시장보고서
상품코드
1650909

세계의 그래프 데이터베이스 시장

Graph Database

발행일: | 리서치사: Market Glass, Inc. (Formerly Global Industry Analysts, Inc.) | 페이지 정보: 영문 184 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계의 그래프 데이터베이스 시장은 2030년까지 150억 달러에 달할 전망

2024년에 53억 달러로 추정되는 세계의 그래프 데이터베이스 시장은 2024-2030년에 CAGR 19.0%로 성장하며, 2030년에는 150억 달러에 달할 것으로 예측됩니다. 이 리포트에서 분석한 부문의 하나인 그래프 데이터베이스 소프트웨어는 CAGR 17.8%를 기록하며, 분석 기간 종료시에는 91억 달러에 달할 것으로 예측됩니다. 그래프 데이터베이스 서비스 분야의 성장률은 분석 기간에 CAGR 21.0%로 추정됩니다.

미국 시장은 15억 달러, 중국은 CAGR 18.5%로 성장 예측

미국의 그래프 데이터베이스 시장은 2024년에 15억 달러로 추정됩니다. 세계 2위의 경제대국인 중국은 2030년까지 23억 달러의 시장 규모에 달할 것으로 예측되며, 분석 기간인 2024-2030년의 CAGR은 18.5%입니다. 기타 주목해야 할 지역별 시장으로는 일본과 캐나다가 있으며, 분석 기간 중 CAGR은 각각 16.6%와 15.9%로 예측됩니다. 유럽에서는 독일이 CAGR 약 13.0%로 성장할 것으로 예측됩니다.

세계의 그래프 데이터베이스 시장 - 주요 동향과 촉진요인 정리

그래프 데이터베이스가 복잡한 데이터 관계를 관리하고 최신 용도를 강화하는 데 필수적인 이유는 무엇인가?

그래프 데이터베이스는 복잡한 데이터 관계를 관리하고 차세대 지능형 용도를 구현하는 중요한 툴로 빠르게 부상하고 있습니다. 그렇다면 왜 지금 그래프 데이터베이스가 필수적인 것일까? 데이터를 테이블에 저장하고 관계를 쿼리하기 위해 여러 번의 결합이 필요한 기존 관계형 데이터베이스와 달리, 그래프 데이터베이스는 데이터를 노드(엔티티)와 엣지(관계)로 표현하므로 데이터 포인트 간의 복잡한 연결을 쉽게 시각화, 분석, 쿼리할 수 있습니다. 할 수 있습니다. 이러한 구조는 소셜 네트워크, 추천 엔진, 부정행위 감지 시스템, 공급망 관리 등 상호 연결성이 높은 데이터를 다루는 용도에 적합합니다.

기업과 산업계가 데이터베이스 인사이트에 점점 더 의존하고 있는 가운데, 그래프 데이터베이스는 기존 데이터베이스에서는 숨겨져 있던 패턴, 관계, 추세를 발견할 수 있게 해줍니다. 네트워크의 사회적 연결 매핑, 유전체 데이터의 관계 식별, 사기 감지를 위한 금융 거래 추적 등 그래프 데이터베이스는 보다 빠른 쿼리와 데이터 관계의 효율적인 탐색을 가능하게 합니다. 빅데이터, AI, 머신러닝의 부상으로 그래프 데이터베이스는 복잡하고 연결된 데이터를 다루는 강력한 방법을 제공하며, 이러한 고급 분석을 활용하고자 하는 기업에게 필수적인 기술이 되고 있습니다.

기술의 발전은 그래프 데이터베이스의 성능과 능력을 어떻게 향상시키고 있는가?

기술의 발전으로 그래프 데이터베이스의 성능과 기능이 크게 향상되어 확장성과 유연성이 향상되고 다양한 용도에서 사용할 수 있게 되었습니다. 가장 중요한 발전 중 하나는 데이터를 여러 서버와 클라우드 인스턴스에 분산시킬 수 있는 분산형 그래프 데이터베이스의 개발입니다. 이러한 분산화를 통해 그래프 데이터베이스는 더 큰 데이터세트와 더 복잡한 쿼리를 처리할 수 있으며, 기업은 데이터 증가에 따라 그래프 데이터베이스 인프라를 확장할 수 있습니다. 분산형 그래프 데이터베이스는 통신, 금융 서비스, E-Commerce 등 방대한 데이터세트의 실시간 분석이 의사결정에 필수적인 산업에서 특히 가치가 높습니다.

또 다른 중요한 발전은 Cypher, Gremlin, SPARQL과 같은 그래프 쿼리 언어의 개선으로 개발자가 보다 직관적이고 효율적으로 그래프 데이터베이스를 조작할 수 있게 되었습니다는 점입니다. 이들 언어는 그래프 구조를 다루기 위해 특별히 설계되었으며, 데이터 포인트 간의 관계를 탐색하는 복잡한 쿼리를 쉽게 작성할 수 있습니다. 예를 들어 Neo4j용으로 개발된 Cypher는 그래프 탐색을 단순화하여 대규모 그래프의 경로, 이웃, 패턴을 쉽게 쿼리할 수 있습니다. 이러한 특화된 쿼리 언어는 그래프 데이터베이스의 사용성을 향상시키고, 개발자와 데이터 분석가의 학습 곡선을 단축하여 데이터에서 더 깊은 인사이트을 이끌어낼 수 있게 해줍니다.

그래프 데이터베이스와 머신러닝 및 인공지능의 통합은 조직이 데이터를 분석하고 활용하는 방식에도 변화를 가져오고 있습니다. 그래프 기반 데이터 모델과 머신러닝 알고리즘을 결합하여 기업은 보다 정교한 추천 시스템, 예측 모델, 이상 징후 감지 시스템을 구축할 수 있습니다. 예를 들어 머신러닝 모델은 그래프 데이터베이스에 저장된 연결 데이터를 활용하여 E-Commerce 및 컨텐츠 플랫폼에서 상품, 고객 및 그 행동 간의 관계를 분석하여 사용자에게 더 나은 추천을 제공할 수 있습니다. 부정행위 감지에서는 그래프 기반 머신러닝 모델을 통해 거래 데이터의 숨겨진 연결고리를 발견하고, 기존 데이터베이스에서는 감지하기 어려웠던 의심스러운 행위를 식별할 수 있습니다.

