![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1747707
¼¼°èÀÇ ¼ö¼Ò ¿¬·áÀüÁö Ã˸нÃÀåHydrogen Fuel Cell Catalysts |
¼¼°èÀÇ ¼ö¼Ò ¿¬·áÀüÁö Ã˸нÃÀåÀº 2030³â±îÁö 10¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á
2024³â¿¡ 8¾ï 3,870¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼ö¼Ò ¿¬·áÀüÁö Ã˸м¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 3.3%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 10¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼¿¡¼ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Ç÷¡Æ¼³ÑÀº CAGR 2.8%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 6¾ï 3,900¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ´ÏÄÌ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 3.9%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº ¾à 2¾ï 2,050¸¸ ´Þ·¯, Áß±¹Àº CAGR 3.3%·Î ¼ºÀå ¿¹Ãø
¹Ì±¹ÀÇ ¼ö¼Ò ¿¬·áÀüÁö Ã˸нÃÀåÀº 2024³â¿¡´Â 2¾ï 2,050¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â°£ CAGR 3.3%·Î 2030³â±îÁö 1¾ï 6,490¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 2.9%¿Í 2.9%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR 2.8%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.
¼¼°èÀÇ ¼ö¼Ò ¿¬·áÀüÁö Ã˸нÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®
Ã˸Ŵ ¼ö¼Ò ¿¬·áÀüÁöÀÇ ¹Ì·¡¸¦ ¾î¶»°Ô µÞ¹ÞħÇÒ °ÍÀΰ¡?
¼ö¼Ò ¿¬·áÀüÁö Ã˸Ŵ °íü °íºÐÀÚ ¿¬·áÀüÁö(PEMFC) ¹× ±âŸ ¼ö¼Ò ±â¹Ý ¿¬·áÀüÁö ±â¼ú¿¡¼ Àü±âÈÇÐÀû ¿¡³ÊÁö º¯È¯À» °¡´ÉÇÏ°Ô ÇÏ´Â Áß¿äÇÑ Ã˸ÅÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Ã˸Ŵ ¼ö¼Ò¿Í »ê¼Ò¸¦ Àü±â¿Í ¹°·Î º¯È¯ÇÏ´Â »êÈ È¯¿ø ¹ÝÀÀÀ» ÃËÁøÇÏ¿© ȼ® ¿¬·á ¿¬¼ÒÀÇ ´ë¾ÈÀ¸·Î ±ú²ýÇÏ°í °íÈ¿À²ÀÇ ¿¬·áÀüÁö¸¦ Á¦°øÇÕ´Ï´Ù. ¹é±Ý°è Ã˸Ŵ ƯÈ÷ »ê¼Ò ȯ¿ø ¹ÝÀÀ(ORR)¿¡¼ ¿ì¼öÇÑ Ã˸ŠȰ¼º°ú ³»±¸¼ºÀ» ¹ßÈÖÇϱ⠶§¹®¿¡ ÇöÀç ¿¬·áÀüÁö ½Ã½ºÅÛÀÇ ÁÖ·ù¸¦ Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ¹é±ÝÁ· ±Ý¼Ó(PGM)Àº °í°¡ÀÌ°í °¡¿ë·®ÀÌ Á¦ÇѵǾî ÀÖ¾î ´ë·® µµÀÔ¿¡ À庮ÀÌ µÇ°í ÀÖ¾î Ã˸м³°è ¹× Àç·á °úÇÐÀÇ Çõ½ÅÀÌ °è¼ÓµÇ°í ÀÖ½À´Ï´Ù.
