시장보고서
상품코드
1789657

세계의 서멀 인터페이스 매트리얼(TIM) 시장(2026-2036년)

The Global Thermal Interface Materials Market 2026-2036

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 372 Pages, 116 Tables, 89 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계의 서멀 인터페이스 매트리얼(TIM) 시장은 첨단 소재 산업의 주요 부문으로, 다양한 기술 용도에서 열을 발생시키는 부품과 열 관리 시스템 사이의 중요한 가교 역할을 하고 있습니다. 이 특수 소재들은 표면 사이의 미세한 공극을 메우면서 열전도율을 높이도록 설계되어 소형화, 고성능화가 진행되는 전자기기에서 최적의 열전달을 실현합니다. 전자 시스템의 소형화 및 전력 밀도 향상에 대한 끊임없는 수요로 인해 시장은 큰 폭의 성장세를 보이고 있습니다. 주요 용도는 가전제품, 전기자동차, 데이터센터, 첨단 반도체 패키징, ADAS 센서, 5G 인프라, 항공우주 및 방위, 산업용 전자기기, 재생에너지 시스템, 의료용 전자기기 등입니다. 각 부문마다 고유한 열 관리 과제가 있으며, 특정 성능 특성을 가진 맞춤형 TIM 솔루션이 필요합니다.

가전제품은 여전히 가장 큰 시장 부문이며, 스마트폰, 태블릿, 웨어러블 기기는 계속해서 정교한 열 관리 솔루션을 요구하고 있습니다. 5G 기술로의 전환은 열 문제를 심화시키고, 액체 금속, 상변화물질, 탄소 기반 TIM과 같은 첨단 재료가 요구되고 있습니다. AI 지원 장치와 엣지 컴퓨팅의 보급은 고성능 열 인터페이스 소재에 대한 수요를 더욱 증가시키고 있습니다. 전기자동차 혁명은 시장을 변화시키는 요인으로 부상하고 있으며, 배터리의 열 관리는 안전, 성능, 수명을 위해 필수적인 요소로 부상하고 있습니다. EV 용도에는 전기적 절연과 기계적 안정성을 유지하면서 넓은 온도 범위에서 작동할 수 있는 TIM이 필요합니다. 셀-투-팩 및 셀-투-섀시 배터리 아키텍처로의 전환은 갭 필러, 열 패드, 특수 접착 시스템에 새로운 기회를 제공합니다.

데이터센터와 AI 서버는 열 관리가 컴퓨팅 성능과 에너지 효율에 직접적인 영향을 미치는 또 다른 고성장 분야입니다. 고급 프로세서, GPU, AI 가속기 출시로 인해 극한의 열유속을 감당할 수 있는 차세대 TIM에 대한 수요가 발생하고 있습니다. 수냉 시스템 및 액침냉각 기술은 해당 서멀 인터페이스 매트리얼의 기술 혁신을 촉진하고 있습니다. 재료의 기술 혁신이 시장 상황을 계속 형성하고 있습니다. 기존의 실리콘 기반 열 그리스와 패드는 탄소나노튜브, 그래핀 강화 재료, 금속 기반 TIM, 상변화물질, 메타 재료 등의 첨단 솔루션으로 보완되고 있습니다. 각 재료 클래스는 열전도율, 전기적 특성, 기계적 특성, 용도에 특화된 성능 측면에서 뚜렷한 이점을 가지고 있습니다.

그래핀, 탄소나노튜브, 흑연유도체 등 탄소계 TIM은 뛰어난 열적 특성과 다기능의 가능성으로 큰 지지를 받고 있습니다. 액체 금속 및 소결 재료를 포함한 금속 기반 솔루션은 최고의 열 성능이 요구되는 고성능 컴퓨팅 및 파워 일렉트로닉스에 적용되고 있습니다.

이 시장은 기존 화학기업, 특수소재 공급업체, 신기술 기업 간의 치열한 경쟁이 특징입니다. 주요 기업은 차세대 소재 개발을 위해 연구개발에 많은 투자를 하는 한편, 수요 증가에 대응하기 위해 생산 능력을 확대하고 있습니다. 열 관리가 제품 설계에 통합됨에 따라 TIM 공급업체와 OEM의 전략적 파트너십이 점점 더 보편화되고 있습니다. 지역 역학은 전자 제조의 집중과 EV의 보급으로 인해 아시아태평양 시장의 강력한 성장을 보여주고 있습니다. 북미는 항공우주, 국방, 고성능 컴퓨팅 등 첨단 분야에서 선두를 달리고 있습니다. 유럽은 특히 자동차 용도과 산업용 전자기기에서 강세를 보이고 있습니다.

지속가능성에 대한 고려는 점점 더 중요해지고 있으며, 각 제조업체들은 바이오소재의 개발, 재활용성 향상, 제품수명주기 전반에 걸친 환경 부하를 줄이기 위해 노력하고 있습니다. 특히 자동차 및 항공우주 분야에서는 법규 준수가 재료 인증 및 시험 요건을 촉진하는 요인으로 작용하고 있습니다.

