시장보고서
상품코드
1812613

세계의 AI 칩 시장(2026-2036년)

The Global Artificial Intelligence (AI) Chips Market 2026-2036

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 311 Pages, 69 Tables, 48 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계 AI 칩 시장은 2025년 전례 없는 성장을 경험하고 있습니다. 2025년 1분기는 75개의 스타트업이 총 20억 달러 이상의 자금을 조달하며 시장의 견고함을 입증했습니다. AI 칩과 이를 구현하는 기술이 주요 승자로 부상했으며, 칩 및 데이터센터 인프라를 위한 광통신 기술을 개발하는 기업들은 4억 달러 이상의 투자를 유치했습니다. 주목할 만한 점은 1분기에만 6개 기업이 최소 1억 달러 이상의 투자를 유치했다는 점입니다. 2024-2025년 최근 몇 년간의 자금 조달 라운드에서 다양한 AI 칩 기술에 대한 투자자들의 신뢰가 지속되고 있음을 알 수 있습니다. 유럽의 주요 투자처로는 고성능 AI 추론 칩 VSORA가 Otium 주도로 4,600만 달러를 조달했으며, Axelera AI가 RISC-V 기반 AI 가속 플랫폼을 위해 EuroHPC Joint Undertaking으로부터 6,160만 유로의 보조금을 획득했습니다. 유로의 보조금을 획득했습니다. 아시아 시장에서는 Rebellions가 도메인 특화 AI 프로세서로 KT Corp 주도의 시리즈 B 펀딩에서 1억 2,400만 달러, HyperAccel이 생성형 AI 추론 솔루션으로 4,000만 달러의 투자를 유치하는 등 아시아 시장에서 강세를 보였습니다.

신기술은 특히 뉴로모픽 컴퓨팅과 아날로그 처리에서 큰 자본을 모았습니다. Innatera Nanosystems는 스파이킹 신경망을 이용한 뇌에서 영감을 받은 프로세서로 1,500만 유로를 조달했고, Semron은 멤캐패시터를 이용한 아날로그 인메모리 컴퓨팅으로 730만 유로를 확보했습니다. 이러한 투자는 업계가 초저전력 소비 엣지 AI 솔루션을 추진하고 있음을 보여줍니다.

Celestial AI는 포토닉 패브릭 기술로 Fidelity Management & Research Company가 주도하는 시리즈 C1에서 2억 5,000만 달러의 투자를 유치했습니다. 마찬가지로 양자 컴퓨팅 플랫폼도 많은 투자를 유치하여 중성원자 양자 컴퓨터 QuEra Computing이 Google과 SoftBank Vision Fund로부터 2억 3천만 달러의 자금을 조달했습니다. 일본 NEDO는 EdgeCortix의 AI 칩렛 개발에 4,670만 달러의 정부 출자금을 포함하여 많은 보조금을 제공했습니다. 유럽의 경우, NeuReality와 CogniFiber와 같은 기업을 지원하는 European Innovation Council Fund가 여러 라운드에 참여하여 강력한 모멘텀을 보여주었습니다.

북미 기업들은 Etched가 Transformer 전용 ASIC로 1억 2,000만 달러, Groq가 언어 처리 유닛으로 6억 4,000만 달러의 시리즈 D 자금을 확보하는 등 강력한 자금 조달 활동을 유지했습니다. 텐스토렌트가 삼성증권 주도로 6억 9,300만 달러의 대규모 시리즈 D 라운드를 진행한 것은 RISC-V 기반 AI 프로세서 IP에 대한 지속적인 신뢰를 입증한 것입니다. 지속적인 투자 흐름은 AI 컴퓨팅 요구사항의 근본적인 변화를 반영하고 있습니다. 업계 분석가들은 2025년 이후 순수 AI 추론 시장이 학습보다 빠르게 성장하고, 특수 추론 가속기에 대한 수요가 증가할 것으로 예측하고 있습니다. Recogni, SiMa.ai, Blaize와 같은 기업들은 추론에 최적화된 솔루션에 특화되어 많은 자금을 확보했습니다.

