 2.8.1. Definition
    • 2.8.2. Hardware-Software Decoupling
    • 2.8.3. Cloud Connectivity and Digital Ecosystem Integration
    • 2.8.4. Over-the-air Update Capabilities
    • 2.8.5. SDV Development Characteristics
  • 2.9. Key Architectural Trends Reshaping the Automotive Industry
    • 2.9.1. From Distributed to Centralized Computing
    • 2.9.2. Zone-Based Architecture Adoption
    • 2.9.3. Service-Oriented Architecture Implementation
    • 2.9.4. Standardization Efforts Gaining Momentum

3. SDV ARCHITECTURE AND TECHNOLOGY STACK

  • 3.1. SDV Architecture Stack
    • 3.1.1. In-Vehicle and Cloud Components
    • 3.1.2. Hardware-Software Separation
    • 3.1.3. Layered Architecture Implementation
    • 3.1.4. Service-Oriented Architecture (SOA)
    • 3.1.5. Standardized application programming interfaces (APIs)
  • 3.2. Hardware and E/E Centralized Architecture
    • 3.2.1. Domain vs. Zonal Architecture Paths
    • 3.2.2. Centralization Levels by Functionality
      • 3.2.2.1. ADAS/AD and Infotainment Integration
      • 3.2.2.2. Powertrain and Chassis Domain Controllers
      • 3.2.2.3. Body/Comfort Zone Controller Integration
      • 3.2.2.4. Specialized ECU Requirements
  • 3.3. Microcontroller Units (MCUs) in Zonal Architecture
    • 3.3.1. Key MCU Platform Analysis

4. SDV MATURITY ASSESSMENT AND BENCHMARKING

  • 4.1. SDV Maturity Level Framework
    • 4.1.1. E/E-Controlled to Fully Software-Defined Progression
    • 4.1.2. Software/E/E Architecture Maturity
    • 4.1.3. Software Updatability Levels (Manual to Safety-Critical OTA)
    • 4.1.4. Safety and Security Maturity Stages
    • 4.1.5. User Experience Evolution (Static to Personalized)
    • 4.1.6. Ecosystem Integration Levels (Basic Access to Seamless Integration)
  • 4.2. Global SDV Maturity Assessment
    • 4.2.1. China
      • 4.2.1.1. SDV Stack
      • 4.2.1.2. Software Architecture
      • 4.2.1.3. Automotive user experience design and ecosystem integration
    • 4.2.2. United States
      • 4.2.2.1. Tesla
      • 4.2.2.2. SDV innovation
    • 4.2.3. Europe

5. GLOBAL MARKET SIZE AND FORECASTS (2026-2036)

  • 5.1. Overall SDV Market Projections
    • 5.1.1. Software Development Market
    • 5.1.2. E/E Development Market
      • 5.1.2.1. E/E Components Supply Market
    • 5.1.3. TAM of SDV Estimation and Forecast, 2025-2036
    • 5.1.4. Investments in SDV, 2023-2025
  • 5.2. Market Segmentation by Domain
    • 5.2.1. ADAS
    • 5.2.2. Infotainment and Connectivity
      • 5.2.2.1. Cybersecurity
      • 5.2.2.2. Consumer Experience
      • 5.2.2.3. Platform Integration
    • 5.2.3. Powertrain (Excluding Battery)
      • 5.2.3.1. BEV
      • 5.2.3.2. Software-Hardware Integration
      • 5.2.3.3. Electric Powertrain Performance Optimization
    • 5.2.4. Chassis Control Systems
      • 5.2.4.1. Traditional to Software-Driven
      • 5.2.4.2. Safety and Performance Requirements
      • 5.2.4.3. Integration
    • 5.2.5. Body and Comfort Functions
      • 5.2.5.1. Zone Controller Integration
      • 5.2.5.2. Software Standardization
      • 5.2.5.3. Cost Optimization
    • 5.2.6. SDV Market Revenue Share by Technology Components
      • 5.2.6.1. Centralized Computing Platforms
      • 5.2.6.2. Service-Oriented Architecture (SOA)
      • 5.2.6.3. Over-the-Air (OTA) Update Systems
      • 5.2.6.4. Connectivity Solutions (5G/6G)
      • 5.2.6.5. AI & Machine Learning Platforms
      • 5.2.6.6. Vehicle Operating Systems
      • 5.2.6.7. Edge Computing Infrastructure
      • 5.2.6.8. Cybersecurity Solutions
  • 5.3. SDV Unit Sales and Revenue Forecasts
    • 5.3.1. Global Total Vehicle Sales Forecast (Units)
    • 5.3.2. SDV Hardware Revenue Forecast
    • 5.3.3. SDV Feature-Related Revenue Forecast
    • 5.3.4. PC Sales Breakdown by Level of Automation (L1 & L3, L3, L4 & L5)
    • 5.3.5. Software Component Revenue in PC globally
    • 5.3.6. Projected Vehicle Revenue generated by Software Services