앞으로 시장은 기회와 문제에 직면하게 될 것입니다. 고집적화, 새로운 포장 기술, 양자 컴퓨팅 및 첨단 AI 시스템의 새로운 용도로의 지속적인 진화는 혁신적인 TIM 솔루션에 대한 수요를 촉진할 것입니다. 그러나 공급망의 복잡성, 원자재 가격의 변동, 점점 더 고도화되는 성능 특성에 대한 요구는 시장 진출기업에게 지속적인 도전이 되고 있습니다.

세계의 서멀 인터페이스 매트리얼(TIM) 시장에 대해 조사분석했으며, 2026-2036년 시장 규모 예측, 시장 촉진요인과 과제, 차세대 서멀 인터페이스 매트리얼 기술 로드맵등의 정보를 제공하고 있습니다.

목차

제1장 서론

  • 열관리 - 액티브와 패시브
  • 서멀 인터페이스 매트리얼(TIM)이란?
  • TIM의 비교 특성
  • 서멀 패드와 서멀 그리스
  • TIM의 이점과 결점 : 유형별
  • 성능
  • 가격
  • TIM의 신기술
  • TIM의 공급망
  • 원재료 분석과 가격결정
  • 환경 규제와 지속가능성
  • 시스템 레벨 퍼포먼스
  • 열전도 vs. 열저항
  • TIM 화학

제2장 재료

  • 첨단 다기능 TIM
  • TIM 필러
  • 서멀 그리스·페이스트
  • 서멀 갭 패드
  • 서멀 갭 필러
  • 포팅 컴파운드/봉지재
  • 접착 테이프
  • 상변화물질
  • 금속 기반 TIM
  • 탄소 기반 TIM
  • 메타물질
  • 자기 치유 서멀 인터페이스 매트리얼
  • TIM 디스펜싱

제3장 서멀 인터페이스 매트리얼(TIM) 시장

  • CE(Consumer Electronics)
  • 전기자동차(EV)
  • 데이터센터
  • 첨단 반도체 패키징
  • ADAS 센서
  • EMI 차폐
  • 5G
  • 항공우주·방위
  • 산업용 전자기기
  • 재생에너지
  • 의료용 전자기기

제4장 기업 개요(기업 116사 개요)

제5장 조사 방법

제6장 참고 문헌

KSA 25.08.20

The global thermal interface materials (TIMs) market represents a critical segment of the advanced materials industry, serving as the essential bridge between heat-generating components and thermal management systems across diverse technological applications. These specialized materials are designed to enhance thermal conductivity while filling microscopic air gaps between surfaces, ensuring optimal heat transfer in increasingly compact and powerful electronic devices. The market has experienced substantial growth driven by the relentless demand for miniaturization and increased power density in electronic systems. Key application sectors include consumer electronics, electric vehicles, data centers, advanced semiconductor packaging, ADAS sensors, 5G infrastructure, aerospace and defense, industrial electronics, renewable energy systems, and medical electronics. Each sector presents unique thermal management challenges that require tailored TIM solutions with specific performance characteristics.

Consumer electronics remain the largest market segment, with smartphones, tablets, and wearable devices requiring increasingly sophisticated thermal management solutions. The transition to 5G technology has intensified thermal challenges, necessitating advanced materials like liquid metals, phase change materials, and carbon-based TIMs. The proliferation of AI-enabled devices and edge computing has further amplified the demand for high-performance thermal interface materials. The electric vehicle revolution has emerged as a transformative market driver, with battery thermal management becoming critical for safety, performance, and longevity. EV applications require TIMs that can operate across wide temperature ranges while maintaining electrical isolation and mechanical stability. The shift toward cell-to-pack and cell-to-chassis battery architectures has created new opportunities for gap fillers, thermal pads, and specialized adhesive systems.

Data centers and AI servers represent another high-growth segment, where thermal management directly impacts computational performance and energy efficiency. The deployment of advanced processors, GPUs, and AI accelerators has created demand for next-generation TIMs capable of handling extreme heat fluxes. Liquid cooling systems and immersion cooling technologies are driving innovation in compatible thermal interface materials. Material innovation continues to shape the market landscape. Traditional silicone-based thermal greases and pads are being supplemented by advanced solutions including carbon nanotubes, graphene-enhanced materials, metal-based TIMs, phase change materials, and even metamaterials. Each material class offers distinct advantages in terms of thermal conductivity, electrical properties, mechanical characteristics, and application-specific performance.

Carbon-based TIMs, including graphene, carbon nanotubes, and graphite derivatives, are gaining significant traction due to their exceptional thermal properties and potential for multifunctional capabilities. Metal-based solutions, including liquid metals and sintered materials, are finding applications in high-performance computing and power electronics where maximum thermal performance is required.

The market is characterized by intense competition among established chemical companies, specialized materials providers, and emerging technology companies. Key players are investing heavily in R&D to develop next-generation materials while expanding manufacturing capabilities to meet growing demand. Strategic partnerships between TIM suppliers and OEMs are becoming increasingly common as thermal management becomes more integrated into product design. Regional dynamics show strong growth across Asia-Pacific markets, driven by electronics manufacturing concentration and EV adoption. North America leads in advanced applications including aerospace, defense, and high-performance computing. Europe shows particular strength in automotive applications and industrial electronics.