엣지 컴퓨팅은 중요한 성장 벡터이며, 초저전력 솔루션을 개발하는 기업들은 많은 투자를 유치하고 있습니다. Blumind의 아날로그 AI 추론 칩에 대한 1,410만 달러의 자금 조달과 Mobilint의 엣지 NPU 칩에 대한 1,530만 달러의 시리즈 B 자금 조달은 투자자들이 엣지 AI의 기회를 인식하고 있음을 보여줍니다.

경쟁 환경은 새로운 아키텍처 접근 방식이 지지를 받으며 계속 진화하고 있습니다. 프랙타일(Fractile)의 인메모리 프로세싱 칩에 대한 1,500만 달러의 시드 펀딩과 베어 컴퓨팅(Vaire Computing)의 단열 가역 컴퓨팅에 대한 450만 달러의 펀딩은 AI의 에너지 소비 문제를 해결하기 위한 새로운 접근 방식을 보여줍니다.

세계 AI 칩 시장에 대해 조사 분석했으며, 시장 역학, 기술 혁신, 경쟁 환경, 다양한 응용 분야에 걸친 미래 성장 기회 등의 정보를 전해드립니다.

목차

제1장 소개

  • AI 칩이란?
  • 주요 능력
  • AI 칩 개발의 역사
  • 용도
  • AI 칩 아키텍처
  • 컴퓨팅 요구 사항
  • 반도체 패키징
  • AI 칩 시장 상황
  • 엣지 AI
  • 시장 촉진요인
  • 정부의 자금 지원과 노력
  • 자금 조달 및 투자
  • 시장의 과제
  • 시장 진입 기업
  • AI 칩의 향후 전망
  • AI 로드맵
  • 대규모 AI 모델

제2장 AI 칩 제조

  • 공급망
  • 팹 투자 및 제조 능력
  • 제조의 발전
  • 명령어 세트 아키텍처
  • 프로그래밍 모델과 실행 모델
  • 트랜지스터
  • 첨단 반도체 패키징

제3장 AI 칩 아키텍처

  • 분산 병렬 처리
  • 최적화된 데이터 흐름
  • 유연한 설계와 특수 설계의 비교
  • 교육용 하드웨어와 추론용 하드웨어의 비교
  • 소프트웨어 프로그래밍 가능성
  • 아키텍처 최적화 목표
  • 혁신
  • 지속가능성
  • 기업 : 아키텍처별
  • 하드웨어 아키텍처

제4장 AI 칩의 종류

  • 트레이닝 액셀러레이터
  • 추론 가속기
  • 자동차용 AI 칩
  • 스마트 기기용 AI 칩
  • 클라우드 데이터센터용 칩
  • 엣지 AI 칩
  • 뉴로모픽 칩
  • FPGA 기반 솔루션
  • 멀티칩 모듈
  • 신기술
  • 특수 부품
  • AI 지원 CPU
  • GPU
  • 클라우드 서비스 제공업체(CSP)를 위한 맞춤형 AI ASIC
  • 기타 AI 칩

제5장 AI 칩 시장

  • 시장 지도
  • 데이터센터
  • 자동차
  • 인더스트리 4.0
  • 스마트폰
  • 태블릿
  • IoT·IIoT
  • 컴퓨팅
  • 드론-로보틱스
  • 웨어러블, AR 글래스, 히어러블
  • 센서
  • 생명과학

제6장 세계 시장의 수익과 비용

  • 비용
  • 수익 : 칩 유형별(2020-2036년)
  • 수익 : 시장별(2020-2036년)
  • 수익 : 지역별(2020-2036년)

제7장 기업 프로파일(142개 기업 프로파일)