¼ö¼Ò ¿¬·áÀüÁö´Â ¿î¼Û, °íÁ¤½Ä ¹ßÀü, ÈÞ´ë¿ë ÀüÀÚ±â±â¸¦ À§ÇÑ Áö¼Ó °¡´ÉÇÑ Àü¿øÀ¸·Î °¢±¤¹Þ°í ÀÖ½À´Ï´Ù. ³ôÀº ¿¡³ÊÁö ¹Ðµµ, ºü¸¥ ¿¬·á º¸±Þ, Á¦·Î Å×ÀÏ ÆÄÀÌÇÁ ¹èÃâÀ» ½ÇÇöÇÏ´Â ¼ö¼Ò ¿¬·áÀüÁö´Â ƯÈ÷ ´ëÇü Â÷·®, ¹ö½º, Áö°ÔÂ÷, ¹é¾÷ Àü¿ø ½Ã½ºÅÛ¿¡ ÀûÇÕÇÕ´Ï´Ù. Á¤ºÎ¿Í »ê¾÷°è°¡ Żź¼Òȸ¦ À§ÇÑ ³ë·ÂÀ» °ÈÇÏ¸é¼ ¿¬·áÀüÁö µµÀÔÀÌ ºü¸£°Ô È®´ëµÇ°í ÀÖÀ¸¸ç, º¸´Ù ºñ¿ë È¿À²ÀûÀ̰í È®Àå °¡´ÉÇÑ Ã˸мַç¼Ç¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ºñ±Í±Ý¼Ó Ã˸Å(NPMC), ÇÕ±Ý ¹èÇÕ ¹× Ã˸Š´ãü Àç·áÀÇ ±â¼ú Çõ½ÅÀº ½ÃÀå ȯ°æÀ» À籸¼ºÇÏ°í ¼ö¼Ò ¿¬·áÀüÁö¸¦ ûÁ¤ ¿¡³ÊÁö ÀÎÇÁ¶óÀÇ ÇÙ½ÉÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
¾î¶² ±â¼ú ¹ßÀüÀÌ Ã˸ÅÀÇ ¼º´É°ú ºñ¿ë ±¸Á¶¸¦ À籸¼ºÇϰí Àִ°¡?
¼ö¼Ò ¿¬·áÀüÁö¿ë Ã˸нÃÀåÀº Àç·á°øÇÐ, ³ª³ë±â¼ú, Àü±âÈÇÐÀÇ ºñ¾àÀûÀÎ ¹ßÀü¿¡ ÈûÀÔ¾î Å« º¯È¸¦ °Þ°í ÀÖ½À´Ï´Ù. °¡Àå ÁÖ¸ñÇÒ ¸¸ÇÑ Æ®·»µå Áß Çϳª´Â ¹é±Ý ÇÔ·®À» ÁÙÀÌ¸é¼ ORR Ȱ¼ºÀ» ³ôÀÌ´Â ¹é±Ý ÇÕ±Ý Ã˸ÅÀÇ °³¹ßÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÇÕ±Ý(¹é±Ý-ÄÚ¹ßÆ®, ¹é±Ý-´ÏÄÌ, ¹é±Ý-±¸¸® µî)Àº Àü±âÈÇÐÀû Ç¥¸éÀû°ú ¾ÈÁ¤¼ºÀÌ Çâ»óµÇ¾î ´ÜÀ§ ±Ý¼Ó´ç »ý»ê·®ÀÌ Áõ°¡ÇÕ´Ï´Ù. ¿¬±¸ÁøÀº ¶ÇÇÑ ÄÚ¾î-½© ±¸Á¶µµ ¿¬±¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ ±¸Á¶¿¡¼´Â ´õ Àú·ÅÇÑ ÄÚ¾î Àç·á¸¦ ¾ãÀº ¹é±Ý ÃþÀ¸·Î µ¤¾î ¹é±Ý »ç¿ë·®À» ÃÖ¼ÒÈÇÏ¸é¼ ¼º´ÉÀ» È¿°úÀûÀ¸·Î À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù.
¸¶Âù°¡Áö·Î Áß¿äÇÑ °ÍÀº Ã˸Š´ãü Àç·áÀÇ ¹ßÀüÀÔ´Ï´Ù. ±âÁ¸ÀÇ Åº¼Ò ´ãü´Â °íÇ¥¸éÀû ź¼Ò³ª³ëÆ©ºê, ±×·¡ÇÉ, À¯±â±Ý¼Ó°ñ°Ý(MOF) µîÀ¸·Î ´ëüµÇ°Å³ª °³¼±µÇ¾î Ã˸ÅÀÇ ºÐ»ê¼º, Àüµµ¼º, ³»½Ä¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºñ±Í±Ý¼Ó Ã˸Å, ƯÈ÷ ö ¹× ÄÚ¹ßÆ®-Áú¼Ò-ź¼Ò(Fe-N-C ¹× Co-N-C) ±â¹Ý ±¸Á¶´Â Àú·ÅÇÑ ºñ¿ë°ú ¿ì¼öÇÑ ORR ¼º´ÉÀ¸·Î ÀÎÇØ ÀÚµ¿Â÷ ¹× °íÁ¤½Ä ÀÀ¿ë ºÐ¾ß¿¡¼ ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¾ÆÀÌ¿À³ë¸Ó ÅëÇÕ ¹× Ç¥¸é °³Áú ±â¼ú ¶ÇÇÑ Ã˸Å-¾ÆÀÌ¿À³ë¸Ó °è¸éÀ» °³¼±ÇÏ¿© ¿¬·áÀüÁöÀÇ È¿À²°ú ³»±¸¼º¿¡ Áß¿äÇÑ ¿ä¼ÒÀÎ ¿¬·áÀüÁö ³» ¾ç¼ºÀÚ ¼ö¼Û ¹× ¼öºÐ °ü¸®¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.