Sustainability considerations are becoming increasingly important, with manufacturers developing bio-based materials, improving recyclability, and reducing environmental impact throughout the product lifecycle. Regulatory compliance, particularly in automotive and aerospace applications, continues to drive material certification and testing requirements.

Looking forward, the market faces both opportunities and challenges. The continued evolution toward higher power densities, new packaging technologies, and emerging applications in quantum computing and advanced AI systems will drive demand for innovative TIM solutions. However, supply chain complexities, raw material price volatility, and the need for increasingly sophisticated performance characteristics present ongoing challenges for market participants.

"The Global Thermal Interface Materials Market 2026-2036" provides an in-depth analysis of the global thermal interface materials market, delivering essential insights for manufacturers, suppliers, investors, and technology companies seeking to capitalize on emerging opportunities in this rapidly evolving sector.

Report contents include:

  • Market Analysis by Material Type:
    • Thermal Greases and Pastes - Market size, growth projections, application trends, and competitive landscape analysis
    • Thermal Gap Pads - Comprehensive coverage of silicone-based and advanced polymer pad solutions
    • Thermal Gap Fillers - Dispensable materials market analysis with focus on automated application systems
    • Phase Change Materials (PCMs) - Emerging technologies including organic, inorganic, and hybrid PCM solutions
    • Metal-based TIMs - Liquid metals, solders, sintered materials, and advanced alloy systems
    • Carbon-based TIMs - Graphene, carbon nanotubes, graphite, and diamond-enhanced thermal solutions
    • Potting Compounds and Encapsulants - Market analysis for protective thermal management materials
    • Thermal Adhesive Tapes - Structural bonding solutions with thermal conductivity properties
  • Advanced Technology Coverage:
    • Self-healing Thermal Interface Materials - Revolutionary materials with autonomous repair capabilities
    • Metamaterials for Thermal Management - Next-generation engineered materials with unique properties
    • Nanomaterial-Enhanced TIMs - Comprehensive analysis of nanotechnology integration
    • Multi-functional TIMs - Materials combining thermal, electrical, and mechanical properties
  • Market Segmentation by Application:
    • Consumer Electronics - Smartphones, tablets, wearables, and emerging devices
    • Electric Vehicles - Battery thermal management, power electronics, and charging infrastructure
    • Data Centers - Server cooling, AI accelerators, and immersion cooling systems
    • Advanced Semiconductor Packaging - TIM1, TIM2, and next-generation packaging solutions
    • ADAS Sensors - Automotive sensor thermal management and autonomous vehicle applications
    • 5G Infrastructure - Base stations, antennas, and telecommunications equipment
    • Aerospace & Defense - Satellite systems, avionics, and military electronics
    • Industrial Electronics - Automation systems, power supplies, and motor drives
    • Renewable Energy - Solar inverters, wind power electronics, and energy storage
    • Medical Electronics - Diagnostic equipment and patient monitoring systems
  • Technical Analysis and Performance Metrics:
    • Thermal conductivity benchmarking across material categories
    • Thermal resistance vs. thermal conductivity comparative analysis
    • System-level performance optimization strategies
    • Material dispensing technologies and automation trends
    • Supply chain analysis and raw material pricing dynamics
    • Environmental regulations and sustainability considerations
  • Market Forecasts and Projections:
    • Global market size projections from 2022-2036 by material type and application
    • Regional market analysis covering North America, Europe, Asia-Pacific, and emerging markets
    • Technology adoption timelines and market readiness assessments
    • Price trend analysis and cost optimization opportunities
    • Emerging application opportunities and disruptive technology impact
  • Competitive Landscape and Strategic Intelligence:
    • Comprehensive analysis of market dynamics, drivers, and challenges
    • Technology roadmaps for next-generation thermal interface materials
    • Patent landscape analysis and intellectual property trends
    • Strategic partnership opportunities and M&A activity
    • Investment trends and funding analysis for TIM innovations

This report features detailed profiles of 119 leading companies in the thermal interface materials ecosystem, including established chemical manufacturers, specialized materials suppliers, emerging technology companies, and innovative start-ups. Companies profiled include 3M, ADA Technologies, Aismalibar S.A., AI Technology Inc., Alpha Assembly, AluChem, AOK Technologies, AOS Thermal Compounds LLC, Arkema, Arieca Inc., ATP Adhesive Systems AG, Aztrong Inc., Bando Chemical Industries Ltd., Bdtronic, BestGraphene, BNNano, BNNT LLC, Boyd Corporation, BYK, Cambridge Nanotherm, Carbice Corp., Carbon Waters, Carbodeon Ltd. Oy, CondAlign AS, Denka Company Limited, Detakta Isolier- und Messtechnik GmbH & Co. KG, Dexerials Corporation, Deyang Carbonene Technology, Dow Corning, Dowa Electronics Materials Co. Ltd., DuPont (Laird Performance Materials), Dymax Corporation, Dynex Semiconductor (CRRC), ELANTAS Europe GmbH, Elkem Silicones, Enerdyne Thermal Solutions Inc., Epoxies Etc., First Graphene Ltd., Fujipoly, Fujitsu Laboratories, GCS Thermal, GLPOLY, Global Graphene Group, Goodfellow Corporation, Graphmatech AB, GuangDong KingBali New Material Co. Ltd., HALA Contec GmbH & Co. KG, Hamamatsu Carbonics Corporation, H.B. Fuller Company, Henkel AG & Co. KGAA, Hitek Electronic Materials, Honeywell, Hongfucheng New Materials, Huber Martinswerk, HyMet Thermal Interfaces SIA, Indium Corporation, Inkron, KB Element, Kerafol Keramische Folien GmbH & Co. KG, Kitagawa, KULR Technology Group Inc., Kyocera, Laird, Leader Tech Inc., LiSAT, LiquidCool Solutions, Liquid Wire Inc., MacDermid Alpha, MG Chemicals Ltd., Minoru Co. Ltd. and more....

