시장보고서
상품코드
1825999

세계의 그린 건축자재 및 기술 시장(2026-2036년)

The Global Market for Green Building Materials and Technologies 2026-2036

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 360 Pages, 44 Tables, 37 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계의 그린 건축자재 및 기술 시장은 긴급한 기후 변화 문제와 기술 혁신으로 건설 산업에서 가장 역동적이고 빠르게 발전하는 부문 중 하나입니다. 지속 가능한 건축자재만으로도 2036년까지 1,900억 달러의 수익에 도달할 것으로 예상되는 이 시장은 건물의 성능과 거주자의 웰빙을 극대화하면서 환경에 미치는 영향을 최소화하도록 설계된 제품, 서비스 및 기술의 종합적인 생태계를 포함합니다.

시장의 기초는 지속 가능한 건축자재에 있으며 전통적인 목재 제품이 대부분을 차지합니다. 바이오의 신재료는 기존의 대체품에 비해 탄소를 격리하고 내포 에너지를 줄이면서 우수한 성능 특성을 제공하기 때문에 폭발적인 성장을 보여줍니다.

저탄소 콘크리트 기술은 아마도 가장 중요한 부문이며 전통적인 포틀랜드 시멘트 제조가 세계 CO2 배출의 약 8%를 차지한다는 사실에 대응하고 있습니다. 보조적인 시멘트계 재료, 탄소 포집 및 이용 기술, 대체 바인더 시스템 등의 선진의 어프로치가, 이 기본적인 건축자재에 변화를 가져오고 있습니다.

첨단 단열 기술, 특히 에어로겔과 상변화 재료는 열 성능 기준을 재정의하고 있습니다. 이 재료는 최소한의 두께로 우수한 단열 특성을 제공하고 에너지 효율을 극대화하면서 건축에 유연성을 제공합니다. 세계의 에어로겔 시장만으로도 제조 비용의 저하와 성능의 우위성이 널리 인정됨에 따라 급성장을 보이고 있습니다.

스마트 빌딩 기술은 정적 구조를 반응성과 적응성이 우수한 환경으로 바꾸는 인텔리전스 층을 형성합니다. 일렉트로크로믹 기술과 써모크로믹 기술을 이용한 스마트 윈도우는 채광을 손상시키지 않고 동적인 일사 제어를 실현하고, 빌딩 자동화 시스템은 AI를 활용한 최적화에 의해 15-30%의 에너지 절약을 달성합니다. 이러한 기술은 재료 과학, IoT 센서, AI의 융합을 보여줍니다.

에너지 시스템의 통합은 가장 큰 성장 궤도를 견인합니다. 태양광 발전 시스템은 지난 10년간 85%의 비용 절감의 혜택을 받아 히트 펌프의 채용은 빌딩의 전기를 가속화합니다. 에너지 저장 시스템은 신재생 에너지 사용을 최적화하는 동시에 건물이 그리드 서비스 시장에 참여할 수 있도록 합니다. 첨단 건설 기법은 건물의 설계, 제조 및 조립 방법에 혁명을 가져옵니다. 모듈식 건축은 낭비를 없애면서 품질을 보장하는 관리되는 공장 환경을 가능하게 하며, 3D 프린팅은 프로토타입 용도에서 본격적인 건물 건설까지 폭발적인 성장을 보여줍니다. 이러한 기술은 노동력 부족, 품질 관리, 환경에 미치는 영향과 같은 건설 산업의 과제를 해결합니다.

시장 성장 촉진요인으로는 지속 가능한 건설을 추진하는 정부의 규제가 점점 엄격해지고 있는 것, 기업의 지속가능성에 대한 대처, 친환경 건물에 대한 소비자의 선호 증가 등을 들 수 있습니다.

이 보고서는 세계의 그린 건축자재 및 기술 시장에 대한 조사 및 분석 및 건설 산업의 환경 발자국을 재형성하는 혁신적인 기술, 혁신적인 재료 및 새로운 비즈니스 모델에 대한 중요한 지식을 제공합니다.