또한 GPU(그래픽 처리 장비)의 사용과 같은 하드웨어의 발전으로 더 빠른 그래프 처리 및 분석이 가능해졌으며, GPU는 병렬 처리를 위해 설계되었으므로 여러 관계를 동시에 평가해야 하는 대규모 그래프 데이터세트를 탐색하는 데 적합합니다. GPU의 병렬 처리 능력을 활용함으로써 그래프 데이터베이스는 경로 찾기, 클러스터링, 그래프 기반 알고리즘과 같은 복잡한 쿼리를 가속화하고 그래프 데이터베이스 전체의 성능을 향상시킬 수 있습니다. 이 기능은 연결된 데이터를 빠르고 정확하게 분석하는 것이 중요한 실시간 부정행위 감지와 같은 용도에 특히 중요합니다.

AWS, Microsoft Azure, Google Cloud와 같은 클라우드 프로바이더들은 관리형 그래프 데이터베이스 서비스를 제공하고 있으며, 기업은 대규모 인프라 관리 없이도 그래프 데이터베이스를 빠르게 배포할 수 있습니다. 대규모 인프라 관리 없이 그래프 데이터베이스를 빠르게 배포할 수 있습니다. 이러한 클라우드 기반 서비스는 확장성, 보안, 다른 데이터 툴와의 통합을 제공하여 모든 규모의 조직이 데이터 관리 요구에 그래프 데이터베이스를 쉽게 활용할 수 있도록 돕습니다. 클라우드 서비스의 편리함과 그래프 데이터베이스의 유연성이 결합되어 커넥티드 데이터의 힘을 활용하고자 하는 기업에게 더욱 친숙하게 다가갈 수 있는 기술입니다.

그래프 데이터베이스가 실시간 데이터 분석, 부정행위 감지, 추천 시스템에 필수적인 이유는 무엇인가?

그래프 데이터베이스가 실시간 데이터 분석, 사기 감지 및 추천 시스템에 필수적인 이유는 복잡하고 상호 연결된 데이터를 효율적으로 모델링, 저장 및 조회할 수 있는 방법을 제공하기 때문입니다. 실시간 데이터 분석에서 그래프 데이터베이스는 데이터 포인트 간의 관계를 식별하는 데 탁월하며, 이는 엔티티 간의 연결이 엔티티 자체만큼이나 중요한 시나리오에서 필수적입니다. 예를 들어 통신 분야에서 그래프 데이터베이스는 통화 기록, 네트워크 트래픽, 사용자 관계를 모델링하고, 패턴을 식별하고, 네트워크 성능을 최적화하고, 향후 사용량을 예측하는 데 사용됩니다. 금융 분야에서는 그래프 데이터베이스를 통한 실시간 분석이 고객, 거래, 금융상품의 관계를 분석하여 거래 모니터링, 시장 동향 감지, 부정행위 예방에 도움을 주고 있습니다.

부정행위 감지에 있으며, 그래프 데이터베이스는 겉으로 보기에 무관해 보이는 엔티티 간의 숨겨진 관계를 밝혀냄으로써 부정행위 감지를 용이하게 하고, 부정행위 감지를 위해 중요한 역할을 합니다. 기존 데이터베이스는 엔티티 간의 복잡한 관계, 특히 동적 관계를 가진 대규모 데이터세트를 처리하는 데 어려움을 겪었습니다. 그러나 그래프 데이터베이스는 개인, 계정, 거래, 기기 간의 복잡한 연결을 모델링할 수 있으므로 조직은 이상 징후를 감지하고 부정 패턴을 발견할 수 있습니다. 예를 들어 은행 업무에서 그래프 데이터베이스는 여러 계좌, 제3자 또는 비정상적인 상호 작용 패턴과 관련된 의심스러운 거래를 식별할 수 있으며, 자금세탁, 신분 도용, 신용카드 사기 등의 금융 범죄를 예방하는 데 도움이 됩니다.

추천 시스템 역시 그래프 기반 구조로부터 큰 혜택을 받고 있습니다. 컨텐츠 플랫폼, E-Commerce, 소셜미디어에서 추천 엔진은 사용자의 행동, 선호도, 다른 사용자 및 아이템과의 관계를 분석하여 개인화된 추천을 제공해야 합니다. 그래프 데이터베이스는 이러한 복잡한 관계의 저장과 쿼리를 용이하게 하여 추천 시스템이 보다 정확하고 관련성 높은 제안을 제공할 수 있도록 합니다. 예를 들어 E-Commerce 플랫폼에서 그래프 데이터베이스는 사용자, 상품, 구매 이력, 상품 속성 간의 관계를 분석하여 추천 엔진이 유사한 사용자의 구매 이력 및 선호도에 따라 상품을 제안할 수 있도록 합니다. 마찬가지로 스트리밍 플랫폼에서는 그래프 데이터베이스가 시청 기록과 컨텐츠의 관계를 분석하여 사용자의 시청 패턴과 유사 사용자의 시청 패턴을 기반으로 사용자에게 새로운 프로그램이나 영화를 추천할 수 있습니다.

그래프 데이터베이스는 사이버 보안 용도에도 탁월하며, 네트워크 노드, 사용자, 이벤트 간의 관계를 파악하는 것은 사이버 위협을 감지하고 완화하는 데 필수적입니다. 네트워크 모니터링에서 그래프 데이터베이스는 장비 간 연결, IP 주소, 네트워크 트래픽 패턴을 추적하고 분석하여 악성코드 감염이나 무단 액세스 시도와 같은 의심스러운 활동을 식별할 수 있습니다. 이러한 연결을 실시간으로 가시화하고 분석함으로써 보안팀은 위협에 보다 신속하고 효과적으로 대응하여 데이터 유출 및 사이버 공격의 위험을 줄일 수 있습니다.