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Thermal Management-active and passive
  • 1.2. What are Thermal Interface Materials (TIMs)?
    • 1.2.1. Types of TIMs
    • 1.2.2. Thermal conductivity
  • 1.3. Comparative properties of TIMs
  • 1.4. Thermal Pads and Thermal Grease
  • 1.5. Advantages and Disadvantages of TIMs, by type
  • 1.6. Performance
  • 1.7. Prices
  • 1.8. Emerging Technologies in TIMs
  • 1.9. Supply Chain for TIMs
  • 1.10. Raw Material Analysis and Pricing
  • 1.11. Environmental Regulations and Sustainability
  • 1.12. System Level Performance
  • 1.13. Thermal Conductivity vs Thermal Resistance
  • 1.14. TIM Chemistry

2. MATERIALS

  • 2.1. Advanced and Multi-Functional TIMs
    • 2.1.1. Carbon-based TIMs
      • 2.1.1.1. Overview
    • 2.1.2. Thermal Conductivity By Filler Type
    • 2.1.3. Thermal Conductivity By Matrix
  • 2.2. TIM fillers
    • 2.2.1. Trends
    • 2.2.2. Pros and Cons
    • 2.2.3. Thermal Conductivity
    • 2.2.4. Spherical Alumina
    • 2.2.5. Alumina Fillers
    • 2.2.6. Boron nitride (BN)
      • 2.2.6.1. Overview
      • 2.2.6.2. Suppliers
      • 2.2.6.3. Nano Boron Nitride
    • 2.2.7. Filler and polymer TIMs
    • 2.2.8. Diamond
    • 2.2.9. Filler Sizes
  • 2.3. Thermal Greases and Pastes
    • 2.3.1. Overview and properties
    • 2.3.2. SWOT analysis
  • 2.4. Thermal Gap Pads
    • 2.4.1. Overview and properties
    • 2.4.2. Application in EV Batteries
    • 2.4.3. Transitioning to Gap fillers from Pads
    • 2.4.4. SWOT analysis
  • 2.5. Thermal Gap Fillers
    • 2.5.1. Overview and properties
    • 2.5.2. Products
    • 2.5.3. SWOT analysis
  • 2.6. Potting Compounds/Encapsulants
    • 2.6.1. Overview and properties
    • 2.6.2. SWOT analysis
  • 2.7. Adhesive Tapes
    • 2.7.1. Overview and properties
    • 2.7.2. Application in EV Batteries
    • 2.7.3. TCA Requirements
    • 2.7.4. SWOT analysis
  • 2.8. Phase Change Materials
    • 2.8.1. Overview
    • 2.8.2. Products
    • 2.8.3. Properties
    • 2.8.4. Types
      • 2.8.4.1. Organic/biobased phase change materials
        • 2.8.4.1.1. Advantages and disadvantages
        • 2.8.4.1.2. Paraffin wax
        • 2.8.4.1.3. Non-Paraffins/Bio-based
      • 2.8.4.2. Inorganic phase change materials
        • 2.8.4.2.1. Salt hydrates
          • 2.8.4.2.1.1. Advantages and disadvantages
        • 2.8.4.2.2. Metal and metal alloy PCMs (High-temperature)
      • 2.8.4.3. Eutectic mixtures
      • 2.8.4.4. Encapsulation of PCMs
        • 2.8.4.4.1. Macroencapsulation
        • 2.8.4.4.2. Micro/nanoencapsulation
      • 2.8.4.5. Nanomaterial phase change materials
    • 2.8.5. Thermal energy storage (TES)
      • 2.8.5.1. Sensible heat storage
      • 2.8.5.2. Latent heat storage
    • 2.8.6. Application in TIMs
      • 2.8.6.1. Thermal pads
      • 2.8.6.2. Low Melting Alloys (LMAs)
      • 2.8.6.3. Thermal storage units
      • 2.8.6.4. Thermal energy storage panels
      • 2.8.6.5. Space systems
    • 2.8.7. SWOT analysis
  • 2.9. Metal-based TIMs
    • 2.9.1. Overview
      • 2.9.1.1. Metal-Based TIM1 and TIM2
      • 2.9.1.2. Metal Filled Polymer TIMs
    • 2.9.2. Solders and low melting temperature alloy TIMs
      • 2.9.2.1. Solder TIM1
      • 2.9.2.2. Sintering
    • 2.9.3. Liquid metals
      • 2.9.3.1. Liquid metal for high-performance GPU
      • 2.9.3.2. Challenges
    • 2.9.4. Solid liquid hybrid (SLH) metals
      • 2.9.4.1. Hybrid liquid metal pastes
      • 2.9.4.2. SLH created during chip assembly (m2TIMs)
      • 2.9.4.3. Die-attach materials
        • 2.9.4.3.1. Solder Alloys and Conductive Adhesives
        • 2.9.4.3.2. Silver-Sintered Paste
        • 2.9.4.3.3. Copper (Cu) sintered TIMs
          • 2.9.4.3.3.1. TIM1 - Sintered Copper
          • 2.9.4.3.3.2. Cu Sinter Materials
          • 2.9.4.3.3.3. Copper Sintering Challenges
          • 2.9.4.3.3.4. Commercial Use
