![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1768939
¼¼°èÀÇ ¿§Áö ÀΰøÁö´É Ĩ ½ÃÀåEdge Artificial Intelligence Chips |
¼¼°èÀÇ ¿§Áö ÀΰøÁö´É Ĩ ½ÃÀåÀº 2030³â±îÁö 186¾ï ´Þ·¯¿¡ µµ´Þ
2024³â¿¡ 70¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ¿§Áö ÀΰøÁö´É Ĩ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 17.7%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 186¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼ ºÐ¼®Çϰí ÀÖ´Â ºÎ¹®ÀÇ ÇϳªÀÎ CPU´Â CAGR 16.9%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 70¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. GPU ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 15.8%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 20¾ï ´Þ·¯, Áß±¹Àº CAGR 17.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø
¹Ì±¹ÀÇ ¿§Áö ÀΰøÁö´É Ĩ ½ÃÀåÀº 2024³â¿¡ 20¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 29¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 17.2%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 15.4%¿Í 14.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR ¾à 12.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿Ö ¿§Áö AI ĨÀº ±â¼¼¸¦ È®´ëÇϰí Àִ°¡?
¿§Áö AI ĨÀº Ŭ¶ó¿ìµå ¼¹ö¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°í µð¹ÙÀ̽º¿¡¼ Á÷Á¢ µ¥ÀÌÅ͸¦ ó¸®ÇÏ´Â µ¶ÀÚÀûÀÎ ±â´ÉÀ¸·Î ¼Óµµ, ÇÁ¶óÀ̹ö½Ã, ¸®¼Ò½º È¿À²¼º Ãø¸é¿¡¼ Å« ÀÌÁ¡À» Á¦°øÇϹǷΠºü¸£°Ô ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ½º¸¶Æ®È¨ ±â±â, ¿þ¾î·¯ºí, Ä¿³ØÆ¼µåÄ« µî IoT ±â±âÀÇ ±Þ°ÝÇÑ Áõ°¡¿¡ µû¶ó ÇöÁöÈµÈ µ¥ÀÌÅÍ Ã³¸®°¡ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ¿§Áö AI ĨÀÇ °³³äÀº ÄÄÇ»ÆÃÀ» µ¥ÀÌÅÍ »ý¼º ¼Ò½º¿¡ °¡±õ°Ô °¡Á®¿Í µð¹ÙÀ̽º°¡ Áï°¢ÀûÀ¸·Î Á¤º¸¸¦ ó¸®ÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ´Â ÀÚÀ²ÁÖÇà, »ê¾÷ ÀÚµ¿È, Áõ°Çö½Ç µî ½Ç½Ã°£ ÀÇ»ç°áÁ¤ÀÌ ¿ä±¸µÇ´Â ¿ëµµ¿¡ ÇʼöÀûÀ̸ç, ¾à°£ÀÇ Áö¿¬µµ ±â´ÉÀ» ¹æÇØÇϰųª ¿î¿µ»óÀÇ À§ÇèÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áß¾Ó ÁýÁß½Ä Å¬¶ó¿ìµå ¼ºñ½º¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÓÀ¸·Î½á ¿§Áö AI ĨÀº ´ë¿ªÆø ºñ¿ëÀ» Àý°¨Çϰí, µ¥ÀÌÅÍ Àü¼ÛÀ» Á¦ÇÑÇÏ¿© º¸¾ÈÀ» °ÈÇϸç, ³×Æ®¿öÅ© Á¢¼ÓÀÌ °£ÇæÀûÀ̰ųª ½Å·ÚÇÒ ¼ö ¾ø´Â Àå¼Ò¿¡ ´ëÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀåÁ¡À¸·Î ÀÎÇØ ¿§Áö AI Ĩ¿¡ ´ëÇÑ ¼ö¿ä´Â ºÐ¾ß¸¦ ºÒ¹®Çϰí Áõ°¡Çϰí ÀÖÀ¸¸ç, Çϵå¿þ¾î ¹× ¼ÒÇÁÆ®¿þ¾î ¿µ¿ª¿¡¼ Çõ½ÅÀûÀÎ ¼Ö·ç¼Ç ½ÃÀåÀÌ ±Þ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.