¼ö¼Ò ¿¬·áÀüÁö Ã˸ÅÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â ÃÖÁ¾ »ç¿ëÀÚ ºÐ¾ß´Â?
¼ö¼Ò ¿¬·áÀüÁö Ã˸ÅÀÇ Ã¤ÅÃÀº ¼ö¼Û, »ê¾÷, °íÁ¤Çü Àü¿ø ºÐ¾ß¿¡¼ ºü¸£°Ô È®´ëµÇ°í ÀÖÀ¸¸ç, °¢ ºÐ¾ß¸¶´Ù °íÀ¯ÇÑ ¼º´É ¿ä°Ç°ú µµÀÔ °úÁ¦°¡ ÀÖ½À´Ï´Ù. ƯÈ÷ ´ëÇüÂ÷, Àå°Å¸® ¹ö½º, öµµ µî ¿î¼Û ºÐ¾ß¿¡¼ ¹èÅ͸® Àü±âÀÚµ¿Â÷(BEV)ÀÇ ÁÖÇà°Å¸®, ÀûÀç·®, ¿¬·á º¸±Þ ½Ã°£ µîÀÇ ÇѰè·Î ÀÎÇØ OEM ¹× Â÷·® ¿î¿µ¾÷üµéÀº ¿îÇà È¿À²À» º¸ÀåÇÏ°í ¾ö°ÝÇÑ ¹èÃâ°¡½º ±ÔÁ¦¸¦ ÃæÁ·Çϱâ À§ÇØ ¿¬·áÀüÁöÂ÷(FCV)¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¼ÒÇü ½Â¿ëÂ÷¿ë FCV´Â ÀϺ», Çѱ¹, ¹Ì±¹ ͏®Æ÷´Ï¾Æ µî ¼ö¼Ò ¿¬·á ÃæÀü ÀÎÇÁ¶ó°¡ ±¸ÃàµÇ°í Àִ ƯÁ¤ Áö¿ª¿¡¼µµ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù.
°íÁ¤½Ä Àü·Â ºÐ¾ß¿¡¼ ¼ö¼Ò ¿¬·áÀüÁö´Â ±×¸®µå ¾ÈÁ¤È, ¹é¾÷ Àü·Â, Off-grid ¿¡³ÊÁö ¼Ö·ç¼ÇÀ¸·Î µµÀԵǰí ÀÖ½À´Ï´Ù. µ¥ÀÌÅͼ¾ÅÍ, º´¿ø, Åë½Å Ÿ¿ö ¹× ÁÖ¿ä ÀÎÇÁ¶ó ½Ã¼³Àº ¼ö¼Ò ¿¬·áÀüÁö ½Ã½ºÅÛÀÇ ½Å·Ú¼º°ú ûÁ¤ Ãâ·ÂÀÇ ÀÌÁ¡À» ´©¸± ¼ö ÀÖÀ¸¸ç, ±ä ¼ö¸í°ú ³·Àº À¯Áöº¸¼ö¸¦ Áö¿øÇÏ´Â °í¼º´É Ã˸ſ¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÈÇÐ Ç÷£Æ® ¹× Á¤À¯¼Ò¸¦ Æ÷ÇÔÇÑ »ê¾÷ »ç¿ëÀÚµéÀº ƯÈ÷ ±×¸° ¼ö¼Ò »ý»ê°ú °áÇÕÇÏ¿© ±¤¹üÀ§ÇÑ Å»Åº¼ÒÈ Àü·«ÀÇ ÀÏȯÀ¸·Î ¼ö¼Ò ¿¬·áÀüÁö¸¦ ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áö°ÔÂ÷³ª °øÇ× Áö»ó Â÷·®°ú °°Àº ÀÚÀç°ü¸® Àåºñ¿¡ ¿¬·áÀüÁö ±â¼úÀÌ »ç¿ëµÇ¸é¼ ½Å¼ÓÇÑ ¿¬·á º¸±Þ°ú °¡µ¿ ½Ã°£ ¿¬ÀåÀ̶ó´Â ÀåÁ¡À¸·Î ÀÎÇØ Ã˸ſ¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¼ö¼Ò ¿¬·áÀüÁö Ã˸нÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµË´Ï´Ù.