또한 그래프 데이터베이스는 공급업체, 제품, 배송, 고객 간의 복잡한 관계를 추적 및 분석하여 공급망 관리를 지원합니다. 공급망에는 지연이나 혼란, 비효율이 발생할 수 있는 수많은 접점이 존재합니다. 전체 공급망을 그래프로 모델링함으로써 기업은 이러한 관계를 실시간으로 가시화하여 병목현상을 파악하고, 물류 최적화와 원활한 운영을 실현할 수 있습니다. 그래프 데이터베이스는 이러한 역동적인 관계를 유연하게 관리할 수 있는 방법을 제공하여 기업이 변화에 빠르게 대응하고 효율적인 공급망을 유지할 수 있도록 돕습니다.

그래프 데이터베이스 시장의 성장을 가속하는 요인은 무엇인가?

그래프 데이터베이스 시장의 급격한 성장에는 최신 용도의 데이터 복잡성 증가, AI와 머신러닝의 부상, 실시간 분석에 대한 수요 증가, 클라우드 기반 데이터베이스 솔루션의 발전 등 몇 가지 중요한 요인이 있습니다. 첫째, 최신 용도의 데이터 복잡성은 그래프 데이터베이스 시장의 주요 촉진요인입니다. 기업이 더 많은 데이터를 수집하고 생성함에 따라 데이터 포인트 간의 관계는 더욱 복잡해져 기존 관계형 데이터베이스에서 관리하기 어려워지고 있습니다. 소셜미디어, E-Commerce, 금융 서비스, 헬스케어 등의 용도는 모두 복잡한 데이터 네트워크를 포함하고 있으며, 효율적인 관계 관리 및 분석이 필요합니다. 고도로 연결된 데이터를 처리할 수 있는 그래프 데이터베이스는 이러한 과제를 해결하기 위해 점점 더 많이 채택되고 있습니다.

AI와 머신러닝의 부상도 그래프 데이터베이스 시장의 성장을 가속하는 중요한 요인 중 하나입니다. 머신러닝 모델과 AI 알고리즘은 종종 복잡한 관계를 가진 대규모 데이터세트의 분석에 의존하여 인사이트을 생성하고 예측을 수행합니다. 그래프 데이터베이스는 이러한 관계를 보다 자연스럽게 표현할 수 있는 방법을 제공하여 보다 효율적인 데이터 처리와 AI 모델의 정확도 향상을 가능하게 합니다. 예를 들어 추천 시스템, 사기 감지, 지식 그래프 등 AI 기반 용도는 그래프 데이터베이스를 사용하여 데이터 포인트의 상호 연관성을 분석하여 의사결정 프로세스를 강화하고 더 깊은 인사이트을 제공합니다. 데이터를 효율적으로 관리하고 쿼리할 수 있는 그래프 데이터베이스에 대한 수요가 증가하고 있습니다.

실시간 분석에 대한 수요 증가도 그래프 데이터베이스 시장을 촉진하는 큰 요인입니다. 금융, 소매, 통신 등의 분야의 기업은 중요한 의사결정을 신속하게 내리기 위해 실시간으로 데이터를 처리하고 분석해야 합니다. 부정거래 감지, 고객과의 상호작용 최적화, 공급망 관리 등 경쟁력을 유지하기 위해서는 실시간 고려가 필수적입니다. 그래프 데이터베이스는 데이터 포인트 간의 관계를 빠르게 탐색하고 그 연관성을 분석할 수 있는 능력을 갖추고 있으며, 업무에 대한 실시간 가시성을 원하는 기업에게 솔루션을 제공합니다. 이러한 실시간 기능은 금융 서비스처럼 즉각적인 의사결정이 필요한 산업에서 특히 중요하며, 신속한 부정행위 감지를 통해 수백만 달러를 절약할 수 있습니다.

클라우드 기반 그래프 데이터베이스 솔루션의 발전도 시장 성장을 촉진하고 있습니다. 클라우드의 보급이 확대됨에 따라 기업은 확장성, 유연성, 사용 편의성을 위해 클라우드 기반 그래프 데이터베이스 서비스를 이용하고 있으며, AWS, Microsoft Azure, Google Cloud와 같은 클라우드 프로바이더들이 제공하는 관리형 그래프 데이터베이스 서비스를 통해 기업은 고가의 인프라나 전문 지식에 투자하지 않고도 그래프 데이터베이스를 빠르게 도입할 수 있습니다. 이를 통해 그래프 데이터베이스는 모든 규모의 기업이 쉽게 이용할 수 있게 되었으며, 중소기업도 큰 초기 비용 없이도 커넥티드 데이터 분석의 힘을 활용할 수 있게 되었습니다. 또한 클라우드 기반 솔루션의 유연성을 통해 기업은 데이터 수요 증가에 따라 그래프 데이터베이스를 확장할 수 있으며, 증가하는 데이터 양을 관리할 수 있는 비용 효율적인 방법을 제공할 수 있습니다.

이러한 요인에 더해 데이터 투명성과 추적성에 대한 규제 요건도 그래프 데이터베이스의 채택을 촉진하고 있습니다. 헬스케어, 금융, 공급망 관리 등의 산업에서는 데이터, 트랜잭션, 제품의 흐름을 추적하고 문서화하는 것이 규제에 의해 의무화되어 있습니다. 그래프 데이터베이스는 이러한 복잡한 데이터 관계를 모델링하고 쿼리할 수 있는 효율적인 방법을 제공하여 규제 준수를 보장하는 동시에 데이터 및 제품 이동을 보다 가시적으로 파악할 수 있게 해줍니다.