ÀÌ·¯ÇÑ ÁøÈÇÏ´Â »óȲ¿¡¼ ¿§Áö AI ĨÀº Ŭ¶ó¿ìµå¿Í µ¶¸³ÀûÀ¸·Î ÀÛµ¿ÇÏ´Â º¸´Ù ¹ÝÀÀÀûÀ̰í È¿À²ÀûÀÎ µð¹ÙÀ̽º¸¦ ¸¸µé±â À§ÇØ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ, ±â¾÷, ±ÔÁ¦±â°ü ¸ðµÎ ƯÈ÷ µ¥ÀÌÅͺ£À̽º ¿ëµµÀÇ È®»ê¿¡ µû¶ó º¸´Ù °·ÂÇÑ µ¥ÀÌÅÍ º¸È£ Á¶Ä¡¸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ¿§Áö ÄÄÇ»ÆÃÀº ±â±â¿¡¼ µ¥ÀÌÅ͸¦ ó¸®Çϰí ÀúÀåÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á ¿ÜºÎ Ãë¾à¼º¿¡ ³ëÃâµÉ ±âȸ¸¦ ÁÙ¿© ÀÌ·¯ÇÑ ¿ä±¸¿¡ ºÎÀÀÇÕ´Ï´Ù. ¶ÇÇÑ ¿§Áö AI ĨÀÇ ¿¡³ÊÁö È¿À²¼ºÀº µå·ÐÀ̳ª ÈÞ´ë¿ë ÀÇ·á±â±â µî Àü·Â ÀÚ¿øÀÌ ÇÑÁ¤µÈ ±â±â¿¡¼ ÀÛµ¿ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¿§Áö AI ĨÀº AI ÇÁ·Î¼¼½ÌÀ» µð¹ÙÀ̽º¿¡ Á÷Á¢ °¡Á®¿ÈÀ¸·Î½á »õ·Î¿î Çõ½ÅÀ» ÃËÁøÇϰí, ÀÌÀü¿¡´Â ºÒ°¡´ÉÇß´ø ¹æ½ÄÀ¸·Î µð¹ÙÀ̽º¸¦ °ÈÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ÀÌ´Â ±âÁ¸ÀÇ Áß¾Ó ÁýÁᫎ µ¥ÀÌÅÍ Ã³¸® ¸ðµ¨¿¡¼ ¸Å¿ì Áß¿äÇÑ ÀüȯÀ» ÀǹÌÇϸç, ¼ÒºñÀÚ¿Í ±â¾÷ ¸ðµÎ¿¡°Ô ¾öû³ ±âȸ¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿§Áö AI ĨÀ» Áö¿øÇÏ´Â ±â¼úÀ̶õ?
¿§Áö AI ĨÀ» Áö¿øÇÏ´Â ±â¼úÀº ºü¸£°Ô ¹ßÀüÇϰí ÀÖÀ¸¸ç, ó¸® È¿À² ±Ø´ëÈ, AI ¸ðµ¨ Áö¿ø °È, Àü·Â ¼Òºñ °¨¼Ò¿¡ ÁßÁ¡À» µÐ Çõ½ÅÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ¿§Áö AI ĨÀº Á¾Á¾ GPU, TPU, NPU¸¦ °áÇÕÇÏ¿© µö·¯´× ¾Ë°í¸®Áò°ú °ü·ÃµÈ º¹ÀâÇÑ °è»êÀ» ó¸®ÇÒ ¼ö ÀÖµµ·Ï Á¶Á¤µÇ¾î ÀÖ½À´Ï´Ù. ¹ü¿ë ÇÁ·Î¼¼¼¿Í ´Þ¸® ÀÌ Ä¨µéÀº AI ¿öÅ©·Îµå¸¦ È¿À²ÀûÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖµµ·Ï ƯȵǾî ÀÖÀ¸¸ç, ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®ÀÌ ÇÊ¿äÇÑ ±â±â¿¡ ÀûÇÕÇÕ´Ï´Ù. Áß¿äÇÑ µ¹ÆÄ±¸´Â FinFET ¹× FD-SOI¿Í °°Àº ±â¼úÀ» ÅëÇÑ ¼ÒÇüÈµÈ Æ®·£Áö½ºÅÍÀÇ °³¹ß·Î, Ĩ Á¦Á¶¾÷ü´Â ´õ ÀÛÀº ¸éÀû¿¡ ´õ ¸¹Àº Æ®·£Áö½ºÅ͸¦ ÁýÀûÇÏ¿© ´õ ³ôÀº ¿¬»ê ´É·Â°ú ¿¡³ÊÁö È¿À²À» ´Þ¼ºÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÃÖ¼ÒÇÑÀÇ ¿¡³ÊÁö ¼Òºñ·Î °í¼º´É AI 󸮸¦ ó¸®ÇÒ ¼ö ÀÖ´Â ´É·ÂÀº ƯÈ÷ ¹èÅ͸® ±¸µ¿ Àåºñ ¿ëµµ¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ±â¹Ý ´öºÐ¿¡ ¿§Áö AI ĨÀº ¼º´É ÀúÇÏ ¾øÀÌ ÄÄÇ»ÅÍ ºñÀü ¹× ÀÚ¿¬ ¾ð¾î ó¸®¿Í °°Àº °í±Þ ±â´ÉÀ» °æ·®ÈµÈ Àåºñ¿¡¼ Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù.