제8장 부록

제9장 참고 문헌

KSM 25.09.24

The global AI chip market is experiencing unprecedented growth in 2025. The first quarter of 2025 demonstrated the market's robust health with 75 startups collectively raising over $2 billion. AI chips and enabling technologies emerged as major winners, with companies developing optical communications technology for chips and data center infrastructure pulling in over $400 million. Notably, six companies raised at least $100 million in investment during Q1 alone. Recent funding rounds throughout 2024-2025 reveal sustained investor confidence across diverse AI chip technologies. Major European investments include VSORA's $46 million raise led by Otium for high-performance AI inference chips, and Axelera AI's Euro-61.6 million grant from the EuroHPC Joint Undertaking for RISC-V-based AI acceleration platforms. Asian markets showed strong momentum with Rebellions securing $124 million in Series B funding led by KT Corp for domain-specific AI processors, while HyperAccel raised $40 million for generative AI inference solutions.

Emerging technologies attracted significant capital, particularly in neuromorphic computing and analog processing. Innatera Nanosystems raised Euro-15 million for brain-inspired processors using spiking neural networks, while Semron secured Euro-7.3 million for analog in-memory computing using memcapacitors. These investments highlight the industry's push toward ultra-low power edge AI solutions.

Optical and photonic technologies dominated large funding rounds, with Celestial AI raising $250.0M in Series C1 funding led by Fidelity Management & Research Company for photonic fabric technology. Similarly, quantum computing platforms attracted substantial investment, including QuEra Computing's $230.0M financing from Google and SoftBank Vision Fund for neutral-atom quantum computers. Government support continued expanding globally, with Japan's NEDO providing significant subsidies including EdgeCortix's combined $46.7 million in government funding for AI chiplet development. European initiatives showed strong momentum through the European Innovation Council Fund's participation in multiple rounds, supporting companies like NeuReality ($20 million) and CogniFiber ($5 million).

North American companies maintained strong fundraising activity, with Etched raising $120 million for transformer-specific ASICs and Groq securing $640 million in Series D funding for language processing units. Tenstorrent's massive $693 million Series D round, led by Samsung Securities, demonstrated continued confidence in RISC-V-based AI processor IP. The sustained investment flows reflect fundamental shifts in AI computing requirements. Industry analysts project that the market for gen AI inference will grow faster than training in 2025 and beyond, driving demand for specialized inference accelerators. Companies like Recogni ($102 million), SiMa.ai ($70 million), and Blaize ($106 million) received substantial funding specifically for inference-optimized solutions.

Edge computing represents a critical growth vector, with companies developing ultra-low power solutions attracting significant investment. Blumind's $14.1 million raise for analog AI inference chips and Mobilint's $15.3 million Series B for edge NPU chips demonstrate investor recognition of the edge AI opportunity.

The competitive landscape continues evolving with new architectural approaches gaining traction. Fractile's $15 million seed funding for in-memory processing chips and Vaire Computing's $4.5 million raise for adiabatic reversible computing represent novel approaches to addressing AI's energy consumption challenges.

AI chip startups secured a cumulative US$7.6 billion in venture capital funding globally during the second, third, and last quarter of 2024, with 2025 maintaining this momentum across diverse technology categories, from photonic interconnects to neuromorphic processors, positioning the industry for continued rapid expansion and technological innovation.

Data center and cloud infrastructure represent the primary growth drivers. Chip sales are set to soar in 2025, led by generative AI and data center build-outs, even as traditional PC and mobile markets remain subdued. The investment focus reflects this trend, with optical interconnect and photonic technologies receiving substantial attention from venture capitalists and strategic investors. Government funding has become increasingly strategic, with governments around the globe starting to invest more heavily in chip design tools and related research as part of an effort to boost on-shore chip production.