결론적으로, 그래프 데이터베이스 시장의 성장은 데이터의 복잡성 증가, AI와 머신러닝의 부상, 실시간 분석에 대한 수요, 클라우드 기반 데이터베이스 솔루션의 발전에 의해 주도되고 있습니다. 기업이 방대한 양의 상호 연결된 데이터에 대한 작업을 계속하는 가운데, 그래프 데이터베이스는 지능형 용도를 강화하고, 의사결정을 개선하며, 광범위한 산업에서 프로세스를 최적화하는 데 핵심적인 역할을 할 것으로 보입니다.

부문

컴포넌트(소프트웨어, 서비스);유형(속성 그래프, RDF);애플리케이션(부정 탐지·방지, 리스크·컴플라이언스·리포팅 관리, 공급망 관리, 기타 애플리케이션)

조사 대상 기업의 예(총 22건)

  • Amazon Web Services, Inc.
  • ArangoDB Inc.
  • Bitnine Co, Ltd.
  • Blazegraph
  • Cambridge Semantics
  • Cray, Inc.
  • DataStax, Inc.
  • Fluree, PBC
  • Franz Inc.
  • IBM Corporation
  • MarkLogic Corporation
  • Memgraph Ltd.
  • Microsoft Corporation
  • MongoDB, Inc.
  • Neo4j, Inc.
  • Objectivity Inc.
  • Ontotext
  • OpenLink Software, Inc.
  • Oracle Corporation
  • Orientdb
  • Sparcity Technologies
  • Stardog
  • Teradata Corporation
  • TIBCO Software, Inc.
  • Tigergraph

목차

제1장 조사 방법

제2장 개요

  • 시장 개요
  • 주요 기업
  • 시장 동향과 촉진요인
  • 세계 시장의 전망

제3장 시장 분석

  • 미국
  • 캐나다
  • 일본
  • 중국
  • 유럽
  • 프랑스
  • 독일
  • 이탈리아
  • 영국
  • 기타 유럽
  • 아시아태평양
  • 기타 지역

제4장 경쟁

KSA 25.02.25

Global Graph Database Market to Reach US$15.0 Billion by 2030

The global market for Graph Database estimated at US$5.3 Billion in the year 2024, is expected to reach US$15.0 Billion by 2030, growing at a CAGR of 19.0% over the analysis period 2024-2030. Graph Database Software, one of the segments analyzed in the report, is expected to record a 17.8% CAGR and reach US$9.1 Billion by the end of the analysis period. Growth in the Graph Database Services segment is estimated at 21.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.5 Billion While China is Forecast to Grow at 18.5% CAGR

The Graph Database market in the U.S. is estimated at US$1.5 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.3 Billion by the year 2030 trailing a CAGR of 18.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 16.6% and 15.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 13.0% CAGR.

Global Graph Database Market - Key Trends and Drivers Summarized

Why Are Graph Databases Becoming Essential for Managing Complex Data Relationships and Powering Modern Applications?

Graph databases are rapidly emerging as a crucial tool for managing complex data relationships and enabling the next generation of intelligent applications. But why are graph databases so essential today? Unlike traditional relational databases, which store data in tables and require multiple joins to query relationships, graph databases represent data as nodes (entities) and edges (relationships), making it easier to visualize, analyze, and query intricate connections between data points. This structure is ideal for applications that involve highly interconnected data, such as social networks, recommendation engines, fraud detection systems, and supply chain management.

As businesses and industries increasingly rely on data-driven insights, graph databases enable organizations to discover patterns, relationships, and trends that would otherwise remain hidden in conventional databases. Whether it's mapping social connections in a network, identifying relationships in genomic data, or tracking financial transactions for fraud detection, graph databases allow for faster querying and more efficient exploration of data relationships. With the rise of big data, AI, and machine learning, graph databases provide a powerful way to handle complex, connected data and have become an indispensable technology for companies seeking to leverage these advanced analytics.

How Are Technological Advancements Enhancing the Performance and Capabilities of Graph Databases?

Technological advancements are significantly improving the performance and capabilities of graph databases, making them more scalable, flexible, and accessible for a broader range of applications. One of the most important advancements is the development of distributed graph databases, which allow data to be spread across multiple servers or cloud instances. This distribution enables graph databases to handle larger datasets and more complex queries, allowing organizations to scale their graph database infrastructure as their data grows. Distributed graph databases are particularly valuable for industries such as telecommunications, financial services, and e-commerce, where real-time analysis of massive datasets is essential for decision-making.

Another critical advancement is the improvement in graph query languages, such as Cypher, Gremlin, and SPARQL, which allow developers to interact with graph databases more intuitively and efficiently. These languages are specifically designed to handle graph structures, making it easier to write complex queries that explore the relationships between data points. For example, Cypher, developed for Neo4j, simplifies graph traversals, making it easy to query for paths, neighbors, and patterns in large graphs. These specialized query languages enhance the usability of graph databases, reducing the learning curve for developers and data analysts and allowing them to unlock deeper insights from their data.

The integration of graph databases with machine learning and artificial intelligence is also transforming the way organizations analyze and utilize their data. By combining graph-based data models with machine learning algorithms, companies can build more sophisticated recommendation systems, predictive models, and anomaly detection systems. For instance, machine learning models can leverage the connected data stored in graph databases to improve recommendations for users in e-commerce or content platforms by analyzing the relationships between products, customers, and their behaviors. In fraud detection, graph-based machine learning models can uncover hidden connections in transaction data, identifying suspicious activities that would be difficult to detect with traditional databases.

In addition, advances in hardware, such as the use of GPUs (Graphics Processing Units), are enabling faster graph processing and analysis. GPUs are designed for parallel processing, making them well-suited for the traversal of large graph datasets, where multiple relationships must be evaluated simultaneously. By leveraging the parallel processing power of GPUs, graph databases can accelerate complex queries, such as pathfinding, clustering, and graph-based algorithms, improving the overall performance of graph databases. This capability is particularly important for applications like real-time fraud detection, where fast, accurate analysis of connected data is crucial.