        • 2.9.4.3.4. Sintered Copper Die-Bonding Paste
          • 2.9.4.3.4.1. Commercial activity
        • 2.9.4.3.5. Graphene Enhanced Sintered Copper TIMs
      • 2.9.4.4. Laminar Metal Form With High Softness
    • 2.9.5. SWOT analysis
  • 2.10. Carbon-based TIMs
    • 2.10.1. Carbon nanotube (CNT) TIM Fabrication
    • 2.10.2. Challenges
    • 2.10.3. Market players
    • 2.10.4. Multi-walled nanotubes (MWCNT)
      • 2.10.4.1. Properties
      • 2.10.4.2. Application as thermal interface materials
    • 2.10.5. Single-walled carbon nanotubes (SWCNTs)
      • 2.10.5.1. Properties
      • 2.10.5.2. Application as thermal interface materials
    • 2.10.6. Vertically aligned CNTs (VACNTs)
      • 2.10.6.1. Properties
      • 2.10.6.2. Applications
      • 2.10.6.3. Application as thermal interface materials
    • 2.10.7. BN nanotubes (BNNT) and nanosheets (BNNS)
      • 2.10.7.1. Properties
      • 2.10.7.2. Application as thermal interface materials
    • 2.10.8. Graphene
      • 2.10.8.1. Properties
      • 2.10.8.2. Application as thermal interface materials
        • 2.10.8.2.1. Graphene fillers
        • 2.10.8.2.2. Graphene foam
        • 2.10.8.2.3. Graphene aerogel
        • 2.10.8.2.4. Graphene Heat Spreaders
        • 2.10.8.2.5. Graphene in Thermal Interface Pads
      • 2.10.8.3. Advantages of Graphene
      • 2.10.8.4. Through-Plane Alignment
    • 2.10.9. Nanodiamonds
      • 2.10.9.1. Properties
      • 2.10.9.2. Application as thermal interface materials
    • 2.10.10. Graphite
      • 2.10.10.1. Properties
      • 2.10.10.2. Natural graphite
        • 2.10.10.2.1. Classification
        • 2.10.10.2.2. Processing
        • 2.10.10.2.3. Flake
          • 2.10.10.2.3.1. Grades
          • 2.10.10.2.3.2. Applications
      • 2.10.10.3. Synthetic graphite
        • 2.10.10.3.1. Classification
          • 2.10.10.3.1.1. Primary synthetic graphite
          • 2.10.10.3.1.2. Secondary synthetic graphite
          • 2.10.10.3.1.3. Processing
      • 2.10.10.4. Applications as thermal interface materials
        • 2.10.10.4.1. Graphite Sheets
        • 2.10.10.4.2. Vertical graphite
        • 2.10.10.4.3. Graphite pastes
      • 2.10.10.5. Challenges
        • 2.10.10.5.1. Through-plane thermal conductivity limitations
        • 2.10.10.5.2. Interfacing with Heat Source and Disrupting Alignment
    • 2.10.11. Hexagonal Boron Nitride
      • 2.10.11.1. Properties
      • 2.10.11.2. Application as thermal interface materials
    • 2.10.12. SWOT analysis
  • 2.11. Metamaterials
    • 2.11.1. Types and properties
      • 2.11.1.1. Electromagnetic metamaterials
        • 2.11.1.1.1. Double negative (DNG) metamaterials
        • 2.11.1.1.2. Single negative metamaterials
        • 2.11.1.1.3. Electromagnetic bandgap metamaterials (EBG)
        • 2.11.1.1.4. Bi-isotropic and bianisotropic metamaterials
        • 2.11.1.1.5. Chiral metamaterials
        • 2.11.1.1.6. Electromagnetic "Invisibility" cloak
      • 2.11.1.2. Terahertz metamaterials
      • 2.11.1.3. Photonic metamaterials
      • 2.11.1.4. Tunable metamaterials
      • 2.11.1.5. Frequency selective surface (FSS) based metamaterials
      • 2.11.1.6. Nonlinear metamaterials
      • 2.11.1.7. Acoustic metamaterials
    • 2.11.2. Application as thermal interface materials
  • 2.12. Self-healing thermal interface materials
    • 2.12.1. Extrinsic self-healing
    • 2.12.2. Capsule-based
    • 2.12.3. Vascular self-healing
    • 2.12.4. Intrinsic self-healing
    • 2.12.5. Healing volume
    • 2.12.6. Types of self-healing materials, polymers and coatings
    • 2.12.7. Applications in thermal interface materials
  • 2.13. TIM Dispensing
    • 2.13.1. Low-volume Dispensing Methods
    • 2.13.2. High-volume Dispensing Methods
    • 2.13.3. Meter, Mix, Dispense (MMD) Systems
    • 2.13.4. TIM Dispensing Equipment Suppliers