Çϵå¿þ¾îÀÇ ¹ßÀü°ú ÇÔ²² ¿§Áö AI ĨÀ» Áö¿øÇÏ´Â ¼ÒÇÁÆ®¿þ¾î »ýŰ赵 ÁøÈÇϰí ÀÖÀ¸¸ç, TensorFlow Lite ¹× ONNX¿Í °°Àº ÇÁ·¹ÀÓ¿öÅ©´Â ¼·Î ´Ù¸¥ Çϵå¿þ¾î ±¸¼º °£ÀÇ AI ¸ðµ¨ ȣȯ¼ºÀ» À§ÇØ Æ¯º°È÷ ¼³°èµÇ¾î ¿§Áö µð¹ÙÀ̽º¿¡¼ AI ¿ëµµÀÇ ¹èÆ÷¸¦ °£¼ÒÈÇÕ´Ï´Ù. ¿¡Áö µð¹ÙÀ̽º¿¡ AI ¿ëµµ ¹èÆ÷¸¦ °£¼ÒÈÇÒ ¼ö ÀÖµµ·Ï Ưº°È÷ ¼³°èµÇ¾î ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À¯¿¬¼ºÀ¸·Î ÀÎÇØ ±â¾÷Àº ÇöÁöÈµÈ Çϵå¿þ¾î¿¡ ¸ÂÃãÇü AI ¿ëµµ¸¦ ¹èÆ÷ÇÒ ¼ö ÀÖ´Â °¡´É¼ºÀ» ÀνÄÇϰí ÀÖÀ¸¸ç, ¾÷°è Àü¹Ý¿¡¼ ¿§Áö AI Ĩ °³¹ß¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ 5G ±â¼úÀÇ Ã¤ÅÃÀº º¸´Ù ºü¸£°í ¾ÈÁ¤ÀûÀÎ µ¥ÀÌÅÍ Àü¼ÛÀ» °¡´ÉÇÏ°Ô Çϰí, µð¹ÙÀ̽º°¡ ½Ç½Ã°£ ¿¬°á¼ºÀ» À¯ÁöÇÏ¸é¼ µ¥ÀÌÅ͸¦ ºü¸£°Ô ó¸®ÇÒ ¼ö ÀÖµµ·Ï ÇÔÀ¸·Î½á ¿§Áö AI ĨÀÇ ´É·ÂÀ» ÁõÆø½Ãų °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀü°ú ÇÔ²² ¿§Áö AI Ĩ ½ÃÀåÀÌ ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ´Ù¾çÇÑ ¼ÒºñÀÚ ¹× »ê¾÷ ¿ëµµ¿¡¼ °·ÂÇϰí ÀûÀÀ·ÂÀÌ ¶Ù¾î³ ¿§Áö AI ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ Çõ½ÅÀ» °ÅµìÇϰí ÀÖ½À´Ï´Ù.
»ê¾÷°è´Â ¿§Áö AI ĨÀ» ¾î¶»°Ô Ȱ¿ëÇϰí Àִ°¡?