Improvements in cloud-based graph database services are also driving the adoption of this technology. Cloud providers such as AWS, Microsoft Azure, and Google Cloud offer managed graph database services that enable organizations to deploy graph databases quickly and without the need for extensive infrastructure management. These cloud-based services offer scalability, security, and integration with other data tools, making it easier for organizations of all sizes to leverage graph databases for their data management needs. The convenience of cloud services, combined with the flexibility of graph databases, is making this technology more accessible to businesses looking to harness the power of connected data.

Why Are Graph Databases Critical for Real-Time Data Analysis, Fraud Detection, and Recommendation Systems?

Graph databases are critical for real-time data analysis, fraud detection, and recommendation systems because they provide an efficient way to model, store, and query complex, interconnected data. In real-time data analysis, graph databases excel at identifying relationships between data points, which is essential in scenarios where the connections between entities are as important as the entities themselves. For instance, in telecommunications, graph databases are used to model call records, network traffic, and user relationships to identify patterns, optimize network performance, and predict future usage. In finance, real-time analytics powered by graph databases help monitor transactions, detect market trends, and prevent fraudulent activities by analyzing the relationships between customers, transactions, and financial instruments.

In fraud detection, graph databases play a critical role by uncovering hidden connections between seemingly unrelated entities, making it easier to detect fraudulent behavior. Traditional databases struggle to handle complex relationships between entities, especially when it comes to large datasets with dynamic relationships. However, graph databases can model intricate connections between individuals, accounts, transactions, and devices, enabling organizations to detect anomalies and uncover patterns of fraud. For example, in banking, graph databases can identify suspicious transactions that involve multiple accounts, third parties, or unusual patterns of interaction, helping prevent financial crimes such as money laundering, identity theft, and credit card fraud.

Recommendation systems also benefit significantly from the graph-based structure. In content platforms, e-commerce, or social media, recommendation engines need to analyze user behavior, preferences, and relationships with other users or items to provide personalized recommendations. Graph databases make it easier to store and query these complex relationships, allowing recommendation systems to offer more accurate and relevant suggestions. For instance, in an e-commerce platform, a graph database can analyze the relationships between users, products, purchase histories, and product attributes, enabling the recommendation engine to suggest products based on similar users' purchases or preferences. Similarly, in streaming platforms, graph databases can analyze viewing histories and content relationships to recommend new shows or movies to users based on their viewing patterns and those of similar users.

Graph databases also excel in cybersecurity applications, where identifying the relationships between network nodes, users, and events is essential for detecting and mitigating cyber threats. In network monitoring, graph databases can track and analyze connections between devices, IP addresses, and network traffic patterns to identify suspicious activity, such as malware infections or unauthorized access attempts. By visualizing and analyzing these connections in real time, security teams can respond to threats more quickly and effectively, reducing the risk of data breaches or cyberattacks.

Furthermore, graph databases support supply chain management by tracking and analyzing the complex relationships between suppliers, products, shipments, and customers. In a supply chain, there are numerous touchpoints where delays, disruptions, or inefficiencies can occur. By modeling the entire supply chain as a graph, businesses can gain real-time visibility into these relationships, allowing them to identify bottlenecks, optimize logistics, and ensure smoother operations. Graph databases provide a flexible way to manage these dynamic relationships, ensuring that businesses can adapt quickly to changes and maintain efficient supply chains.

What Factors Are Driving the Growth of the Graph Database Market?

Several key factors are driving the rapid growth of the graph database market, including the increasing complexity of data in modern applications, the rise of AI and machine learning, the growing demand for real-time analytics, and advancements in cloud-based database solutions. First, the increasing complexity of data in modern applications is a major driver of the graph database market. As businesses collect and generate more data, the relationships between data points are becoming more intricate and harder to manage using traditional relational databases. Applications in social media, e-commerce, financial services, and healthcare all involve complex data networks that require efficient management and analysis of relationships. Graph databases, with their ability to handle highly connected data, are increasingly being adopted to address these challenges.

The rise of AI and machine learning is another significant factor driving the growth of the graph database market. Machine learning models and AI algorithms often rely on analyzing large datasets with complex relationships to generate insights or make predictions. Graph databases provide a more natural way to represent these relationships, allowing for more efficient data processing and improving the accuracy of AI models. For example, in recommendation systems, fraud detection, and knowledge graphs, AI-powered applications use graph databases to analyze the interconnectedness of data points, which enhances decision-making processes and provides deeper insights. As AI adoption continues to grow across industries, the demand for graph databases that can efficiently manage and query connected data is increasing.

The growing demand for real-time analytics is another major factor driving the graph database market. Businesses in sectors like finance, retail, and telecommunications need to process and analyze data in real time to make critical decisions quickly. Whether it's detecting fraudulent transactions, optimizing customer interactions, or managing supply chains, real-time insights are essential for staying competitive. Graph databases, with their ability to rapidly traverse relationships and analyze connections between data points, offer a solution for businesses seeking real-time visibility into their operations. This real-time capability is particularly important in industries that require instant decision-making, such as financial services, where rapid fraud detection can save millions of dollars.

Advancements in cloud-based graph database solutions are also fueling market growth. As cloud adoption continues to rise, companies are turning to cloud-based graph database services for their scalability, flexibility, and ease of use. Cloud providers like AWS, Microsoft Azure, and Google Cloud offer managed graph database services that allow businesses to deploy graph databases quickly without investing in expensive infrastructure or specialized expertise. This has made graph databases more accessible to organizations of all sizes, allowing smaller businesses to leverage the power of connected data analysis without significant upfront costs. The flexibility of cloud-based solutions also enables businesses to scale their graph databases as their data needs grow, providing a cost-effective way to manage increasing volumes of data.

In addition to these factors, regulatory requirements for data transparency and traceability are driving the adoption of graph databases. In industries such as healthcare, finance, and supply chain management, regulations require businesses to track and document the flow of data, transactions, or products. Graph databases offer an efficient way to model and query these complex data relationships, ensuring compliance with regulations while also providing greater visibility into the movement of data or products.

