½ÃÀ庸°í¼­
»óǰÄÚµå
1716659

÷´Ü Ç×°ø ¸ðºô¸®Æ¼(AAM) ½ÃÀå ±âȸ, ¼ºÀå ÃËÁø¿äÀÎ, »ê¾÷ µ¿Ç⠺м® ¹× ¿¹Ãø(2025-2034³â)

Advanced Air Mobility Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Global Market Insights Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 190 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ Ã·´Ü Ç×°ø ¸ðºô¸®Æ¼(AAM) ½ÃÀåÀº 2024³â¿¡ 115¾ï ´Þ·¯¸¦ âÃâÇß°í 2025³âºÎÅÍ 2034³â±îÁö ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR) 20.6%¸¦ ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è°¡ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÌ°í ±âÈÄ º¯È­ ´ëÃ¥¿¡ ´ëÇÑ ³ë·ÂÀ» °­È­ÇÏ´Â °¡¿îµ¥, ¿î¼Û ºÎ¹®Àº º¸´Ù ±ú²ýÇÑ ¼Ö·ç¼ÇÀ¸·ÎÀÇ º¯Çõ±â¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ¼Ò¸®¸¦ ÃÖ¼ÒÈ­ÇÏ´Â Áö¼Ó °¡´ÉÇÑ Ç×°ø ¿î¼Û ¿É¼ÇÀ» Á¦°øÇÏ´Â °ÔÀÓ Ã¼ÀÎÀú·Î¼­ »ó½ÂÇϰí ÀÖ½À´Ï´Ù.

Advanced Air Mobility Market-IMG1

¼¼°è Á¤ºÎ¿Í ±ÔÁ¦ ´ç±¹Àº À¯¸®ÇÑ Á¤Ã¥°ú ÅõÀÚ¸¦ ÅëÇØ ÀÌ·¯ÇÑ Áøº¸¸¦ Áö¿øÇϰí ÀÖÀ¸¸ç, AAM ±â¼úÀÇ ½Å¼ÓÇÑ ÀÎÁõ°ú »ó¾÷È­¸¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÇÏÁö¸¸ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. µµ½ÃÈ­°¡ ÁøÇàµÇ°í º¸´Ù ºü¸£°í È¿À²ÀûÀÎ À̵¿ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö´Â °¡¿îµ¥, AAMÀº ¿øÈ°ÇÑ Æ÷ÀÎÆ® Åõ Æ÷ÀÎÆ®ÀÇ ¿î¼ÛÀ» Á¦°øÇÔÀ¸·Î½á Áö¿ª ¹× µµ½ÃÀÇ À̵¿¼º¿¡ Çõ¸íÀ» ÀÏÀ¸Å³ °ÍÀ¸·Î ±â´ëµÇ°í ÀÖ½À´Ï´Ù.

½ÃÀå ¹üÀ§
½ÃÀÛ ¿¬µµ 2024³â
¿¹Ãø ¿¬µµ 2025-2034³â
½ÃÀÛ ±Ý¾× 115¾ï ´Þ·¯
¿¹Ãø ±Ý¾× 735¾ï ´Þ·¯
CAGR 20.6%

2024³â¿¡ 32¾ï ´Þ·¯·Î Æò°¡µÈ Á¶Á¾»çÀÇ °í±Þ Ç×°ø À̵¿¼º ºÐ¾ß´Â ¾ÈÀüÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â µµ½Ã Ç×°ø ¿î¼ÛÀ» ½ÇÇöÇϱâ À§ÇØ Àΰ£ÀÇ Àü¹® Áö½Ä°ú ±â¼ú Çõ½ÅÀ» À¶ÇÕ½ÃÄÑ µû¶ó¼­ °­·ÂÇÑ ¼ºÀåÀ» ¸ñ°ÝÇϰí ÀÖ½À´Ï´Ù. ¼÷·ÃµÈ ÆÄÀÏ·µÀÇ ±â¼úÀ» Ȱ¿ëÇÏ¿© ¾ÈÀü¼ºÀ» ÇÑÃþ ´õ ³ôÀΠ÷´Ü Ç×°ø ¸ðºô¸®Æ¼´Â º¹ÀâÇϰųª Àα¸ ¹Ðµµ°¡ ³ôÀº ȯ°æ¿¡¼­µµ ¿øÈ°ÇÑ ¿îÇàÀ» º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ ±âÁ¸ÀÇ Ç×°ø ÀÎÇÁ¶ó¿ÍÀÇ ÅëÇÕÀ̳ª À¯¸®ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©ÀÇ µµÀÔÀ¸·Î ÀÎÁõ ÇÁ·Î¼¼½º°¡ »¡¶óÁö°í ÀÌ·¯ÇÑ ±â¼úÀÇ ½Å¼ÓÇÑ Àü°³¿Í Æø³ÐÀº ¼ö¿ë¿¡ÀÇ ±æÀÌ ¿­¸®°í ÀÖ½À´Ï´Ù.