목차

제1장 주요 요약

  • 시장 개요
  • 세계 수익
  • 지속 가능한 건축자재
  • 단열 기술
  • 스마트 윈도우

제2장 건설 수법

  • 모듈러 건설
  • 3D 프린팅
  • 패시브 디자인

제3장 에너지 시스템

  • 신재생에너지 통합
  • 빌딩 관리

제4장 물 관리

  • 물 효율
  • 처리 시스템

제5장 실내 환경 질

  • 공기질
  • 음향 관리

제6장 재료

  • 대마계 재료
  • 균사계 재료
  • 지속 가능한 콘크리트 및 시멘트 대체품
  • 천연섬유 복합재료
  • 셀룰로오스 나노섬유
  • 지속가능한 단열재

제7장 탄소 포집 및 이용

  • 개요
  • 시장 구조
  • 시멘트 산업의 CCUS 기술
  • 제품
  • 콘크리트 양생
  • 비용
  • 과제

제8장 시멘트 생산용 대체 연료

  • 개요
  • 화석연료 대체
  • 기업
  • 시멘트 가마
  • 시멘트 부문의 넷 제로
  • 현대 시멘트 플랜트
  • 시멘트 생산에서의 수소
  • 가마 전기화
  • 전기화학적 시멘트 처리
  • 시멘트 생산용 태양광 발전

제9장 최종 용도 시장

  • 개요
  • 주택
  • 상업 빌딩 및 오피스 빌딩
  • 인프라

제10장 기업 프로파일(기업 172개 회사의 프로파일)

제11장 참고문헌

JHS 25.10.10

The global green building materials and technologies market represents one of the construction industry's most dynamic and rapidly evolving sectors, driven by urgent climate imperatives and technological innovation. With revenues projected to reach $190 billion by 2036 for sustainable construction materials alone, this market encompasses a comprehensive ecosystem of products, services, and technologies designed to minimize environmental impact while maximizing building performance and occupant wellbeing.

The market's foundation rests on sustainable construction materials, where traditional wood products dominate. Emerging bio-based materials are experiencing explosive growth as these materials offer superior performance characteristics while sequestering carbon and reducing embodied energy compared to conventional alternatives.

Low-carbon concrete technologies represent perhaps the most critical segment, addressing the fact that conventional Portland cement manufacturing accounts for approximately 8% of global CO2 emissions. Advanced approaches including supplementary cementitious materials, carbon capture and utilization technologies, and alternative binder systems are transforming this foundational building material.

Advanced insulation technologies, particularly aerogels and phase-change materials, are redefining thermal performance standards. These materials achieve superior insulation properties in minimal thickness, enabling architectural flexibility while maximizing energy efficiency. The global aerogel market alone is experiencing rapid growth as manufacturing costs decline and performance advantages become widely recognized.

Smart building technologies create the intelligence layer that transforms static structures into responsive, adaptive environments. Smart windows utilizing electrochromic and thermochromic technologies provide dynamic solar control without compromising daylighting, while building automation systems achieve 15-30% energy savings through AI-powered optimization. These technologies represent the convergence of materials science, IoT sensors, and artificial intelligence.

Energy systems integration drives the most significant growth trajectory. Solar photovoltaic systems benefit from 85% cost reductions over the past decade, while heat pump adoption accelerates building electrification. Energy storage systems enable buildings to participate in grid services markets while optimizing renewable energy utilization. Advanced construction methods are revolutionizing how buildings are designed, manufactured, and assembled. Modular construction enables controlled factory environments that ensure quality while reducing waste, while 3D printing shows explosive growth from prototype applications to full-scale building construction. These methods address construction industry challenges including labor shortages, quality control, and environmental impact.

Market drivers include increasingly stringent government regulations promoting sustainable construction, corporate sustainability commitments, and growing consumer preference for environmentally friendly buildings.

"The Global Market for Green Building Materials and Technologies 2026-2036" presents a comprehensive analysis of the rapidly evolving sustainable construction sector, valued at over $190 billion and projected to reach unprecedented growth by 2036. This authoritative market intelligence report delivers critical insights into the transformative technologies, innovative materials, and emerging business models reshaping the construction industry's environmental footprint while meeting stringent climate targets and regulatory requirements.

The report examines five key market segments driving sustainable construction transformation: sustainable materials, building energy systems, smart building technologies, advanced construction methods , and regional market dynamics across North America, Europe, Asia-Pacific, Middle East & Africa, and Latin America. Each segment analysis includes detailed revenue projections, technology assessments, competitive landscapes, and market penetration strategies essential for stakeholders navigating this dynamic marketplace.