3. MARKETS FOR THERMAL INTERFACE MATERIALS (TIMs)

  • 3.1. Consumer Electronics
    • 3.1.1. Market overview
      • 3.1.1.1. Market drivers
      • 3.1.1.2. Applications
        • 3.1.1.2.1. Smartphones and tablets
          • 3.1.1.2.1.1. Graphitic Heat Spreaders
          • 3.1.1.2.1.2. Liquid metals
        • 3.1.1.2.2. Wearable electronics
    • 3.1.2. Global market 2022-2036, by TIM type
  • 3.2. Electric Vehicles (EV)
    • 3.2.1. Market overview
      • 3.2.1.1. Market drivers
      • 3.2.1.2. Applications
        • 3.2.1.2.1. EV Battery Packs
          • 3.2.1.2.1.1. TIM Pack and Module
          • 3.2.1.2.1.2. TIM Application by Cell Format
          • 3.2.1.2.1.3. Thermal Interface Material Fillers for EV Batteries
          • 3.2.1.2.1.4. TIM Pricing
          • 3.2.1.2.1.5. Companies
        • 3.2.1.2.2. Lithium-ion batteries
          • 3.2.1.2.2.1. Cell-to-pack designs
          • 3.2.1.2.2.2. Cell-to-chassis/body
        • 3.2.1.2.3. Power electronics
          • 3.2.1.2.3.1. Types
          • 3.2.1.2.3.2. Trends
          • 3.2.1.2.3.3. Properties for TIM2 Properties in EV power electronics
          • 3.2.1.2.3.4. TIM1s
          • 3.2.1.2.3.5. TIM2 in SiC MOSFET
        • 3.2.1.2.4. Charging stations
    • 3.2.2. Global market 2022-2036, by TIM type
  • 3.3. Data Centers
    • 3.3.1. Market overview
      • 3.3.1.1. Market drivers
      • 3.3.1.2. Applications
        • 3.3.1.2.1. Router, switches and line cards
          • 3.3.1.2.1.1. Transceivers
          • 3.3.1.2.1.2. Server Boards
          • 3.3.1.2.1.3. Switches and Routers
        • 3.3.1.2.2. AI Servers
          • 3.3.1.2.2.1. Overview
          • 3.3.1.2.2.2. Trends
          • 3.3.1.2.2.3. TRL
        • 3.3.1.2.3. Power supply converters
          • 3.3.1.2.3.1. Overview
          • 3.3.1.2.3.2. Laminar metal form TIMs
          • 3.3.1.2.3.3. TIM Consumption in Data Center Power Supplies
          • 3.3.1.2.3.4. Immersion cooling
    • 3.3.2. Global market 2022-2036, by TIM type
  • 3.4. Advanced Semiconductor Packaging
    • 3.4.1. Market Overview
    • 3.4.2. TIM1
      • 3.4.2.1. Indium foil TIM1
      • 3.4.2.2. Products
        • 3.4.2.2.1. Thermal Gel
        • 3.4.2.2.2. Thermal grease
        • 3.4.2.2.3. Graphene
        • 3.4.2.2.4. Liquid metal
        • 3.4.2.2.5. Diamond thermal interface materials in TIM0 applications
        • 3.4.2.2.6. Integrated silicon micro-cooler systems
        • 3.4.2.2.7. Copper nanowire (CuNWs)
    • 3.4.3. Global market 2022-2036, by TIM type
  • 3.5. ADAS Sensors
    • 3.5.1. Market overview
      • 3.5.1.1. Market drivers
        • 3.5.1.1.1. Sensor Suite for Autonomous Cars
        • 3.5.1.1.2. Thermal Management in ADAS Sensors
      • 3.5.1.2. Applications
        • 3.5.1.2.1. ADAS Cameras
          • 3.5.1.2.1.1. Commercial examples
        • 3.5.1.2.2. ADAS Radar
          • 3.5.1.2.2.1. Radar technology
          • 3.5.1.2.2.2. Radar boards
          • 3.5.1.2.2.3. Commercial examples
        • 3.5.1.2.3. ADAS LiDAR
          • 3.5.1.2.3.1. Role of TIMs
          • 3.5.1.2.3.2. Commercial examples
        • 3.5.1.2.4. Electronic control units (ECUs) and computers
          • 3.5.1.2.4.1. Overview
          • 3.5.1.2.4.2. Commercial examples
        • 3.5.1.2.5. Die attach materials
          • 3.5.1.2.5.1. Overview
          • 3.5.1.2.5.2. Commercial examples
      • 3.5.1.3. Companies
    • 3.5.2. Global market 2022-2036, by TIM type
  • 3.6. EMI shielding
    • 3.6.1. Market overview
      • 3.6.1.1. Market drivers
      • 3.6.1.2. Applications
        • 3.6.1.2.1. Dielectric Constant
        • 3.6.1.2.2. ADAS
          • 3.6.1.2.2.1. Radar
          • 3.6.1.2.2.2. 5G
        • 3.6.1.2.3. Commercial examples
  • 3.7. 5G
    • 3.7.1. Market overview
      • 3.7.1.1. Market drivers
      • 3.7.1.2. Applications
        • 3.7.1.2.1. EMI shielding and EMI gaskets
        • 3.7.1.2.2. Antenna
        • 3.7.1.2.3. Base Band Unit (BBU)
        • 3.7.1.2.4. Liquid TIMs
        • 3.7.1.2.5. Power supplies
          • 3.7.1.2.5.1. Increased power consumption in 5G
    • 3.7.2. Market players
    • 3.7.3. Global market 2022-2036, by TIM type
  • 3.8. Aerospace & Defense
    • 3.8.1. Market overview
      • 3.8.1.1. Market drivers
      • 3.8.1.2. Applications
        • 3.8.1.2.1. Satellite thermal management
          • 3.8.1.2.1.1. Temperature range
          • 3.8.1.2.1.2. Heat Spreaders
          • 3.8.1.2.1.3. Carbon fiber reinforced TIM
          • 3.8.1.2.1.4. Thermal pads
          • 3.8.1.2.1.5. Thermal straps
          • 3.8.1.2.1.6. Graphene
          • 3.8.1.2.1.7. Challenges
        • 3.8.1.2.2. Avionics cooling
        • 3.8.1.2.3. Military electronics
      • 3.8.1.3. Global market 2022-2036, by TIM type
  • 3.9. Industrial Electronics
    • 3.9.1. Market overview
      • 3.9.1.1. Market drivers
      • 3.9.1.2. Applications
        • 3.9.1.2.1. Industrial automation
        • 3.9.1.2.2. Power supplies
        • 3.9.1.2.3. Motor drives
        • 3.9.1.2.4. LED lighting
    • 3.9.2. Global market 2022-2036, by TIM type
  • 3.10. Renewable Energy
    • 3.10.1. Market overview
      • 3.10.1.1. Market drivers
      • 3.10.1.2. Applications
        • 3.10.1.2.1. Solar inverters
        • 3.10.1.2.2. Wind power electronics
        • 3.10.1.2.3. Energy storage systems
    • 3.10.2. Global market 2022-2036, by TIM type
  • 3.11. Medical Electronics
    • 3.11.1. Market overview
      • 3.11.1.1. Market drivers
      • 3.11.1.2. Applications
        • 3.11.1.2.1. Diagnostic equipment
        • 3.11.1.2.2. Medical imaging systems
        • 3.11.1.2.3. Patient monitoring devices
    • 3.11.2. Global market 2022-2036, by TIM type