¼ö¼Ò ¿¬·áÀüÁö Ã˸нÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ûÁ¤ ¿¡³ÊÁö Á¤Ã¥, ÃÖÁ¾ ¿ëµµ È®´ë¿Í °ü·ÃµÈ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ±× Áß¿¡¼µµ Żź¼Òȸ¦ ÇâÇÑ Àü ¼¼°èÀûÀÎ ¿òÁ÷ÀÓÀÌ Áß¿äÇϸç, ¸¹Àº ±¹°¡µéÀÌ ¼ø¹èÃâ·® Á¦·Î ¸ñÇ¥¸¦ ¼³Á¤ÇÏ°í ¼ö¼Ò °æÁ¦ ¹ßÀüÀ» À§ÇÑ ·Îµå¸ÊÀ» ¼ö¸³Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤Ã¥Àû ÇÁ·¹ÀÓ¿öÅ©´Â ¼ö¼Ò ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿Í ÇÔ²² ¿¬·áÀüÁöÀÇ º¸±ÞÀ» °¡¼ÓÈÇϰí ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó ÷´Ü Ã˸ſ¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Ãâ·Â ¹Ðµµ¿Í ³»±¸¼ºÀ» Çâ»ó½ÃŰ¸é¼ ¹é±Ý ÀÇÁ¸µµ¸¦ ³·Ãß´Â ±â¼úÀû Çõ½ÅÀº ¼ö¼Ò ¿¬·áÀüÁöÀÇ °æÁ¦¼ºÀ» ´õ¿í °È½Ã۰í ÀÖ½À´Ï´Ù.
¼ö¼Ò ¿¬·áÀüÁö°¡ ¹èÅ͸®º¸´Ù ¿î¿µ Ãø¸é¿¡¼ ºÐ¸íÇÑ ÀÌÁ¡ÀÌ ÀÖ´Â ´ëÇü ¿î¼Û ºÐ¾ß ¼ö¿ä Áõ°¡µµ ¶Ç ´Ù¸¥ Áß¿äÇÑ ÃËÁø¿äÀÎÀ¸·Î, OEM, ÇØ¿î»ç, ¹°·ù »ç¾÷ÀÚµéÀÌ ¼ö¼Ò ±â¹Ý ¸ðºô¸®Æ¼ ¼Ö·ç¼ÇÀ¸·Î ´«À» µ¹¸®°í ÀÖÀ¸¸ç, ƯÈ÷ ±ÔÁ¦ ȯ°æ°ú º¸Á¶±ÝÀÌ Áö¿øµÇ´Â Áö¿ª¿¡¼´Â ´õ¿í ±×·¯ÇÕ´Ï´Ù. º¸Á¶±ÝÀÌ Áö¿øµÇ´Â Áö¿ª¿¡¼´Â ƯÈ÷ ±×·¸½À´Ï´Ù. ¶ÇÇÑ, ¼ö¼Ò Á¦Á¶ ¹× ¿¬·áÀüÁö º¸±Þ È®´ë¸¦ À§ÇÑ Á¤ºÎ Àμ¾Æ¼ºê¿Í »ê¾÷ ½Ã¹ü ÇÁ·Î±×·¥Àº Ã˸ÅÀÇ Çõ½Å°ú ½ºÄÉÀϾ÷¿¡ À¯¸®ÇÑ Á¶°ÇÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ûÁ¤ ¿¡³ÊÁö ¿î¹Ýü·Î¼ ±×¸° ¼ö¼Ò¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ºÒ¼ø¹°ÀÌ Àû°í °¡º¯ ¾Ð·Â ȯ°æ¿¡¼ ÀÛµ¿ÇÒ ¼ö ÀÖ´Â °íÈ¿À² Ã˸ſ¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© Â÷¼¼´ë Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼ Ã˸ÅÀÇ ¿ªÇÒÀ» È®°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.