÷´Ü Ç×°ø ¸ðºô¸®Æ¼(AAM) ½ÃÀåÀº Àü±â ¼öÁ÷ ÀÌÂø·ú(eVTOL)±â, ´Ü°Å¸® ÀÌÂø·ú(STOL)±â, ±âÁ¸ÀÇ °íÁ¤Àͱ⠵î Â÷·® À¯Çüº°·Î ºÐ·ùµË´Ï´Ù. ÇÏÁö¸¸ ¿©°´ ¿î¼Û ¿ä°ÇÀ» ÃæÁ·ÇÒ ¼ö Àֱ⠶§¹®¿¡ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. eVTOL ±â¼úÀÇ °³¹ßÀº ÷´Ü Ç×°ø ¸ðºô¸®Æ¼(AAM)ÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

2024³â¿¡ 83¾ï ´Þ·¯·Î Æò°¡µÈ ¹Ì±¹ÀÇ Ã·´Ü Ç×°ø ¸ðºô¸®Æ¼(AAM) ½ÃÀåÀº °­·ÂÇÑ ±â¼ú Çõ½Å »ýŰè¿Í À¯¸íÇÑ Ç×°ø¿ìÁÖ ±â¾÷ÀÇ Á¸Àç¿¡ ÈûÀÔ¾î ¼¼°èÀû ¸®´õ·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹Àº AAM ¼Ö·ç¼ÇÀÇ Áøº¸¿Í ä¿ëÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ ³ª¶óÀÇ Àû±ØÀûÀÎ ±ÔÁ¦ ȯ°æÀº °ü¹ÎÀÇ ÀÌÇØ °ü°èÀÚ°£ÀÇ Áö¼ÓÀûÀÎ Çù·Â°ú ÇÔ²² ÷´Ü Ç×°ø ¸ðºô¸®Æ¼(AAM) ±â¼úÀÇ »ó¾÷È­¸¦ °¡¼ÓÈ­ÇÏ°í ¹Ì±¹À» ¼¼°èÀÇ AAM ·£µå½ºÄÉÀÌÇÁ¿¡¼­ ÇÁ·ÐÆ® ·¯³Ê·Î ÀÚ¸® ¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú Á¶»ç ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ¾÷°è ÀλçÀÌÆ®

  • »ýÅÂ°è ºÐ¼®
  • ¾÷°è¿¡ ¹ÌÄ¡´Â ¿µÇâ¿äÀÎ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • µµ½ÃÈ­¿Í ±³Åë Á¤Ã¼
      • ¼ÒºñÀÚÀÇ ±âÈ£ÀÇ º¯È­
      • ÅõÀÚ¿Í Á¤ºÎ Áö¿ø
      • Àü·«Àû ÆÄÆ®³Ê½Ê°ú Á¦ÈÞ
      • ÀÌ¿ë »ç·Ê¿Í ¿ëµµÀÇ È®´ë
    • ¾÷°èÀÇ ÀáÀçÀû À§Çè ¹× °úÁ¦
      • ±ÔÁ¦¿Í ¾ÈÀü¼ºÀÇ °úÁ¦
      • ÀÏ¹Ý ´ëÁßÀÇ ¼ö¿ë°ú ÀνÄ
  • ¼ºÀå °¡´É¼º ºÐ¼®
  • ±ÔÁ¦ »óȲ
  • ±â¼ú »óȲ
  • Àå·¡ ½ÃÀå µ¿Çâ
  • °¸ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦4Àå °æÀï ±¸µµ

  • ¼­·Ð
  • ±â¾÷ Á¡À¯À² ºÐ¼®
  • ÁÖ¿ä ½ÃÀå ±â¾÷ÀÇ °æÀï ºÐ¼®
  • °æÀï Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º
  • Àü·« ´ë½Ãº¸µå

Á¦5Àå ½ÃÀå Ã߰衤¿¹Ãø : ¿îÀü ¸ðµåº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ÆÄÀÏ·µ ¿îÀü
  • ÀÚÀ²/¿ø°Ý ¿îÀü