"The Global Artificial Intelligence (AI) Chips Market 2026-2036" provides comprehensive analysis of the rapidly evolving AI semiconductor industry, covering market dynamics, technological innovations, competitive landscapes, and future growth opportunities across multiple application sectors. This strategic market intelligence report examines the complete AI chip ecosystem from emerging neuromorphic processors to established GPU architectures, delivering critical insights for semiconductor manufacturers, technology investors, system integrators, and enterprise decision-makers navigating the AI revolution.

Report contents include:

  • Market size forecasts and revenue projections by chip type, application, and region (2026-2036)
  • Technology readiness levels and commercialization timelines for next-generation AI accelerators
  • Competitive analysis of 140+ companies including NVIDIA, AMD, Intel, Google, Amazon, and emerging AI chip startups
  • Supply chain analysis covering fab investments, advanced packaging technologies, and manufacturing capabilities
  • Government funding initiatives and policy impacts across US, Europe, China, and Asia-Pacific regions
  • Edge AI vs. cloud computing trends and architectural requirements
  • AI Chip Definition & Core Technologies - Hardware acceleration principles, software co-design methodologies, and key performance capabilities
  • Historical Development Analysis - Evolution from general-purpose processors to specialized AI accelerators and neuromorphic computing
  • Application Landscape - Comprehensive coverage of data centers, automotive, smartphones, IoT, robotics, and emerging use cases
  • Architectural Classifications - Training vs. inference optimizations, edge vs. cloud requirements, and power efficiency considerations
  • Computing Requirements Analysis - Memory bandwidth, processing throughput, and latency specifications across different AI workloads
  • Semiconductor Packaging Evolution - 1D to 3D integration technologies, chiplet architectures, and advanced packaging solutions
  • Regional Market Dynamics - China's domestic chip initiatives, US CHIPS Act implications, European Chips Act strategic goals, and Asia-Pacific manufacturing hubs
  • Edge AI Deployment Strategies - Edge vs. cloud trade-offs, inference optimization, and distributed AI architectures
  • AI Chip Fabrication & Technology Infrastructure
    • Supply Chain Ecosystem - Foundry capabilities, IDM strategies, and manufacturing bottlenecks analysis
    • Fab Investment Trends - Capital expenditure analysis, capacity expansion plans, and technology node roadmaps
    • Manufacturing Innovations - Chiplet integration, 3D fabrication techniques, algorithm-hardware co-design, and advanced lithography
    • Instruction Set Architectures - RISC vs. CISC implementations for AI workloads and specialized ISA developments
    • Programming & Execution Models - Von Neumann architecture limitations and alternative computing paradigms
    • Transistor Technology Roadmap - FinFET scaling, GAAFET transitions, and next-generation device architectures
    • Advanced Packaging Technologies - 2.5D packaging implementations, heterogeneous integration, and system-in-package solutions
  • AI Chip Architectures & Design Innovations
    • Distributed Parallel Processing - Multi-core architectures, interconnect technologies, and scalability solutions
    • Optimized Data Flow Architectures - Memory hierarchy optimization, data movement minimization, and bandwidth enhancement
    • Design Flexibility Analysis - Specialized vs. general-purpose trade-offs and programmability requirements
    • Training vs. Inference Hardware - Architectural differences, precision requirements, and performance optimization strategies
    • Software Programmability Frameworks - Development tools, compiler optimizations, and deployment ecosystems
    • Architectural Innovation Trends - Specialized processing units, dataflow optimization, model compression techniques
    • Biologically-Inspired Designs - Neuromorphic computing principles and spike-based processing architectures
    • Analog Computing Revival - Mixed-signal processing, in-memory computing, and energy efficiency benefits
    • Photonic Connectivity Solutions - Optical interconnects, silicon photonics integration, and bandwidth scaling
    • Sustainability Considerations - Energy efficiency metrics, green data center requirements, and lifecycle management
  • Comprehensive AI Chip Type Analysis
    • Training Accelerators - High-performance computing requirements, multi-GPU scaling, and distributed training architectures
    • Inference Accelerators - Real-time processing optimization, edge deployment considerations, and latency minimization