ºÎ¹®
À¯Çü(¹é±Ý À¯Çü, ´ÏÄÌ À¯Çü, ±âŸ À¯Çü), ¿ëµµ(źȼö¼Ò ¿¬·áÀüÁö, ¼ö¼Ò »ê¼Ò ¿¬·áÀüÁö, ±âŸ ¿ëµµ)
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâ ¹× ¼öÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ÀÎÀ§ÀûÀÎ ÆÇ¸Å ºñ¿ë Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Global Industry Analysts´Â ¼¼°è ÁÖ¿ä ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®(1,4,949¸í), ½ÌÅ©ÅÊÅ©(62°³ ±â°ü), ¹«¿ª ¹× »ê¾÷ ´Üü(171°³ ±â°ü)ÀÇ Àü¹®°¡µéÀÇ ÀǰßÀ» ¸é¹ÐÈ÷ °ËÅäÇÏ¿© »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡ÇÏ°í »õ·Î¿î ½ÃÀå Çö½Ç¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¸ðµç ÁÖ¿ä ±¹°¡ÀÇ Àü¹®°¡¿Í °æÁ¦ÇÐÀÚµéÀÌ °ü¼¼¿Í ±×°ÍÀÌ ÀÚ±¹¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ÀǰßÀ» ÃßÀû Á¶»çÇß½À´Ï´Ù.
Global Industry Analysts´Â ÀÌ·¯ÇÑ È¥¶õÀÌ ÇâÈÄ 2-3°³¿ù ³»¿¡ ¸¶¹«¸®µÇ°í »õ·Î¿î ¼¼°è Áú¼°¡ º¸´Ù ¸íÈ®ÇÏ°Ô È®¸³µÉ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖÀ¸¸ç, Global Industry Analysts´Â ÀÌ·¯ÇÑ »óȲÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇϰí ÀÖ½À´Ï´Ù.
2025³â 4¿ù: Çù»ó ´Ü°è
À̹ø 4¿ù º¸°í¼¿¡¼´Â °ü¼¼°¡ ¼¼°è ½ÃÀå Àüü¿¡ ¹ÌÄ¡´Â ¿µÇâ°ú Áö¿ªº° ½ÃÀå Á¶Á¤¿¡ ´ëÇØ ¼Ò°³ÇÕ´Ï´Ù. ´ç»çÀÇ ¿¹ÃøÀº °ú°Å µ¥ÀÌÅÍ¿Í ÁøÈÇÏ´Â ½ÃÀå ¿µÇâ¿äÀÎÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù.
2025³â 7¿ù: ÃÖÁ¾ °ü¼¼ Àç¼³Á¤
°í°´´Ôµé²²´Â °¢ ±¹°¡º° ÃÖÁ¾ ¸®¼ÂÀÌ ¹ßÇ¥µÈ ÈÄ 7¿ù¿¡ ¹«·á ¾÷µ¥ÀÌÆ® ¹öÀüÀ» Á¦°øÇØ µå¸³´Ï´Ù. ÃÖÁ¾ ¾÷µ¥ÀÌÆ® ¹öÀü¿¡´Â ¸íÈ®ÇÏ°Ô Á¤ÀÇµÈ °ü¼¼ ¿µÇ⠺м®ÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.
»óÈ£ ¹× ¾çÀÚ °£ ¹«¿ª°ú °ü¼¼ÀÇ ¿µÇ⠺м® :
¹Ì±¹ <>& Áß±¹ <>& ¸ß½ÃÄÚ <>& ij³ª´Ù <>&EU <>& ÀϺ» <>& Àεµ <>& ±âŸ 176°³±¹
¾÷°è ÃÖ°íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®: Global Industry AnalystsÀÇ Áö½Ä ±â¹ÝÀº ±¹°¡, ½ÌÅ©ÅÊÅ©, ¹«¿ª ¹× »ê¾÷ ´Üü, ´ë±â¾÷, ±×¸®°í ¼¼°è °è·® °æÁ¦ »óȲ¿¡¼ Àü·Ê ¾ø´Â ÆÐ·¯´ÙÀÓ ÀüȯÀÇ ¿µÇâÀ» °øÀ¯ÇÏ´Â ºÐ¾ßº° Àü¹®°¡ µî °¡Àå ¿µÇâ·Â ÀÖ´Â ÃÖ°í ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ Æ÷ÇÔÇÑ 14,949¸íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ ÃßÀûÇϰí ÀÖ½À´Ï´Ù. 16,491°³ ÀÌ»óÀÇ º¸°í¼ ´ëºÎºÐ¿¡ ¸¶ÀϽºÅæ¿¡ ±â¹ÝÇÑ 2´Ü°è Ãâ½Ã ÀÏÁ¤ÀÌ Àû¿ëµÇ¾î ÀÖ½À´Ï´Ù.