In conclusion, the growth of the graph database market is being driven by the increasing complexity of data, the rise of AI and machine learning, the demand for real-time analytics, and advancements in cloud-based database solutions. As businesses continue to grapple with vast amounts of interconnected data, graph databases will play a central role in powering intelligent applications, improving decision-making, and optimizing processes across a wide range of industries.

SCOPE OF STUDY:

The report analyzes the Graph Database market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Software, Services); Type (Property Graph, RDF); Application (Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 22 Featured) -

  • Amazon Web Services, Inc.
  • ArangoDB Inc.
  • Bitnine Co, Ltd.
  • Blazegraph
  • Cambridge Semantics
  • Cray, Inc.
  • DataStax, Inc.
  • Fluree, PBC
  • Franz Inc.
  • IBM Corporation
  • MarkLogic Corporation
  • Memgraph Ltd.
  • Microsoft Corporation
  • MongoDB, Inc.
  • Neo4j, Inc.
  • Objectivity Inc.
  • Ontotext
  • OpenLink Software, Inc.
  • Oracle Corporation
  • Orientdb
  • Sparcity Technologies
  • Stardog
  • Teradata Corporation
  • TIBCO Software, Inc.
  • Tigergraph

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

  • 1. MARKET OVERVIEW
    • Influencer Market Insights
    • Global Economic Update
    • Graph Database - Global Key Competitors Percentage Market Share in 2025 (E)
    • Competitive Market Presence - Strong/Active/Niche/Trivial for Players Worldwide in 2025 (E)
  • 2. FOCUS ON SELECT PLAYERS
  • 3. MARKET TRENDS & DRIVERS
    • Growing Adoption of Graph Databases in AI, Machine Learning, and Big Data Analytics
    • Expansion of Applications in Fraud Detection, Cybersecurity, and Risk Management
    • Increasing Use of Graph Databases in Healthcare for Patient Data and Genomic Research
    • Role of Graph Databases in Enabling Real-time Recommendations and Personalization
    • Future Directions: Integration of Graph Databases with Quantum Computing for Advanced Insights
    • Market Opportunities in Financial Services for Enhanced Customer Insights and Risk Analysis
    • Role of Graph Databases in Enabling Smarter Supply Chain Management and Logistics
  • 4. GLOBAL MARKET PERSPECTIVE
    • TABLE 1: World Graph Database Market Analysis of Annual Sales in US$ Thousand for Years 2015 through 2030
    • TABLE 2: World Recent Past, Current & Future Analysis for Graph Database by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
    • TABLE 3: World Historic Review for Graph Database by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 4: World 15-Year Perspective for Graph Database by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets for Years 2015, 2025 & 2030
    • TABLE 5: World Recent Past, Current & Future Analysis for Software by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
    • TABLE 6: World Historic Review for Software by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 7: World 15-Year Perspective for Software by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2025 & 2030
    • TABLE 8: World Recent Past, Current & Future Analysis for Services by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
    • TABLE 9: World Historic Review for Services by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 10: World 15-Year Perspective for Services by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2025 & 2030
    • TABLE 11: World Recent Past, Current & Future Analysis for Property Graph by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
    • TABLE 12: World Historic Review for Property Graph by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 13: World 15-Year Perspective for Property Graph by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2025 & 2030
    • TABLE 14: World Recent Past, Current & Future Analysis for RDF by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
    • TABLE 15: World Historic Review for RDF by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 16: World 15-Year Perspective for RDF by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2025 & 2030
    • TABLE 17: World Recent Past, Current & Future Analysis for Fraud Detection & Prevention by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
    • TABLE 18: World Historic Review for Fraud Detection & Prevention by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 19: World 15-Year Perspective for Fraud Detection & Prevention by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2025 & 2030
    • TABLE 20: World Recent Past, Current & Future Analysis for Risk, Compliance & Reporting Management by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
    • TABLE 21: World Historic Review for Risk, Compliance & Reporting Management by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 22: World 15-Year Perspective for Risk, Compliance & Reporting Management by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2025 & 2030
    • TABLE 23: World Recent Past, Current & Future Analysis for Supply Chain Management by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
    • TABLE 24: World Historic Review for Supply Chain Management by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 25: World 15-Year Perspective for Supply Chain Management by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2025 & 2030
    • TABLE 26: World Recent Past, Current & Future Analysis for Other Applications by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
    • TABLE 27: World Historic Review for Other Applications by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 28: World 15-Year Perspective for Other Applications by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2025 & 2030