Report contents include:

  • Global market trends and drivers analysis including regulatory frameworks, corporate sustainability commitments, and consumer preferences
  • Comprehensive revenue projections across five major market segments with detailed growth trajectories through 2036
  • Benefits assessment of green buildings including carbon reduction, operational efficiency, and occupant wellbeing metrics
  • Sustainable Materials
    • Low-carbon concrete technologies including supplementary cementitious materials, carbon capture integration, and alternative binder systems
    • Sustainable wood products encompassing certified timber, engineered materials, and carbon sequestration capabilities
    • Recycled materials applications including steel, aggregates, and waste-to-resource transformation strategies
    • Bio-based materials innovations covering hemp, mycelium, natural fiber composites, and cellulose nanofibers
  • Advanced Technologies
    • Insulation technologies including aerogel innovations, installation methods, and performance metrics analysis
    • Smart windows systems covering electrochromic glass, thermochromic materials, and building integration strategies
    • Construction methods including modular systems, 3D printing applications, and passive design optimization
  • Building Systems Integration
    • Energy systems analysis covering renewable integration, solar PV deployment, heat pump technologies, and energy storage solutions
    • Building management systems including smart controls, energy monitoring, and optimization algorithms
    • Water management technologies encompassing efficiency systems, treatment solutions, and monitoring capabilities
  • Environmental Quality Solutions
    • Indoor air quality systems including ventilation, filtration, and monitoring technologies
    • Acoustic management solutions covering sound insulation, noise control, and design integration strategies
  • Specialized Materials & Technologies
    • Hemp-based construction materials including hempcrete, fiberboard, and insulation applications
    • Mycelium-based products spanning insulation, structural elements, acoustic panels, and decorative applications
    • Sustainable concrete alternatives including geopolymer systems, recycled aggregates, self-healing technologies, and biomineral binders
    • Carbon capture and utilization technologies with cost analysis and market challenges assessment
    • Alternative fuels for cement production including hydrogen deployment, kiln electrification, and solar power integration
  • Market Applications & Company Intelligence
  • End-use market analysis covering residential, commercial, and infrastructure applications with sector-specific requirements The report profiles 172 leading companies driving green building innovation including 1414 Degrees, ABIS Aerogel, Active Aerogels, Adaptavate, Aerobel, Aerofybers Technologies, aerogel-it GmbH, Aerogel Core, Aerogel Technologies, AGITEC International, Airco Process Technology, AISTI, Aizawa Concrete Corporation, Alchemy GmbH, Algoma Steel, Antora Energy, Aperam BioEnergia, ArcelorMittal, Ardent, Armacell International, Aspen Aerogels, Basilisk, BASF, Betolar, Bio Fab NZ, Biohm, Biomason, BioZeroc, Blastr Green Steel, BlockSolutions, Blue Planet Systems, Blueshift Materials, Boston Metal, Brimstone, ByFusion Global, C2CNT/Capital Power, Cabot Corporation, Cambridge Carbon Capture, Cambridge Electric Cement, CarbiCrete, Carbonaide, CarbonBuilt, CarbonCure Technologies, Carbon Instead, Carbon Limit, Carbon Re, Carbon Upcycling Technologies, Carbon8 Systems, C-Capture, Cellicon, Cellutech, CemVision, Checkerspot, China Baowu Steel Group, Concrene Limited, Concretenne, Concrete4Change, Concular, Coolbrook, Croft, DMAT, Dongjin Semichem, ecoLocked GmbH, EcoMaterial Technologies, Eden Innovations, Electra Steel, Electrified Thermal Solutions, Elisto GmbH, Emirates Steel Arkan, EVA Greentech, Fibenol, Fiberwood, Fortera, Fuji Silysia Chemical, Gelanggang Kencana, Greeniron H2, GravitHy, Greenore Cleantech, Green Earth Aerogel Technologies, Green360 Technologies, Guangdong Alison Hi-Tech, Hebei Jinna Technology, H2 Green Steel, HBIS Group, Helios, HempWood, Hexion, Holcim, Hoffmann Green Cement Technologies, Hempitecture and more......