Global Hydrogen Fuel Cell Catalysts Market to Reach US$1.0 Billion by 2030
The global market for Hydrogen Fuel Cell Catalysts estimated at US$838.7 Million in the year 2024, is expected to reach US$1.0 Billion by 2030, growing at a CAGR of 3.3% over the analysis period 2024-2030. Platinum, one of the segments analyzed in the report, is expected to record a 2.8% CAGR and reach US$639.0 Million by the end of the analysis period. Growth in the Nickel segment is estimated at 3.9% CAGR over the analysis period.
The U.S. Market is Estimated at US$220.5 Million While China is Forecast to Grow at 3.3% CAGR
The Hydrogen Fuel Cell Catalysts market in the U.S. is estimated at US$220.5 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$164.9 Million by the year 2030 trailing a CAGR of 3.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.9% and 2.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.8% CAGR.
Global Hydrogen Fuel Cell Catalysts Market - Key Trends & Drivers Summarized
How Are Catalysts Powering the Future of Hydrogen Fuel Cells?
Hydrogen fuel cell catalysts are critical enablers of electrochemical energy conversion in proton exchange membrane fuel cells (PEMFCs) and other hydrogen-based fuel cell technologies. These catalysts facilitate the redox reactions that convert hydrogen and oxygen into electricity and water-offering a clean, high-efficiency alternative to fossil fuel combustion. Platinum-based catalysts dominate current fuel cell systems due to their superior catalytic activity and durability, especially in the oxygen reduction reaction (ORR). However, the high cost and limited availability of platinum-group metals (PGMs) remain barriers to mass adoption, prompting ongoing innovation in catalyst design and materials science.
Hydrogen fuel cells are gaining traction as a sustainable power source for transportation, stationary power generation, and portable electronics. Their ability to deliver high energy density, quick refueling, and zero tailpipe emissions makes them particularly suited for heavy-duty vehicles, buses, forklifts, and backup power systems. As governments and industries ramp up efforts to decarbonize, fuel cell deployment is expanding rapidly-driving the need for more cost-effective and scalable catalyst solutions. Innovations in non-precious metal catalysts (NPMCs), alloy formulations, and catalyst support materials are reshaping the market landscape and positioning hydrogen fuel cells as a cornerstone of clean energy infrastructure.
What Technological Advancements Are Reshaping Catalyst Performance and Cost Structure?
The hydrogen fuel cell catalyst market is undergoing a profound shift fueled by breakthroughs in materials engineering, nanotechnology, and electrochemistry. One of the most notable trends is the development of platinum-alloy catalysts that enhance ORR activity while reducing overall platinum content. These alloys-such as Pt-Co, Pt-Ni, and Pt-Cu-exhibit improved electrochemical surface area and stability, translating into higher power output per unit of metal. Researchers are also exploring core-shell structures, in which a thin platinum layer coats a less expensive core material, effectively preserving performance while minimizing platinum use.
Equally significant are advancements in catalyst support materials. Traditional carbon supports are being replaced or modified with high-surface-area carbon nanotubes, graphene, and metal-organic frameworks (MOFs), which improve catalyst dispersion, conductivity, and resistance to corrosion. Additionally, non-precious metal catalysts, particularly iron- and cobalt-nitrogen-carbon (Fe-N-C and Co-N-C) based structures, are gaining ground in automotive and stationary applications due to their low cost and promising ORR performance. Ionomer integration and surface modification techniques are also improving catalyst-ionomer interfaces, which directly impact proton transport and water management within fuel cells-critical factors for efficiency and durability.
Which End-Use Sectors Are Driving Adoption of Hydrogen Fuel Cell Catalysts?
The adoption of hydrogen fuel cell catalysts is rapidly expanding across transportation, industrial, and stationary power sectors, each with unique performance requirements and deployment challenges. The transportation sector-particularly for heavy-duty vehicles, long-range buses, and rail-represents a major driver due to the limitations of battery-electric vehicles (BEVs) in terms of range, payload capacity, and refueling time. OEMs and fleet operators are investing in fuel cell vehicles (FCVs) to meet stringent emissions regulations while ensuring operational efficiency. Light-duty passenger FCVs are also gaining popularity in select regions such as Japan, South Korea, and California, where hydrogen refueling infrastructure is growing.