¼¼°è »ê¾÷°è´Â ¾÷¹« °£¼ÒÈ, »ý»ê¼º Çâ»ó, »ç¿ëÀÚ °æÇè °³¼±À» À§ÇØ ¿§Áö AI ĨÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷¿¡¼ ¿§Áö AI ĨÀº ÀÚÀ²ÁÖÇà Â÷·®¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¿§Áö AI ĨÀº ¼¾¼, Ä«¸Þ¶ó, ±âŸ ¼Ò½ºÀÇ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ºÐ¼®ÇÏ¿© Áï°¢ÀûÀÎ ¿îÀü ÆÇ´ÜÀ» °¡´ÉÇÏ°Ô Çϱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ Ä¨Àº ¹°Ã¼ °¨ÁöºÎÅÍ °æ·Î °èȹ±îÁö ÀÚµ¿Â÷ÀÇ ÇÙ½É ±â´É¿¡ Àü·ÂÀ» °ø±ÞÇÏ¿© ¾ÈÀüÇϰí È¿À²ÀûÀÎ ÀÚÀ²ÁÖÇàÀ» º¸ÀåÇÕ´Ï´Ù. »ê¾÷ Á¦Á¶ ºÐ¾ß ¿ª½Ã ¿§Áö AI ĨÀÇ ÀÌÁ¡À» ´©¸± ¼ö ÀÖ´Â ºÐ¾ßÀÔ´Ï´Ù. ¿§Áö AI ĨÀ» °øÀå ¼³ºñ¿¡ ÅëÇÕÇÔÀ¸·Î½á Á¦Á¶¾÷ü´Â ½Ç½Ã°£ ¿¹Áöº¸Àü, ÀÌ»ó °¨Áö ¹× ǰÁú°ü¸®¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ´Ù¿îŸÀÓÀ» ÁÙÀ̰í, À¯Áöº¸¼ö ºñ¿ëÀ» ÃÖ¼ÒÈÇϸç, »ý»ê °øÁ¤À» ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÇコÄÉ¾î »ê¾÷¿¡¼´Â Áø´Ü ±â±â ¹× ¿þ¾î·¯ºí ±â±â¿¡ ¿§Áö AI ĨÀ» »ç¿ëÇÏ¿© Àû½Ã¿¡ ȯÀÚ Ä¡·á¸¦ Áö¿øÇÏ´Â µ¥ÀÌÅÍ ºÐ¼®À» ±× ÀÚ¸®¿¡¼ ¼öÇàÇϰí ÀÖ½À´Ï´Ù. ¿§Áö AI ĨÀº ȯÀÚ µ¥ÀÌÅ͸¦ Áï°¢ÀûÀ¸·Î ó¸®ÇÏ¿© °Ç° ¹®Á¦¸¦ Á¶±â¿¡ ¹ß°ßÇϰí À§±â »óȲ¿¡¼ Ä¡·á °á°ú¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
¼Ò¸Å¾÷üµéÀº °³ÀÎÈµÈ °í°´ °æÇèÀ» Á¦°øÇϱâ À§ÇØ ¿§Áö AI ĨÀ» Ȱ¿ëÇϰí ÀÖÀ¸¸ç, °í°´ Çൿ ºÐ¼®, Àç°í °ü¸®, ¸ÅÀå³» Ž»öÀ» °³¼±Çϱâ À§ÇØ ¿§Áö AI ĨÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ®¼±¹Ý ¹× ±âŸ ¼Ò¸Å ±â¼ú¿¡ ¿§Áö AI ĨÀ» µµÀÔÇÔÀ¸·Î½á ±â¾÷Àº Ŭ¶ó¿ìµå ¿¬°á¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°íµµ ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. °¡ÀüÁ¦Ç°µµ ¸¶Âù°¡Áö·Î ¿§Áö AI ĨÀ» »ç¿ëÇÏ¿© ½º¸¶Æ®Æù, AR ¾È°æ, °¡»óºñ¼ µîÀÇ ±â±â ±â´ÉÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â±â¿¡¼´Â µ¥ÀÌÅͰ¡ Ŭ¶ó¿ìµå°¡ ¾Æ´Ñ ±â±â¿¡¼ ·ÎÄ÷Π󸮵ǹǷΠ¿§Áö AI ĨÀ» ÅëÇØ ÀÀ´ä ½Ã°£ÀÌ ´ÜÃàµÇ°í, º¸´Ù ¸ôÀÔ°¨ ÀÖ´Â °æÇèÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ½º¸¶Æ®ÆùÀÇ AI ±â¹Ý Áõ°Çö½Ç(AR) ±â´ÉÀº ¿§Áö AI Ĩ ´öºÐ¿¡ Áö¿¬ ¾øÀÌ ¿øÈ°ÇÏ°Ô ÀÛµ¿ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌó·³ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ ³Î¸® »ç¿ëµÇ°í ÀÖ´Â ¿§Áö AI ĨÀÇ ¹ü¿ë¼ºÀº ¿§Áö AI ĨÀÇ ¹ü¿ë¼ºÀ» Àß º¸¿©ÁÝ´Ï´Ù. ¿§Áö AI ĨÀº È¿À²ÀûÀ̰í ÇöÁöÈµÈ ÇÁ·Î¼¼½ÌÀ» °¡´ÉÇÏ°Ô Çϰí, »ê¾÷ Çõ½Å¿¡ »õ·Î¿î °¡´É¼ºÀ» Á¦½ÃÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù.