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market Overview
    • 1.1.1. Benefits of Green Buildings
    • 1.1.2. Global Trends and Drivers
  • 1.2. Global Revenues
    • 1.2.1. Sustainable Materials, by type
    • 1.2.2. Sustainable Materials, by market
    • 1.2.3. Building Energy Systems
    • 1.2.4. Smart Building Technologies
    • 1.2.5. Advanced Construction Methods
    • 1.2.6. Regional Green Building Technology Markets
  • 1.3. Sustainable Construction Materials
    • 1.3.1. Low-carbon Concrete
    • 1.3.2. Sustainable Wood Products
    • 1.3.3. Recycled Materials
    • 1.3.4. Bio-based materials
  • 1.4. Insulation Technologies
    • 1.4.1. Advanced Materials
    • 1.4.2. Installation Methods
    • 1.4.3. Performance Metrics
  • 1.5. Smart Windows
    • 1.5.1. Electrochromic Glass
    • 1.5.2. Thermochromic Systems
    • 1.5.3. Integration Technologies

2. CONSTRUCTION METHODS

  • 2.1. Modular Construction
    • 2.1.1. Manufacturing Processes
    • 2.1.2. Assembly Systems
    • 2.1.3. Quality Control
  • 2.2. 3D Printing
    • 2.2.1. Material Development
    • 2.2.2. Printing System
    • 2.2.3. Applications
  • 2.3. Passive Design
    • 2.3.1. Solar Optimization
    • 2.3.2. Natural Ventilation
    • 2.3.3. Thermal Mass

3. ENERGY SYSTEMS

  • 3.1. Renewable Integration
    • 3.1.1. Solar PV Systems
    • 3.1.2. Heat Pumps
    • 3.1.3. Energy Storage
  • 3.2. Building Management
    • 3.2.1. Smart Controls
    • 3.2.2. Energy Monitoring
    • 3.2.3. Optimization Systems

4. WATER MANAGEMENT

  • 4.1. Water Efficiency
    • 4.1.1. Low-flow Systems
    • 4.1.2. Rainwater Harvesting
    • 4.1.3. Greywater Systems
  • 4.2. Treatment Systems
    • 4.2.1. On-site Treatment
    • 4.2.2. Recycling Systems
    • 4.2.3. Monitoring Technologies

5. INDOOR ENVIRONMENTAL QUALITY

  • 5.1. Air Quality
    • 5.1.1. Ventilation Systems
    • 5.1.2. Filtration Technology
    • 5.1.3. Monitoring Systems
  • 5.2. Acoustic Management
    • 5.2.1. Sound Insulation
    • 5.2.2. Noise Control
    • 5.2.3. Design Integration

