![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1415532
ÇÕ¼º µ¥ÀÌÅÍ : AIÀÇ ¹Ì·¡¿Í »õ·Î¿î »ýŰèSynthetic Data: Future of AI and Emerging Ecosystems |
±â¾÷ÀÌ µ¥ÀÌÅ͸¦ Ȱ¿ëÇϰí ÀÇ¹Ì ÀÖ´Â ÅëÂû·ÂÀ» âÃâÇÏ´Â ¹æ½ÄÀ» º¯°æ
ÇÕ¼º µ¥ÀÌÅÍ´Â Çö½Ç ¼¼°è¿¡¼ ¹ß»ýÇÑ »ç°Ç¿¡¼ ¼öÁýµÈ µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ÀÎÀ§ÀûÀ¸·Î »ý¼ºµÈ µ¥ÀÌÅ͸¦ ¸»ÇÕ´Ï´Ù. ÅØ½ºÆ®, Ç¥, À̹ÌÁö, µ¿¿µ»ó µîÀÇ ÇüÅ·ΠÀÎÀ§ÀûÀ¸·Î »ý¼ºµÈ µ¥ÀÌÅÍ´Ù. ÇÕ¼º µ¥ÀÌÅÍ »ý¼ºÀº ºñÈ¿À²ÀûÀÎ µ¥ÀÌÅÍ ¼¼Æ®¿Í ÇÁ¶óÀ̹ö½Ã ¹®Á¦¶ó´Â ¹®Á¦¸¦ ÇØ°áÇÕ´Ï´Ù.
¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© »ý¼ºµÇ±â ¶§¹®¿¡ Á¶Á÷Àº ¿î¿µ µ¥ÀÌÅ͸¦ Å×½ºÆ®Çϰí ÀΰøÁö´É(AI)/¸Ó½Å·¯´×(ML) ¸ðµ¨À» È¿À²ÀûÀ¸·Î ÈÆ·Ã½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼öÇÐÀû ¸ðµ¨À» °ËÁõÇÏ°í µö·¯´× ¸ðµ¨À» ÇнÀÇÏ´Â µ¥µµ µµ¿òÀÌ µË´Ï´Ù. AI/ML ¸ðµ¨ÀÌ Àü ¼¼°èÀûÀ¸·Î ¿î¿µ °³¼±À» À§ÇØ Ã¤Åõǰí ÀÖ´Â Á¡À» °¨¾ÈÇÒ ¶§, ÀÌ ±â¼úÀº ÇâÈÄ 5³â ³»¿¡ ÁÖ·ù°¡ µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. Ç¥ÁØÈµÈ Æ÷¸ËÀ¸·Î ÇÕ¼º µ¥ÀÌÅ͸¦ ±¸ÃàÇϱâ À§ÇÑ ²÷ÀÓ¾ø´Â ¿¬±¸ °³¹ß ¹× °È°¡ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.
À̹ø Á¶»ç¿¡¼ Frost & SullivanÀº ÀÎÀ§ÀûÀ¸·Î »ý¼ºµÈ µ¥ÀÌÅ͸¦ ÅëÇØ µ¥ÀÌÅÍ È°¿ëÀ¸·Î ÀÎÇÑ º¯È¸¦ Æò°¡ÇÕ´Ï´Ù.
Transforms the Way Businesses Use Data and Generate Meaningful Insights
Synthetic data is data generated artificially based on data collected from real-world occurrences. It is artificially generated data in the form of text, tables, images, and videos, among others. Synthetic data generation will address the challenge of inefficient datasets and privacy concerns.
Generated using algorithms, it enables organizations to test operational data and train artificial intelligence (AI)/machine learning (ML) models efficiently. It also helps validate mathematical models and train deep learning models. The technology will go mainstream in the next 5 years, considering the global adoption of AI/ML models to elevate operations. There is constant R&D and reinforcement for building synthetic data in a standardized format.
In this study, Frost & Sullivan will assess the transformation due to data usage caused by artificially generated data.