    • Automotive AI Chips - ADAS implementations, autonomous driving processors, and safety-critical system requirements
    • Smart Device AI Chips - Mobile processors, power efficiency optimization, and on-device AI capabilities
    • Cloud Data Center Chips - Hyperscale deployment strategies, rack-level optimization, and cooling considerations
    • Edge AI Chips - Power-constrained environments, real-time processing, and connectivity requirements
    • Neuromorphic Chips - Brain-inspired architectures, spike-based processing, and ultra-low power applications
    • FPGA-Based Solutions - Reconfigurable computing, rapid prototyping, and application-specific optimization
    • Multi-Chip Modules - Heterogeneous integration strategies, chiplet ecosystems, and system-level optimization
    • Emerging Technologies - Novel materials (2D, photonic, spintronic), advanced packaging, and next-generation computing paradigms
    • Memory Technologies - HBM stacks, GDDR implementations, SRAM optimization, and emerging memory solutions
    • CPU Integration - AI acceleration in general-purpose processors and hybrid computing architectures
    • GPU Evolution - Data center GPU trends, NVIDIA ecosystem analysis, AMD competitive positioning, and Intel market entry
    • Custom ASIC Development - Cloud service provider strategies, Amazon Trainium/Inferentia, Microsoft Maia, Meta MTIA analysis
    • Alternative Architectures - Spatial accelerators, CGRAs, and heterogeneous matrix-based solutions
  • Market Applications & Vertical Analysis
    • Data Center Market - Hyperscale deployment trends, cloud infrastructure requirements, and performance benchmarking
    • Automotive Sector - Autonomous driving chip requirements, power management, and safety certification processes
    • Industry 4.0 Applications - Smart manufacturing, predictive maintenance, and industrial automation use cases
    • Smartphone Integration - Mobile AI processor evolution, performance improvements, and competitive landscape
    • Tablet Computing - AI acceleration in consumer devices and productivity applications
    • IoT & Industrial IoT - Edge computing requirements, sensor integration, and connectivity solutions
    • Personal Computing - AI-enabled laptops, desktop acceleration, and parallel computing applications
    • Drones & Robotics - Real-time processing requirements, power constraints, and autonomous operation capabilities
    • Wearables & AR/VR - Ultra-low power AI, gesture recognition, and immersive computing applications
    • Sensor Applications - Smart sensors, structural health monitoring, and distributed sensing networks
    • Life Sciences - Medical imaging acceleration, drug discovery applications, and diagnostic AI systems
  • Financial Analysis & Market Forecasts
    • Cost Structure Analysis - Design, manufacturing, testing, and operational cost breakdowns across technology nodes
    • Revenue Projections by Chip Type - Market size forecasts segmented by GPU, ASIC, FPGA, and emerging technologies (2020-2036)
    • Market Revenue by Application - Vertical market analysis with growth projections across all major sectors
    • Regional Revenue Analysis - Geographic market distribution, growth rates, and competitive positioning by region
  • Comprehensive Company Profiles including AiM Future, Aistorm, Advanced Micro Devices (AMD), Alpha ICs, Amazon Web Services (AWS), Ambarella Inc., Anaflash, Andes Technology, Apple, Arm, Astrus Inc., Axelera AI, Axera Semiconductor, Baidu Inc., BirenTech, Black Sesame Technologies, Blaize, Blumind Inc., Brainchip Holdings Ltd., Cambricon, Ccvui (Xinsheng Intelligence), Celestial AI, Cerebras Systems, Ceremorphic, ChipIntelli, CIX Technology, CogniFiber, Corerain Technologies, DeGirum, Denglin Technology, DEEPX, d-Matrix, Eeasy Technology, EdgeCortix, Efinix, EnCharge AI, Enerzai, Enfabrica, Enflame, Esperanto Technologies, Etched.ai, Evomotion, Expedera, Flex Logix, Fractile, FuriosaAI, Gemesys, Google, Graphcore, GreenWaves Technologies, Groq, Gwanak Analog Co. Ltd., Hailo, Horizon Robotics, Houmo.ai, Huawei, HyperAccel, IBM, Iluvatar CoreX, Innatera Nanosystems, Intel, Intellifusion, Intelligent Hardware Korea (IHWK), Inuitive, Jeejio, Kalray SA, Kinara, KIST (Korea Institute of Science and Technology), Kneron, Krutrim, Kunlunxin Technology, Lightmatter, Lightstandard Technology, Lightelligence, Lumai, Luminous Computing, MatX, MediaTek, MemryX, Meta, Microsoft, Mobilint, Modular, Moffett AI, Moore Threads, Mythic, Nanjing SemiDrive Technology, Nano-Core Chip, National Chip, Neuchips, NeuronBasic, NeuReality, NeuroBlade, NextVPU, Nextchip Co. Ltd., NXP Semiconductors, Nvidia, Oculi, OpenAI, Panmnesia and more....