III. MARKET ANALYSIS

  • UNITED STATES
    • Graph Database Market Presence - Strong/Active/Niche/Trivial - Key Competitors in the United States for 2025 (E)
    • TABLE 29: USA Recent Past, Current & Future Analysis for Graph Database by Component - Software and Services - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 30: USA Historic Review for Graph Database by Component - Software and Services Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 31: USA 15-Year Perspective for Graph Database by Component - Percentage Breakdown of Value Sales for Software and Services for the Years 2015, 2025 & 2030
    • TABLE 32: USA Recent Past, Current & Future Analysis for Graph Database by Type - Property Graph and RDF - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 33: USA Historic Review for Graph Database by Type - Property Graph and RDF Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 34: USA 15-Year Perspective for Graph Database by Type - Percentage Breakdown of Value Sales for Property Graph and RDF for the Years 2015, 2025 & 2030
    • TABLE 35: USA Recent Past, Current & Future Analysis for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 36: USA Historic Review for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 37: USA 15-Year Perspective for Graph Database by Application - Percentage Breakdown of Value Sales for Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications for the Years 2015, 2025 & 2030
  • CANADA
    • TABLE 38: Canada Recent Past, Current & Future Analysis for Graph Database by Component - Software and Services - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 39: Canada Historic Review for Graph Database by Component - Software and Services Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 40: Canada 15-Year Perspective for Graph Database by Component - Percentage Breakdown of Value Sales for Software and Services for the Years 2015, 2025 & 2030
    • TABLE 41: Canada Recent Past, Current & Future Analysis for Graph Database by Type - Property Graph and RDF - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 42: Canada Historic Review for Graph Database by Type - Property Graph and RDF Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 43: Canada 15-Year Perspective for Graph Database by Type - Percentage Breakdown of Value Sales for Property Graph and RDF for the Years 2015, 2025 & 2030
    • TABLE 44: Canada Recent Past, Current & Future Analysis for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 45: Canada Historic Review for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 46: Canada 15-Year Perspective for Graph Database by Application - Percentage Breakdown of Value Sales for Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications for the Years 2015, 2025 & 2030
  • JAPAN
    • Graph Database Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Japan for 2025 (E)
    • TABLE 47: Japan Recent Past, Current & Future Analysis for Graph Database by Component - Software and Services - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 48: Japan Historic Review for Graph Database by Component - Software and Services Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 49: Japan 15-Year Perspective for Graph Database by Component - Percentage Breakdown of Value Sales for Software and Services for the Years 2015, 2025 & 2030
    • TABLE 50: Japan Recent Past, Current & Future Analysis for Graph Database by Type - Property Graph and RDF - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 51: Japan Historic Review for Graph Database by Type - Property Graph and RDF Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 52: Japan 15-Year Perspective for Graph Database by Type - Percentage Breakdown of Value Sales for Property Graph and RDF for the Years 2015, 2025 & 2030
    • TABLE 53: Japan Recent Past, Current & Future Analysis for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 54: Japan Historic Review for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 55: Japan 15-Year Perspective for Graph Database by Application - Percentage Breakdown of Value Sales for Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications for the Years 2015, 2025 & 2030
  • CHINA
    • Graph Database Market Presence - Strong/Active/Niche/Trivial - Key Competitors in China for 2025 (E)
    • TABLE 56: China Recent Past, Current & Future Analysis for Graph Database by Component - Software and Services - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 57: China Historic Review for Graph Database by Component - Software and Services Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 58: China 15-Year Perspective for Graph Database by Component - Percentage Breakdown of Value Sales for Software and Services for the Years 2015, 2025 & 2030
    • TABLE 59: China Recent Past, Current & Future Analysis for Graph Database by Type - Property Graph and RDF - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 60: China Historic Review for Graph Database by Type - Property Graph and RDF Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 61: China 15-Year Perspective for Graph Database by Type - Percentage Breakdown of Value Sales for Property Graph and RDF for the Years 2015, 2025 & 2030
    • TABLE 62: China Recent Past, Current & Future Analysis for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 63: China Historic Review for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 64: China 15-Year Perspective for Graph Database by Application - Percentage Breakdown of Value Sales for Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications for the Years 2015, 2025 & 2030
  • EUROPE
    • Graph Database Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Europe for 2025 (E)
    • TABLE 65: Europe Recent Past, Current & Future Analysis for Graph Database by Geographic Region - France, Germany, Italy, UK and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
    • TABLE 66: Europe Historic Review for Graph Database by Geographic Region - France, Germany, Italy, UK and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 67: Europe 15-Year Perspective for Graph Database by Geographic Region - Percentage Breakdown of Value Sales for France, Germany, Italy, UK and Rest of Europe Markets for Years 2015, 2025 & 2030
    • TABLE 68: Europe Recent Past, Current & Future Analysis for Graph Database by Component - Software and Services - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 69: Europe Historic Review for Graph Database by Component - Software and Services Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 70: Europe 15-Year Perspective for Graph Database by Component - Percentage Breakdown of Value Sales for Software and Services for the Years 2015, 2025 & 2030
    • TABLE 71: Europe Recent Past, Current & Future Analysis for Graph Database by Type - Property Graph and RDF - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 72: Europe Historic Review for Graph Database by Type - Property Graph and RDF Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 73: Europe 15-Year Perspective for Graph Database by Type - Percentage Breakdown of Value Sales for Property Graph and RDF for the Years 2015, 2025 & 2030
    • TABLE 74: Europe Recent Past, Current & Future Analysis for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 75: Europe Historic Review for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 76: Europe 15-Year Perspective for Graph Database by Application - Percentage Breakdown of Value Sales for Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications for the Years 2015, 2025 & 2030
  • FRANCE
    • Graph Database Market Presence - Strong/Active/Niche/Trivial - Key Competitors in France for 2025 (E)
    • TABLE 77: France Recent Past, Current & Future Analysis for Graph Database by Component - Software and Services - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 78: France Historic Review for Graph Database by Component - Software and Services Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 79: France 15-Year Perspective for Graph Database by Component - Percentage Breakdown of Value Sales for Software and Services for the Years 2015, 2025 & 2030
    • TABLE 80: France Recent Past, Current & Future Analysis for Graph Database by Type - Property Graph and RDF - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 81: France Historic Review for Graph Database by Type - Property Graph and RDF Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 82: France 15-Year Perspective for Graph Database by Type - Percentage Breakdown of Value Sales for Property Graph and RDF for the Years 2015, 2025 & 2030
    • TABLE 83: France Recent Past, Current & Future Analysis for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 84: France Historic Review for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 85: France 15-Year Perspective for Graph Database by Application - Percentage Breakdown of Value Sales for Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications for the Years 2015, 2025 & 2030