6. SDV SERVICES AND APPLICATIONS

  • 6.1. Core SDV Services
    • 6.1.1. Connectivity as a Service
    • 6.1.2. SDV for Insurance
    • 6.1.3. In-Vehicle Payments
    • 6.1.4. Over-the-Air Updates and Diagnostics
    • 6.1.5. Hardware as a Service (HaaS)
    • 6.1.6. Autonomy as a Service (AaaS)
    • 6.1.7. Personalization Services
  • 6.2. SDV Hardware Requirements
    • 6.2.1. Communication Infrastructure
    • 6.2.2. Compute Requirements
    • 6.2.3. Display and Screen Technologies
      • 6.2.3.1. Screens to Facilitate Connected Features
      • 6.2.3.2. Infotainment Hardware Evolution
    • 6.2.4. Automotive Transparent Antennas
    • 6.2.5. International Market Considerations

7. OEM SDV STRATEGIES AND PLATFORM ANALYSIS

  • 7.1. OEMs and Models/Platforms
    • 7.1.1. BMW
    • 7.1.2. Tesla
    • 7.1.3. Volkswagen Group
    • 7.1.4. Toyota
    • 7.1.5. Stellantis
    • 7.1.6. Mercedes-Benz
    • 7.1.7. AWS
    • 7.1.8. Xpeng
    • 7.1.9. Ford
    • 7.1.10. MG (SAIC)

8. V2X AND CONNECTED VEHICLE TECHNOLOGY

  • 8.1. V2X Technology Fundamentals
    • 8.1.1. What is a Connected Vehicle?
  • 8.2. Why V2X Communication Matters
    • 8.2.1. Radio Access Technologies
      • 8.2.1.1. 4G vs 5G Performance Analysis
      • 8.2.1.2. DSRC vs C-V2X Regulatory Status
    • 8.2.2. 3GPP 5G Interpretation and Roadmap
  • 8.3. V2V and V2I Communication
    • 8.3.1. V2X Low Latency (PC5) vs High Data Rate (Uu) Applications
  • 8.4. V2X Hardware and Infrastructure
    • 8.4.1. V2X Chipsets
    • 8.4.2. V2X Modules and Components
    • 8.4.3. Roadside Units (RSUs) and Infrastructure
      • 8.4.3.1. Black Sesame RSUs
      • 8.4.3.2. Siemens
      • 8.4.3.3. Huawei RSU Technology
      • 8.4.3.4. AI-Enhanced RSU for Future Mobility
  • 8.5. Regional V2X Development
    • 8.5.1. China
    • 8.5.2. Global V2X regulatory frameworks
    • 8.5.3. Connected Vehicle Cybersecurity
    • 8.5.4. 5G Automotive Association (5GAA)
    • 8.5.5. The Connected Vehicle Supply Chain

9. AUTONOMOUS VEHICLE CONNECTIVITY AND SDV INTEGRATION

  • 9.1. Autonomous Driving Technology Integration
    • 9.1.1. Why Automate Cars?
    • 9.1.2. Automation Levels
    • 9.1.3. Functions of Autonomous Driving at Different Levels
  • 9.2. Sensor Technology
    • 9.2.1. Evolution of Sensor Suites from Level 1 to Level 4
    • 9.2.2. Autonomous Driving Technologies
  • 9.3. Connectivity Requirements by Autonomy Level
    • 9.3.1. 5G Matters for Autonomy
    • 9.3.2. V2X Sidelink
    • 9.3.3. Level 2 Requirements
    • 9.3.4. Level 3 Requirements
    • 9.3.5. Level 4 (Private) Requirements
    • 9.3.6. Level 4 (Robotaxi) Requirements
  • 9.4. Mapping and Localization
    • 9.4.1. Autonomous Vehicle Localization Strategies
    • 9.4.2. HD Mapping Assets and Service Models
    • 9.4.3. Lane Models
    • 9.4.4. Mapping Business Models and Players
      • 9.4.4.1. Overview
      • 9.4.4.2. HD Map as a Service (HDMaaS) model
    • 9.4.5. Radar and Camera-Based Mapping
    • 9.4.6. Localization Technologies
  • 9.5. Teleoperation and Remote Assistance
    • 9.5.1. Three Levels of Teleoperation
    • 9.5.2. Deployment
    • 9.5.3. Remote Assistance and Control Systems
    • 9.5.4. Teleoperation Service Providers

10. GENERATIVE AI AND ADVANCED TECHNOLOGIES

  • 10.1. Generative AI Integration in SDVs
    • 10.1.1. What is Generative AI?
    • 10.1.2. In-Vehicle Generative AI Applications
    • 10.1.3. Smart Cockpit AI Integration
    • 10.1.4. Spike Personal Assistant (AWS & BMW)
    • 10.1.5. Personalized Digital Assistant Development
  • 10.2. Generative AI for Automakers
    • 10.2.1. Generative AI for Automotive Design
      • 10.2.1.1. Vizcom (Powered by Nvidia)
      • 10.2.1.2. Microsoft AI for Automotive
        • 10.2.1.2.1. Microsoft M365 Copilot Integration
  • 10.3. Digital Twins and Simulation
    • 10.3.1. Digital Twins and Simulated Autonomy
      • 10.3.1.1. NVIDIA Digital Twins
      • 10.3.1.2. Simulation technology for software-defined