4. COMPANY PROFILES (116 company profiles)

5. RESEARCH METHODOLOGY

6. REFERENCES

List of tables

  • Table 1. Thermal conductivities (K) of common metallic, carbon, and ceramic fillers employed in TIMs
  • Table 2. Commercial TIMs and their properties
  • Table 3. Advantages and disadvantages of TIMs, by type
  • Table 4. Key Factors in System Level Performance for TIMs
  • Table 5. TIM Materials by Thermal, Mechanical, and Application Properties
  • Table 6. Thermal interface materials prices
  • Table 7. Comparisons of Price and Thermal Conductivity for TIMs
  • Table 8. Price Comparison of TIM Fillers
  • Table 9. Raw Material Analysis and Pricing
  • Table 10. System Level Performance Comparison
  • Table 11. Thermal Conductivity vs Thermal Resistance Comparison
  • Table 12. TIM Chemistry Comparison
  • Table 13. Characteristics of some typical TIMs
  • Table 14. Carbon-Based TIM Performance
  • Table 15. Thermal Conductivity By Filler Type
  • Table 16. Thermal Conductivity By Matrix
  • Table 17. Trends on TIM Fillers
  • Table 18. Pros and Cons of TIM Fillers
  • Table 19. Thermal Conductivity Comparison ATH and Al2O3
  • Table 20. BNNT Companies and Prices
  • Table 21.BNNT Property Variation
  • Table 22. Diamond fillers with varied sizes for thermal interface materials
  • Table 23. Commercial thermal paste products
  • Table 24.Commercial thermal gap pads (thermal interface materials)
  • Table 25. Commercial thermal gap fillers products
  • Table 26. Types of Potting Compounds/Encapsulants
  • Table 27. TIM adhesives tapes
  • Table 28. Commercial phase change materials (PCM) thermal interface materials (TIMs) products
  • Table 29. Properties of PCMs
  • Table 30. PCM Types and properties
  • Table 31. Advantages and disadvantages of organic PCMs
  • Table 32. Advantages and disadvantages of organic PCM Fatty Acids
  • Table 33. Advantages and disadvantages of salt hydrates
  • Table 34. Advantages and disadvantages of low melting point metals
  • Table 35. Advantages and disadvantages of eutectics
  • Table 36. Benefits and drawbacks of PCMs in TIMs
  • Table 37. PCM Selection Criteria and Considerations for Space Systems
  • Table 38. PCM selection criteria and considerations for space systems
  • Table 39. Liquid Metal Challenges
  • Table 40. Copper Sintering Technical Challenges
  • Table 41. Technology Readiness Level (TRL) for Carbon Materials in Thermal Management
  • Table 42. Challenges with CNT-TIMs
  • Table 43. Market players in CNT-TIMs
  • Table 44. Properties of CNTs and comparable materials
  • Table 45. Typical properties of SWCNT and MWCNT
  • Table 46. Comparison of carbon-based additives in terms of the main parameters influencing their value proposition as a conductive additive
  • Table 47. Thermal conductivity of CNT-based polymer composites
  • Table 48. Comparative properties of BNNTs and CNTs
  • Table 49. Properties of graphene, properties of competing materials, applications thereof
  • Table 50. Graphene Heat Spreaders Performance
  • Table 51. Comparison of Conventional and Graphene-Enhanced Thermal Pads
  • Table 52. Advantages of Graphene in Thermal Interface Materials
  • Table 53. Properties of nanodiamonds
  • Table 54. Comparison between Natural and Synthetic Graphite
  • Table 55. Thermal Conductivity Comparison of Graphite TIMs
  • Table 56. Classification of natural graphite with its characteristics
  • Table 57. Characteristics of synthetic graphite
  • Table 58. Thermal Conductivity Comparison of Graphite TIMs
  • Table 59. Properties of hexagonal boron nitride (h-BN)
  • Table 60. Comparison of self-healing systems