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. What is an AI chip?
    • 1.1.1. AI Acceleration
    • 1.1.2. Hardware & Software Co-Design
    • 1.1.3. Moore's Law
  • 1.2. Key capabilities
  • 1.3. History of AI Chip Development
  • 1.4. Applications
  • 1.5. AI Chip Architectures
  • 1.6. Computing requirements
  • 1.7. Semiconductor packaging
    • 1.7.1. Evolution from 1D to 3D semiconductor packaging
  • 1.8. AI chip market landscape
    • 1.8.1. China
    • 1.8.2. USA
      • 1.8.2.1. The US CHIPS and Science Act of 2022
    • 1.8.3. Europe
      • 1.8.3.1. The European Chips Act of 2022
    • 1.8.4. Rest of Asia
      • 1.8.4.1. South Korea
      • 1.8.4.2. Japan
      • 1.8.4.3. Taiwan
  • 1.9. Edge AI
    • 1.9.1. Edge vs Cloud
    • 1.9.2. Edge devices that utilize AI chips
    • 1.9.3. Players in edge AI chips
    • 1.9.4. Inference at the edge
  • 1.10. Market drivers
  • 1.11. Government funding and initiatives
  • 1.12. Funding and investments
  • 1.13. Market challenges
  • 1.14. Market players
  • 1.15. Future Outlook for AI Chips
    • 1.15.1. Specialization
    • 1.15.2. 3D System Integration
    • 1.15.3. Software Abstraction Layers
    • 1.15.4. Edge-Cloud Convergence
    • 1.15.5. Environmental Sustainability
    • 1.15.6. Neuromorphic Photonics
    • 1.15.7. New Materials
    • 1.15.8. Efficiency Improvements
    • 1.15.9. Automated Chip Generation
  • 1.16. AI roadmap
  • 1.17. Large AI Models
    • 1.17.1. Scaling
    • 1.17.2. Transformer architecture
    • 1.17.3. Primary focus areas for AI research and development
    • 1.17.4. AI performance improvements
    • 1.17.5. Sustained growth of AI models
    • 1.17.6. Energy consumption of AI model training
    • 1.17.7. Hardware design inefficiencies in AI compute systems
    • 1.17.8. Energy efficiency of ML systems