  • GERMANY
    • Graph Database Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Germany for 2025 (E)
    • TABLE 86: Germany Recent Past, Current & Future Analysis for Graph Database by Component - Software and Services - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 87: Germany Historic Review for Graph Database by Component - Software and Services Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 88: Germany 15-Year Perspective for Graph Database by Component - Percentage Breakdown of Value Sales for Software and Services for the Years 2015, 2025 & 2030
    • TABLE 89: Germany Recent Past, Current & Future Analysis for Graph Database by Type - Property Graph and RDF - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 90: Germany Historic Review for Graph Database by Type - Property Graph and RDF Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 91: Germany 15-Year Perspective for Graph Database by Type - Percentage Breakdown of Value Sales for Property Graph and RDF for the Years 2015, 2025 & 2030
    • TABLE 92: Germany Recent Past, Current & Future Analysis for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 93: Germany Historic Review for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 94: Germany 15-Year Perspective for Graph Database by Application - Percentage Breakdown of Value Sales for Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications for the Years 2015, 2025 & 2030
  • ITALY
    • TABLE 95: Italy Recent Past, Current & Future Analysis for Graph Database by Component - Software and Services - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 96: Italy Historic Review for Graph Database by Component - Software and Services Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 97: Italy 15-Year Perspective for Graph Database by Component - Percentage Breakdown of Value Sales for Software and Services for the Years 2015, 2025 & 2030
    • TABLE 98: Italy Recent Past, Current & Future Analysis for Graph Database by Type - Property Graph and RDF - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 99: Italy Historic Review for Graph Database by Type - Property Graph and RDF Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 100: Italy 15-Year Perspective for Graph Database by Type - Percentage Breakdown of Value Sales for Property Graph and RDF for the Years 2015, 2025 & 2030
    • TABLE 101: Italy Recent Past, Current & Future Analysis for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 102: Italy Historic Review for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 103: Italy 15-Year Perspective for Graph Database by Application - Percentage Breakdown of Value Sales for Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications for the Years 2015, 2025 & 2030
  • UNITED KINGDOM
    • Graph Database Market Presence - Strong/Active/Niche/Trivial - Key Competitors in the United Kingdom for 2025 (E)
    • TABLE 104: UK Recent Past, Current & Future Analysis for Graph Database by Component - Software and Services - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 105: UK Historic Review for Graph Database by Component - Software and Services Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 106: UK 15-Year Perspective for Graph Database by Component - Percentage Breakdown of Value Sales for Software and Services for the Years 2015, 2025 & 2030
    • TABLE 107: UK Recent Past, Current & Future Analysis for Graph Database by Type - Property Graph and RDF - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 108: UK Historic Review for Graph Database by Type - Property Graph and RDF Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 109: UK 15-Year Perspective for Graph Database by Type - Percentage Breakdown of Value Sales for Property Graph and RDF for the Years 2015, 2025 & 2030
    • TABLE 110: UK Recent Past, Current & Future Analysis for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 111: UK Historic Review for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 112: UK 15-Year Perspective for Graph Database by Application - Percentage Breakdown of Value Sales for Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications for the Years 2015, 2025 & 2030
  • REST OF EUROPE
    • TABLE 113: Rest of Europe Recent Past, Current & Future Analysis for Graph Database by Component - Software and Services - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 114: Rest of Europe Historic Review for Graph Database by Component - Software and Services Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 115: Rest of Europe 15-Year Perspective for Graph Database by Component - Percentage Breakdown of Value Sales for Software and Services for the Years 2015, 2025 & 2030
    • TABLE 116: Rest of Europe Recent Past, Current & Future Analysis for Graph Database by Type - Property Graph and RDF - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 117: Rest of Europe Historic Review for Graph Database by Type - Property Graph and RDF Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 118: Rest of Europe 15-Year Perspective for Graph Database by Type - Percentage Breakdown of Value Sales for Property Graph and RDF for the Years 2015, 2025 & 2030
    • TABLE 119: Rest of Europe Recent Past, Current & Future Analysis for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 120: Rest of Europe Historic Review for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 121: Rest of Europe 15-Year Perspective for Graph Database by Application - Percentage Breakdown of Value Sales for Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications for the Years 2015, 2025 & 2030
  • ASIA-PACIFIC
    • Graph Database Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Asia-Pacific for 2025 (E)
    • TABLE 122: Asia-Pacific Recent Past, Current & Future Analysis for Graph Database by Component - Software and Services - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 123: Asia-Pacific Historic Review for Graph Database by Component - Software and Services Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 124: Asia-Pacific 15-Year Perspective for Graph Database by Component - Percentage Breakdown of Value Sales for Software and Services for the Years 2015, 2025 & 2030
    • TABLE 125: Asia-Pacific Recent Past, Current & Future Analysis for Graph Database by Type - Property Graph and RDF - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 126: Asia-Pacific Historic Review for Graph Database by Type - Property Graph and RDF Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 127: Asia-Pacific 15-Year Perspective for Graph Database by Type - Percentage Breakdown of Value Sales for Property Graph and RDF for the Years 2015, 2025 & 2030
    • TABLE 128: Asia-Pacific Recent Past, Current & Future Analysis for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 129: Asia-Pacific Historic Review for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 130: Asia-Pacific 15-Year Perspective for Graph Database by Application - Percentage Breakdown of Value Sales for Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications for the Years 2015, 2025 & 2030
  • REST OF WORLD
    • TABLE 131: Rest of World Recent Past, Current & Future Analysis for Graph Database by Component - Software and Services - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 132: Rest of World Historic Review for Graph Database by Component - Software and Services Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 133: Rest of World 15-Year Perspective for Graph Database by Component - Percentage Breakdown of Value Sales for Software and Services for the Years 2015, 2025 & 2030
    • TABLE 134: Rest of World Recent Past, Current & Future Analysis for Graph Database by Type - Property Graph and RDF - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 135: Rest of World Historic Review for Graph Database by Type - Property Graph and RDF Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 136: Rest of World 15-Year Perspective for Graph Database by Type - Percentage Breakdown of Value Sales for Property Graph and RDF for the Years 2015, 2025 & 2030
    • TABLE 137: Rest of World Recent Past, Current & Future Analysis for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
    • TABLE 138: Rest of World Historic Review for Graph Database by Application - Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2023 and % CAGR
    • TABLE 139: Rest of World 15-Year Perspective for Graph Database by Application - Percentage Breakdown of Value Sales for Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management and Other Applications for the Years 2015, 2025 & 2030

IV. COMPETITION

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제