11. COMPETITIVE LANDSCAPE AND VALUE CHAIN ANALYSIS

  • 11.1. SDV Value Chain Restructuring
    • 11.1.1. Traditional vs. SDV Value Chain
    • 11.1.2. New Technology Player Entry Points
    • 11.1.3. Traditional OEMs: Transformation Leaders and Followers
    • 11.1.4. Tech Giants Establishing Strong Positions
    • 11.1.5. Tier-1 Suppliers Reinventing Themselves
    • 11.1.6. Emerging Specialists Gaining Traction
  • 11.2. SDV Market Scenario Analysis (2036)
    • 11.2.1. OEM-Driven Scenario (As-Is)
      • 11.2.1.1. Value Chain Directed by OEM
      • 11.2.1.2. Development and Component Supply by Tier-1 Suppliers
    • 11.2.2. OEM-Partnering Scenario
    • 11.2.3. Balance of Power Scenario
    • 11.2.4. Tier-1-Driven Scenario
    • 11.2.5. Tech-Driven Scenario
    • 11.2.6. Supplier Strategic Positioning Options
      • 11.2.6.1. SDV Platform Provider (Horizontal Play)
      • 11.2.6.2. SDV Domain Solution Provider (Vertical Play)
      • 11.2.6.3. Component Specialist (Tier-1 SW or HW)
      • 11.2.6.4. Design and Development as a Service
      • 11.2.6.5. Made-to-Order Producer
      • 11.2.6.6. Transformation Requirements
      • 11.2.6.7. Supplier Strategic Positioning Options
        • 11.2.6.7.1. Capability Gaps
        • 11.2.6.7.2. People and Culture Transformation Requirements
        • 11.2.6.7.3. Tools and Technology Adaptation Needs
        • 11.2.6.7.4. Supplier Transformation Needs
        • 11.2.6.7.5. SDV Platform and Domain Solution Provider Requirements
        • 11.2.6.7.6. Component Specialist Evolution Needs
        • 11.2.6.7.7. Organizational and Operational Model Changes
  • 11.3. Architecture-Led SDV Platform Development
    • 11.3.1. Platform Characteristics
      • 11.3.1.1. Unified vehicle architecture
      • 11.3.1.2. Software Release Train Methdology
      • 11.3.1.3. Hardware Component Kit Management
      • 11.3.1.4. Vehicle Project Implementation
    • 11.3.2. Partnering Strategy Considerations
      • 11.3.2.1. Make vs. Buy vs. Partner Decisions
      • 11.3.2.2. Complexity-differentiation framework
      • 11.3.2.3. Partnership Structures
  • 11.4. Competition Assessment
    • 11.4.1. Competitor Benchmarking
    • 11.4.2. Market Share Analysis
    • 11.4.3. Who's Leading the SDV Race
    • 11.4.4. Partnership Ecosystem Mapping
    • 11.4.5. Competitive Analysis
      • 11.4.5.1. OEMs
      • 11.4.5.2. Suppliers (Tier-1s)
      • 11.4.5.3. Software and Tech Players
      • 11.4.5.4. AI Developers and Start-ups
      • 11.4.5.5. Projected Market Evolution

12. REGIONAL MARKETS

  • 12.1. Europe
    • 12.1.1. Technology Characteristics
    • 12.1.2. Customer Characteristics
    • 12.1.3. Regulatory Environment
    • 12.1.4. Ecosystem Players
  • 12.2. United States
    • 12.2.1. Technology Development
    • 12.2.2. Customer Base
    • 12.2.3. Regulatory Landscape
    • 12.2.4. Ecosystem Structure
  • 12.3. China
    • 12.3.1. Technology Leadership
    • 12.3.2. Market Dynamics
    • 12.3.3. Regulatory Support
    • 12.3.4. Ecosystem Players

13. EMERGING MARKET OPPORTUNITIES

  • 13.1. Software-as-a-Service Models
  • 13.2. Data Monetization
  • 13.3. Ecosystem Platform Development
  • 13.4. Mobility-as-a-Service Integration

14. SDV-RELATED REGULATIONS AND STANDARDS

  • 14.1. Global Regulatory Landscape
    • 14.1.1. Regional Regulatory Approaches (EU, US, China)
    • 14.1.2. Data Privacy and Cybersecurity Requirements
    • 14.1.3. Safety Standards and Homologation Processes
  • 14.2. Industry Standards and Interoperability
    • 14.2.1. AUTOSAR and Software Standards
    • 14.2.2. Communication Protocol Standards
    • 14.2.3. Cybersecurity Frameworks
    • 14.2.4. OTA Update Regulations

15. CHALLENGES AND RISK ANALYSIS

  • 15.1. Technical Challenges
  • 15.2. Market and Business Challenges
  • 15.3. Supply Chain and Geopolitical Risks

16. COMPANY PROFILES (63 company profiles)

17. APPENDICES

  • 17.1. Methodology and Data Sources
  • 17.2. Regional Regulatory Summary
  • 17.3. Technology Standards and Specifications
  • 17.4. Glossary of Terms and Acronyms

18. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제