2. AI CHIP FABRICATION

  • 2.1. Supply chain
  • 2.2. Fab investments and capabilities
  • 2.3. Manufacturing advances
    • 2.3.1. Chiplets
    • 2.3.2. 3D Fabrication
    • 2.3.3. Algorithm-Hardware Co-Design
    • 2.3.4. Advanced Lithography
    • 2.3.5. Novel Devices
  • 2.4. Instruction Set Architectures
    • 2.4.1. Instruction Set Architectures (ISAs) for AI workloads
    • 2.4.2. CISC and RISC ISAs for AI accelerators
  • 2.5. Programming Models and Execution Models
    • 2.5.1. Programming model vs execution model
    • 2.5.2. Von Neumann Architecture
  • 2.6. Transistors
    • 2.6.1. Transistor operation
    • 2.6.2. Gate length reduction
    • 2.6.3. Increasing Transistor Count
    • 2.6.4. Planar FET to FinFET
    • 2.6.5. GAAFET, MBCFET, RibbonFET
    • 2.6.6. Complementary Field-Effect Transistors (CFETs)
    • 2.6.7. Roadmaps
      • 2.6.7.1. TSMC
      • 2.6.7.2. Intel Foundry
      • 2.6.7.3. Samsung Foundry
  • 2.7. Advanced Semiconductor Packaging
    • 2.7.1. 1D to 3D semiconductor packaging
    • 2.7.2. 2.5D packaging
      • 2.7.2.1. 2.5D advanced semiconductor packaging technology
      • 2.7.2.2. 2.5D Advanced Semiconductor Packaging in AI Chips
      • 2.7.2.3. Die Size Limitations
      • 2.7.2.4. Integrated Heterogeneous Systems
      • 2.7.2.5. Future System-in-Package Architecture

3. AI CHIP ARCHITECTURES

  • 3.1. Distributed Parallel Processing
  • 3.2. Optimized Data Flow
  • 3.3. Flexible vs. Specialized Designs
  • 3.4. Hardware for Training vs. Inference
  • 3.5. Software Programmability
  • 3.6. Architectural Optimization Goals
  • 3.7. Innovations
    • 3.7.1. Specialized Processing Units
    • 3.7.2. Dataflow Optimization
    • 3.7.3. Model Compression
    • 3.7.4. Biologically-Inspired Designs
    • 3.7.5. Analog Computing
    • 3.7.6. Photonic Connectivity
  • 3.8. Sustainability
    • 3.8.1. Energy Efficiency
    • 3.8.2. Green Data Centers
    • 3.8.3. Eco-Electronics
    • 3.8.4. Reusable Architectures & IP
    • 3.8.5. Regulated Lifecycles
    • 3.8.6. AI for Sustainability
    • 3.8.7. AI Model Efficiency
  • 3.9. Companies, by architecture
  • 3.10. Hardware Architectures
    • 3.10.1. ASICs, FPGAs, and GPUs used for neural network architectures
    • 3.10.2. Types of AI Chips
    • 3.10.3. TRL
    • 3.10.4. Commercial AI chips
    • 3.10.5. Emerging AI chips
    • 3.10.6. General-purpose processors