In the stationary power sector, hydrogen fuel cells are being deployed for grid stabilization, backup power, and off-grid energy solutions. Data centers, hospitals, telecom towers, and critical infrastructure facilities benefit from the reliability and clean output of hydrogen fuel cell systems-thereby increasing demand for high-performance catalysts that support long-life operation and low maintenance. Industrial users, including chemical plants and refineries, are also exploring hydrogen fuel cells as part of their broader decarbonization strategies, especially when paired with green hydrogen production. Furthermore, the use of fuel cell technology in material handling equipment such as forklifts and airport ground vehicles is creating additional catalyst demand, driven by rapid refueling and extended uptime advantages.
The Growth in the Hydrogen Fuel Cell Catalysts Market Is Driven by Several Factors…
The growth in the hydrogen fuel cell catalysts market is driven by several factors related to technological advancement, clean energy policy, and expanding end-use applications. Chief among these is the global push toward decarbonization, with many countries committing to net-zero emissions targets and establishing roadmaps for hydrogen economy development. These policy frameworks, combined with rising investments in hydrogen infrastructure, are accelerating fuel cell adoption and, by extension, demand for advanced catalysts. Technological breakthroughs that reduce platinum dependency while improving power density and durability are further strengthening the economic viability of hydrogen fuel cells.
Increased demand from heavy transportation segments-where hydrogen fuel cells offer clear operational advantages over batteries-is another key driver. OEMs, shipping firms, and logistics operators are increasingly turning to hydrogen-based mobility solutions, particularly in regions with supportive regulatory environments and subsidies. Additionally, government incentives and industrial pilot programs aimed at expanding hydrogen production and fuel cell adoption are creating favorable conditions for catalyst innovation and scale-up. Finally, rising interest in green hydrogen as a clean energy carrier is amplifying demand for high-efficiency catalysts capable of operating in low-impurity, variable-pressure environments, cementing their role in the next generation of sustainable energy systems.
SCOPE OF STUDY:
The report analyzes the Hydrogen Fuel Cell Catalysts market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Type (Platinum Type, Nickel Type, Other Types); Application (Hydrocarbon Fuel Cell, Hydrogen-Oxygen Fuel Cell, Other Applications)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 39 Featured) -
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by artificially increasing the COGS, reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.
We are diligently following expert opinions of leading Chief Economists (14,949), Think Tanks (62), Trade & Industry bodies (171) worldwide, as they assess impact and address new market realities for their ecosystems. Experts and economists from every major country are tracked for their opinions on tariffs and how they will impact their countries.
We expect this chaos to play out over the next 2-3 months and a new world order is established with more clarity. We are tracking these developments on a real time basis.
As we release this report, U.S. Trade Representatives are pushing their counterparts in 183 countries for an early closure to bilateral tariff negotiations. Most of the major trading partners also have initiated trade agreements with other key trading nations, outside of those in the works with the United States. We are tracking such secondary fallouts as supply chains shift.
To our valued clients, we say, we have your back. We will present a simplified market reassessment by incorporating these changes!
APRIL 2025: NEGOTIATION PHASE
Our April release addresses the impact of tariffs on the overall global market and presents market adjustments by geography. Our trajectories are based on historic data and evolving market impacting factors.
JULY 2025 FINAL TARIFF RESET
Complimentary Update: Our clients will also receive a complimentary update in July after a final reset is announced between nations. The final updated version incorporates clearly defined Tariff Impact Analyses.
Reciprocal and Bilateral Trade & Tariff Impact Analyses:
USA <> CHINA <> MEXICO <> CANADA <> EU <> JAPAN <> INDIA <> 176 OTHER COUNTRIES.
Leading Economists - Our knowledge base tracks 14,949 economists including a select group of most influential Chief Economists of nations, think tanks, trade and industry bodies, big enterprises, and domain experts who are sharing views on the fallout of this unprecedented paradigm shift in the global econometric landscape. Most of our 16,491+ reports have incorporated this two-stage release schedule based on milestones.
COMPLIMENTARY PREVIEW
Contact your sales agent to request an online 300+ page complimentary preview of this research project. Our preview will present full stack sources, and validated domain expert data transcripts. Deep dive into our interactive data-driven online platform.