6. MATERIALS

  • 6.1. Hemp-based Materials
    • 6.1.1. Hemp Concrete (Hempcrete)
    • 6.1.2. Hemp Fiberboard
    • 6.1.3. Hemp Insulation
  • 6.2. Mycelium-based Materials
    • 6.2.1. Insulation
    • 6.2.2. Structural Elements
    • 6.2.3. Acoustic Panels
    • 6.2.4. Decorative Elements
  • 6.3. Sustainable Concrete and Cement Alternatives
    • 6.3.1. Geopolymer Concrete
    • 6.3.2. Recycled Aggregate Concrete
    • 6.3.3. Lime-Based Materials
    • 6.3.4. Self-healing concrete
      • 6.3.4.1. Bioconcrete
      • 6.3.4.2. Fiber concrete
    • 6.3.5. Microalgae biocement
    • 6.3.6. Carbon-negative concrete
    • 6.3.7. Biomineral binders
    • 6.3.8. Clinker substitutes
  • 6.4. Natural Fiber Composites
    • 6.4.1. Types of Natural Fibers
    • 6.4.2. Properties
    • 6.4.3. Applications in Construction
  • 6.5. Cellulose nanofibers
    • 6.5.1. Sandwich composites
    • 6.5.2. Cement additives
    • 6.5.3. Pump primers
    • 6.5.4. Insulation materials
    • 6.5.5. Coatings and paints
    • 6.5.6. 3D printing materials
  • 6.6. Sustainable Insulation Materials
    • 6.6.1. Types of sustainable insulation materials
    • 6.6.2. Aerogel Insulation
      • 6.6.2.1. Silica aerogels
        • 6.6.2.1.1. Properties
        • 6.6.2.1.2. Thermal conductivity
        • 6.6.2.1.3. Mechanical
        • 6.6.2.1.4. Silica aerogel precursors
        • 6.6.2.1.5. Products
          • 6.6.2.1.5.1. Monoliths
          • 6.6.2.1.5.2. Powder
          • 6.6.2.1.5.3. Granules
          • 6.6.2.1.5.4. Blankets
          • 6.6.2.1.5.5. Aerogel boards
          • 6.6.2.1.5.6. Aerogel renders
        • 6.6.2.1.6. 3D printing of aerogels
        • 6.6.2.1.7. Silica aerogel from sustainable feedstocks
        • 6.6.2.1.8. Silica composite aerogels
          • 6.6.2.1.8.1. Organic crosslinkers
        • 6.6.2.1.9. Cost of silica aerogels
      • 6.6.2.2. Aerogel-like foam materials
        • 6.6.2.2.1. Properties
        • 6.6.2.2.2. Applications
      • 6.6.2.3. Metal oxide aerogels
      • 6.6.2.4. Organic aerogels
        • 6.6.2.4.1. Polymer aerogels
      • 6.6.2.5. Biobased and sustainable aerogels (bio-aerogels)
        • 6.6.2.5.1. Cellulose aerogels
          • 6.6.2.5.1.1. Cellulose nanofiber (CNF) aerogels
          • 6.6.2.5.1.2. Cellulose nanocrystal aerogels
          • 6.6.2.5.1.3. Bacterial nanocellulose aerogels
        • 6.6.2.5.2. Lignin aerogels
        • 6.6.2.5.3. Alginate aerogels
        • 6.6.2.5.4. Starch aerogels
        • 6.6.2.5.5. Chitosan aerogels
      • 6.6.2.6. Carbon aerogels
        • 6.6.2.6.1. Carbon nanotube aerogels
        • 6.6.2.6.2. Graphene and graphite aerogels
      • 6.6.2.7. Additive manufacturing (3D printing)
        • 6.6.2.7.1. Carbon nitride
        • 6.6.2.7.2. Gold
        • 6.6.2.7.3. Cellulose
        • 6.6.2.7.4. Graphene oxide
      • 6.6.2.8. Hybrid aerogels

7. CARBON CAPTURE AND UTILIZATION

  • 7.1. Overview
  • 7.2. Market structure
  • 7.3. CCUS technologies in the cement industry
  • 7.4. Products
    • 7.4.1. Carbonated aggregates
    • 7.4.2. Additives during mixing
    • 7.4.3. Carbonates from natural minerals
    • 7.4.4. Carbonates from waste
  • 7.5. Concrete curing
  • 7.6. Costs
  • 7.7. Challenges

8. ALTERNATIVE FUELS FOR CEMENT PRODUCTION

  • 8.1. Overview
  • 8.2. Fossil Fuels Alternatives
  • 8.3. Companies
  • 8.4. Cement Kilns
    • 8.4.1. Fuel Switching
      • 8.4.1.1. Projects
      • 8.4.1.2. Burner Design Considerations
    • 8.4.2. Alternative Fuels for Cement Kilns
      • 8.4.2.1. Waste
      • 8.4.2.2. Biomass
  • 8.5. Net-zero in the Cement Sector
  • 8.6. Modern cement plants
  • 8.7. Hydrogen in Cement Production
    • 8.7.1. Low-carbon hydrogen deployment in cement production
  • 8.8. Kiln electrification
    • 8.8.1. Overview
    • 8.8.2. Rotodynamic Heating Technology
    • 8.8.3. Electric Arc Plasma Technologies
    • 8.8.4. Resistive Heating
    • 8.8.5. Microwave and Induction Heating
      • 8.8.5.1. Carbon capture economics for cement production
    • 8.8.6. Electrifying cement plant calciners
  • 8.9. Electrochemical Cement Processing
  • 8.10. Solar power for cement production
    • 8.10.1. Concentrated Solar Power (CSP)
    • 8.10.2. CSP in Cement Production Technology

9. END-USE MARKETS

  • 9.1. Overview
  • 9.2. Residential Buildings
  • 9.3. Commercial and Office Buildings
  • 9.4. Infrastructure

10. COMPANY PROFILES (172 company profiles)

11. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제