Á¦6Àå ½ÃÀå Ã߰衤¿¹Ãø : Â÷·® À¯Çüº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • eVTOL(Àü±â ¼öÁ÷ ÀÌÂø·ú) Ç×°ø±â
  • STOL(´Ü°Å¸® ÀÌÂø·ú) Ç×°ø±â
  • ±âÁ¸ °íÁ¤ÀÍ Ç×°ø±â

Á¦7Àå ½ÃÀå Ã߰衤¿¹Ãø : ÃßÁø À¯Çüº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • °¡¼Ö¸° ¿£Áø
    • ÅÍºó ¿£Áø(Åͺ¸)
    • ¿Õº¹µ¿(ÇǽºÅæ) ¿£Áø
  • Àü±â ÃßÁø
  • ÇÏÀ̺긮µå ÃßÁø

Á¦8Àå ½ÃÀå Ã߰衤¿¹Ãø : °Å¸®º°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • 100km ¹Ì¸¸
  • 100km-250km
  • 250km-500km
  • 500km ÀÌ»ó

Á¦9Àå ½ÃÀå Ã߰衤¿¹Ãø : ¿ëµµº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • È­¹° ¿î¼Û
  • ¿©°´ ¿î¼Û
  • ¸ÅÇÎ ¹× Ãø·®
  • Ư¼ö ÀÓ¹«
  • °¨½Ã ¹× ¸ð´ÏÅ͸µ
  • ±âŸ

Á¦10Àå ½ÃÀå Ã߰衤¿¹Ãø : ÃÖÁ¾ ¿ëµµº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • »ó¾÷
  • Á¤ºÎ ¹× ±º»ç

Á¦11Àå ½ÃÀå Ã߰衤¿¹Ãø : Áö¿ªº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ÀÌÅ»¸®¾Æ
    • ³×´ú¶õµå
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • È£ÁÖ
    • Çѱ¹
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ¾Æ¸£ÇîÆ¼³ª
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • Airbus SAS
  • Aurora Flight Sciences
  • Bell Textron Inc.
  • Embraer SA
  • Garmin Aviation
  • GE Aviation
  • GKN Aerospace
  • Guangzhou EHang Intelligent Technology Co. Ltd.
  • Honywell
  • Joby Aviation
  • Lilium GmbH
  • Opener, Inc.
  • Safran
  • Siemens
  • Thales Group
  • The Boeing Company
KTH 25.05.22

The Global Advanced Air Mobility Market generated USD 11.5 billion in 2024 and is projected to grow at a CAGR of 20.6% between 2025 and 2034. As the world intensifies its efforts to reduce carbon emissions and combat climate change, the transportation sector is undergoing a transformative shift toward cleaner solutions. Advanced air mobility is emerging as a game-changer, offering sustainable air transport options that reduce traffic congestion, enhance transportation efficiency, and minimize environmental impacts. The increasing integration of electric propulsion systems, autonomous technologies, and innovative vehicle designs is accelerating the adoption of AAM solutions.

Advanced Air Mobility Market - IMG1

Governments and regulatory authorities across the globe are supporting these advancements through favorable policies and investments, enabling rapid certification and commercialization of AAM technologies. Furthermore, the growing interest from urban planners and transportation authorities in incorporating AAM systems into smart city frameworks is driving market growth. With the rise of urbanization and increasing demand for faster and more efficient travel solutions, AAM is expected to revolutionize regional and urban mobility by offering seamless, point-to-point transportation.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$11.5 Billion
Forecast Value$73.5 Billion
CAGR20.6%

The piloted advanced air mobility segment, valued at USD 3.2 billion in 2024, is witnessing robust growth as it blends human expertise with technological innovations to deliver safe and reliable urban air transportation. Piloted AAM vehicles offer an added layer of safety by leveraging the skills of experienced pilots, ensuring smooth operations even in complex or densely populated environments. Additionally, the integration of existing aviation infrastructure and the implementation of favorable regulatory frameworks are expediting the certification process, paving the way for faster deployment and wider acceptance of these technologies. As the industry moves toward autonomous solutions, piloted AAM vehicles are serving as a bridge to build public trust and refine operational processes.

The AAM market is categorized by vehicle types, including electric vertical take-off and landing (eVTOL) aircraft, short take-off and landing (STOL) aircraft, and conventional fixed-wing aircraft. In 2024, the eVTOL segment accounted for 50.4% of the market share, driven by the growing adoption of electric and hybrid propulsion systems. eVTOL aircraft are gaining traction due to their ability to meet passenger transportation requirements while adhering to stringent safety and operational standards. The development of eVTOL technology is expected to play a pivotal role in shaping the future of advanced air mobility, as these vehicles offer the potential for scalable, cost-effective, and environmentally sustainable transportation solutions.