4. TYPES OF AI CHIPS

  • 4.1. Training Accelerators
  • 4.2. Inference Accelerators
  • 4.3. Automotive AI Chips
  • 4.4. Smart Device AI Chips
  • 4.5. Cloud Data Center Chips
  • 4.6. Edge AI Chips
  • 4.7. Neuromorphic Chips
  • 4.8. FPGA-Based Solutions
  • 4.9. Multi-Chip Modules
  • 4.10. Emerging technologies
    • 4.10.1. Novel Materials
      • 4.10.1.1. 2D materials
      • 4.10.1.2. Photonic materials
      • 4.10.1.3. Spintronic materials
      • 4.10.1.4. Phase change materials
      • 4.10.1.5. Neuromorphic materials
    • 4.10.2. Advanced Packaging
    • 4.10.3. Software Abstraction
    • 4.10.4. Environmental Sustainability
  • 4.11. Specialized components
    • 4.11.1. Sensor Interfacing
    • 4.11.2. Memory Technologies
      • 4.11.2.1. HBM stacks
      • 4.11.2.2. GDDR
      • 4.11.2.3. SRAM
      • 4.11.2.4. STT-RAM
      • 4.11.2.5. ReRAM
    • 4.11.3. Software Frameworks
    • 4.11.4. Data Center Design
  • 4.12. AI-Capable Central Processing Units (CPUs)
    • 4.12.1. Core architecture
    • 4.12.2. CPU requirements
    • 4.12.3. AI-capable CPUs
    • 4.12.4. Intel Processors
    • 4.12.5. AMD Processors
    • 4.12.6. IBM Processors
    • 4.12.7. Arm Processors
  • 4.13. Graphics Processing Units (GPUs)
    • 4.13.1. Types of AI GPUs
      • 4.13.1.1. Data Center GPUs
      • 4.13.1.2. NVIDIA
      • 4.13.1.3. AMD
      • 4.13.1.4. Intel
      • 4.13.1.5. Chinese GPU manufacturers
  • 4.14. Custom AI ASICs for Cloud Service Providers (CSPs)
    • 4.14.1. Overview
    • 4.14.2. Google TPU
    • 4.14.3. Amazon
    • 4.14.4. Microsoft
    • 4.14.5. Meta
  • 4.15. Other AI Chips
    • 4.15.1. Heterogenous Matrix-Based AI Accelerators
      • 4.15.1.1. Habana
      • 4.15.1.2. Cambricon Technologies
      • 4.15.1.3. Huawei
      • 4.15.1.4. Baidu
      • 4.15.1.5. Qualcomm
    • 4.15.2. Spatial AI Accelerators
      • 4.15.2.1. Cerebras
      • 4.15.2.2. Graphcore
      • 4.15.2.3. Groq
      • 4.15.2.4. SambaNova
      • 4.15.2.5. Untether AI
    • 4.15.3. Coarse-Grained Reconfigurable Arrays (CGRAs)

5. AI CHIP MARKETS

  • 5.1. Market map
  • 5.2. Data Centers
    • 5.2.1. Market overview
    • 5.2.2. Market players
    • 5.2.3. Hardware
    • 5.2.4. Trends
  • 5.3. Automotive
    • 5.3.1. Market overview
    • 5.3.2. Market outlook
    • 5.3.3. Autonomous Driving
      • 5.3.3.1. Market players
    • 5.3.4. Increasing power demands
    • 5.3.5. Market players
  • 5.4. Industry 4.0
    • 5.4.1. Market overview
    • 5.4.2. Applications
    • 5.4.3. Market players
  • 5.5. Smartphones
    • 5.5.1. Market overview
    • 5.5.2. Commercial examples
    • 5.5.3. Smartphone chipset market
    • 5.5.4. Process nodes
  • 5.6. Tablets
    • 5.6.1. Market overview
    • 5.6.2. Market players
  • 5.7. IoT & IIoT
    • 5.7.1. Market overview
    • 5.7.2. AI on the IoT edge
    • 5.7.3. Consumer smart appliances
    • 5.7.4. Market players
  • 5.8. Computing
    • 5.8.1. Market overview
    • 5.8.2. Personal computers
    • 5.8.3. Parallel computing
    • 5.8.4. Low-precision computing
    • 5.8.5. Market players
  • 5.9. Drones & Robotics
    • 5.9.1. Market overview
    • 5.9.2. Market players
  • 5.10. Wearables, AR glasses and hearables
    • 5.10.1. Market overview
    • 5.10.2. Applications
    • 5.10.3. Market players
  • 5.11. Sensors
    • 5.11.1. Market overview
    • 5.11.2. Challenges
    • 5.11.3. Applications
    • 5.11.4. Market players
  • 5.12. Life Sciences
    • 5.12.1. Market overview
    • 5.12.2. Applications
    • 5.12.3. Market players

6. GLOBAL MARKET REVENUES AND COSTS

  • 6.1. Costs
  • 6.2. Revenues by chip type, 2020-2036
  • 6.3. Revenues by market, 2020-2036
  • 6.4. Revenues by region, 2020-2036

7. COMPANY PROFILES(142 company profiles)

8. APPENDIX

  • 8.1. Research Methodology

9. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제