  • Table 61. Types of self-healing coatings and materials
  • Table 62. Comparative properties of self-healing materials
  • Table 63. Challenges for Dispensing TIM
  • Table 64. Thermal Management Application Areas in Consumer Electronics
  • Table 65. Thermal Management Differences: 4G vs 5G Smartphones
  • Table 66. Trends in Smartphone Thermal Materials
  • Table 67. Thermal Management approaches in commercial Smartphones
  • Table 68. Global market in consumer electronics 2022-2036, by TIM type (millions USD)
  • Table 69. Material Options and Market Comparison
  • Table 70. TIM Filler Comparison and Adoption
  • Table 71. Thermal Conductivity Comparison of Suppliers for EV Batteries
  • Table 72. TIM Pricing by Supplier
  • Table 73. Thermal Conductivity Comparison of TIM1s
  • Table 74. Global market in electric vehicles 2022-2036, by TIM type (millions USD)
  • Table 75. Types of TIMs in Data Centers
  • Table 76. Area of TIM per Switch
  • Table 77. Leaf and Spine Switch TIM Areas
  • Table 78. Novel TIM Technologies in Data Centers
  • Table 79. Emerging Trends in TIM Materials for AI Servers
  • Table 80. Applications of TIM Materials in AI Servers with Technology Readiness Levels (TRL)
  • Table 81. Companies Utilizing and Providing TIM Materials for AI Servers
  • Table 82. TIM Trends in Data Centers
  • Table 83. TIM Area Forecast in Server Boards: 2022-2036 (m2)
  • Table 84. Global market in data centers 2022-2036, by TIM type (millions USD)
  • Table 85. Global market in advanced semiconductor packaging 2022-2036, by TIM type (millions USD)
  • Table 86. Autonomous Vehicle Sensor Suite TIM Requirements
  • Table 87. TIM Players in ADAS
  • Table 88. TIM Players in ADAS
  • Table 89. Die Attach for ADAS Sensors
  • Table 90. Die Attach Area Forecast for Key Components Within ADAS Sensors: 2022-2036 (m2)
  • Table 91. TIM Players in ADAS
  • Table 92. Global market in ADAS sensors 2022-2036, by TIM type (millions USD)
  • Table 93. Applications of TIMs in EMI Shielding for ADAS Radars
  • Table 94. TIM Area Forecast for 5G Antennas by Station Size: 2022-2036 (m2)
  • Table 95. TIM Area Forecast for 5G Antennas by Station Frequency: 2022-2036 (m2)
  • Table 96. TIMS in BBU
  • Table 97. 5G BBY models
  • Table 98. TIM Area Forecast for 5G BBU: 2022-2036 (m2)
  • Table 99. Power Consumption Forecast for 5G: 2022-2036 (GW)
  • Table 100. TIM Area Forecast for Power Supplies: 2022-2036 (m2)
  • Table 101. TIM market players in 5G
  • Table 102. Global market in 5G 2022-2036, by TIM type (millions USD)
  • Table 103. Market Drivers for TIMS in aerospace and defense
  • Table 104. Applications for TIMS in aerospace and defense
  • Table 105. Temperature range of space subsystems and passive cooling approaches
  • Table 106. TIMs for space satellites - challenges and considerations
  • Table 107. Global Market for TIMs in aerospace and defense 2022-2036, by TIM Type (Millions USD)
  • Table 108. Market Drivers for TIMs in industrial electronics
  • Table 109. Applications for TIMs in industrial electronics
  • Table 110. Global Market 2022-2036, by TIM Type in Industrial Electronics (Millions USD)
  • Table 111. Market Drivers for TIMs in renewable energy
  • Table 112. Applications for TIMs in renewable energy
  • Table 113. Global Market for TIMs in Renewable Energy 2022-2036 (Millions USD)
  • Table 114. Market Drivers for TIMs in medical electronics
  • Table 115. Applications for TIMs in medical electronics
  • Table 116. Global Market 2022-2036 for TIMs in Medical Electronics (Millions USD)
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제