The U.S. advanced air mobility market, valued at USD 8.3 billion in 2024, is positioned as a global leader fueled by a strong technological innovation ecosystem and the presence of prominent aerospace companies. With significant investments in research and development and a well-established infrastructure for testing and deploying new technologies, the U.S. is driving the advancement and adoption of AAM solutions. The country's proactive regulatory environment, combined with continuous collaboration between public and private sector stakeholders, is accelerating the commercialization of advanced air mobility technologies and positioning the U.S. as a frontrunner in the global AAM landscape.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definitions
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates and calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Urbanization and traffic congestion
      • 3.2.1.2 Changing consumer preferences
      • 3.2.1.3 Investment and government support
      • 3.2.1.4 Strategic partnerships and collaborations
      • 3.2.1.5 Expansion of use cases and applications
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 Regulatory and safety challenges
      • 3.2.2.2 Public acceptance and perception
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
  • 3.5 Technology landscape
  • 3.6 Future market trends
  • 3.7 Gap analysis
  • 3.8 Porter's analysis
  • 3.9 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategy dashboard

Chapter 5 Market Estimates and Forecast, By Mode of Operation, 2021 – 2034 ($ Mn)

  • 5.1 Key trends
  • 5.2 Pilot operated
  • 5.3 Autonomous/Remotely operated

Chapter 6 Market Estimates and Forecast, By Vehicle Type, 2021 – 2034 ($ Mn)

  • 6.1 Key trends
  • 6.2 eVTOL (Electric Vertical Takeoff and Landing) aircraft
  • 6.3 STOL (Short Takeoff and Landing) aircraft
  • 6.4 Conventional fixed-wing aircraft

Chapter 7 Market Estimates and Forecast, By Propulsion Type, 2021 – 2034 ($ Mn)

  • 7.1 Key trends
  • 7.2 Gasoline
    • 7.2.1 Turbine engines (Turbo)
    • 7.2.2 Reciprocating (Piston) engines
  • 7.3 Electric propulsion
  • 7.4 Hybrid propulsion

Chapter 8 Market Estimates and Forecast, By Range, 2021 – 2034 ($ Mn)

  • 8.1 Key trends
  • 8.2 Below 100 km
  • 8.3 100 km – 250 km
  • 8.4 250 km – 500 km
  • 8.5 More than 500 km

Chapter 9 Market Estimates and Forecast, By Application, 2021 – 2034 ($ Mn)

  • 9.1 Key trends
  • 9.2 Cargo transport
  • 9.3 Passenger transport
  • 9.4 Mapping & surveying
  • 9.5 Special mission
  • 9.6 Surveillance & monitoring
  • 9.7 Others

Chapter 10 Market Estimates and Forecast, By End Use, 2021 – 2034 ($ Mn)

  • 10.1 Key trends
  • 10.2 Commercial
  • 10.3 Government & military

Chapter 11 Market Estimates and Forecast, By Region, 2021 – 2034 ($ Mn)

  • 11.1 Key trends
  • 11.2 North America
    • 11.2.1 U.S.
    • 11.2.2 Canada
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 France
    • 11.3.4 Spain
    • 11.3.5 Italy
    • 11.3.6 Netherlands
  • 11.4 Asia Pacific
    • 11.4.1 China
    • 11.4.2 India
    • 11.4.3 Japan
    • 11.4.4 Australia
    • 11.4.5 South Korea
  • 11.5 Latin America
    • 11.5.1 Brazil
    • 11.5.2 Mexico
    • 11.5.3 Argentina
  • 11.6 Middle East and Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 South Africa
    • 11.6.3 UAE

Chapter 12 Company Profiles

  • 12.1 Airbus S.A.S.
  • 12.2 Aurora Flight Sciences
  • 12.3 Bell Textron Inc.
  • 12.4 Embraer S.A.
  • 12.5 Garmin Aviation
  • 12.6 GE Aviation
  • 12.7 GKN Aerospace
  • 12.8 Guangzhou EHang Intelligent Technology Co. Ltd.
  • 12.9 Honywell
  • 12.10 Joby Aviation
  • 12.11 Lilium GmbH
  • 12.12 Opener, Inc.
  • 12.13 Safran
  • 12.14 Siemens
  • 12.15 Thales Group
  • 12.16 The Boeing Company
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