¿§Áö AI Ĩ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?
¿§Áö AI Ĩ ½ÃÀåÀÇ ¼ºÀåÀº IoT ±â±â ¼ö¿ä Áõ°¡, ÇÁ¶óÀ̹ö½Ã¸¦ Áß½ÃÇÏ´Â ¼ÒºñÀÚ Áõ°¡, Ĩ Á¦Á¶ ±â¼úÀÇ Çõ½Å µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. °¢ »ê¾÷ ºÐ¾ß¿¡¼ IoT µð¹ÙÀ̽º Áõ°¡´Â ¿§Áö¿¡¼ »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ À¯ÀÔÀ¸·Î À̾îÁ® ±¹ÁöÀû ó¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ±ä±ÞÇÑ ¿ä±¸°¡ ¹ß»ýÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® ½ÃƼ¿¡¼ Ä¿³ØÆ¼µåÄ«¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¿ëµµ¿¡¼ ÀÌ·¯ÇÑ Àåºñ´Â µ¥ÀÌÅÍ Ã³¸®¸¦ ºü¸£°í È¿À²ÀûÀ¸·Î ó¸®ÇÏ°í ½Ç½Ã°£ ¿î¿µ ¿ä°ÇÀ» ÃæÁ·ÇÏ´Â ¿§Áö AI Ĩ¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀÇ Áß¿äÇÑ ÃËÁø¿äÀÎÀº µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¼¼°èÀÇ ÃßÁøÀ̱⵵ ÇÕ´Ï´Ù. ÇÁ¶óÀ̹ö½Ã ±ÔÁ¦°¡ °ÈµÊ¿¡ µû¶ó ±â¾÷Àº ¿ÜºÎ ¼¹ö¿¡ ´ëÇÑ µ¥ÀÌÅÍ ³ëÃâÀ» Á¦ÇÑÇÏ´Â ¼Ö·ç¼ÇÀ» ã°í ÀÖÀ¸¸ç, ±â¹Ð µ¥ÀÌÅ͸¦ ±â±â¿¡¼ Á÷Á¢ ó¸®ÇÒ ¼ö ÀÖ´Â ¿§Áö AI ĨÀ» ¼±È£Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ AR, VR, ºñµð¿À ºÐ¼®°ú °°Àº °í¼Ó, ÀúÁö¿¬ ¿ëµµ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¿§Áö AI ĨÀº ÀÌ·¯ÇÑ ¿ëµµÀÇ °í¼º´É ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â ¼Ö·ç¼ÇÀ» Á¦°øÇÔÀ¸·Î½á ½ÃÀå äÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¹ÝµµÃ¼ ±â¼úÀÇ ¹ßÀüµµ ¿§Áö AI Ĩ ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Á¦Á¶ °øÁ¤Àº ´õ ÀÛ°í È¿À²ÀûÀΠĨÀ» Áö¿øÇϵµ·Ï ÁøÈÇϰí ÀÖÀ¸¸ç, ÇöÀç ¸¹Àº Á¦Á¶¾÷üµéÀÌ 7nm, ½ÉÁö¾î 5nm °øÁ¤ ³ëµå¸¦ äÅÃÇÏ¿© °í¼º´É, ¿¡³ÊÁö È¿À²ÀûÀÎ ¿§Áö AI ĨÀ» Á¦Á¶ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¼ÒºñÀÚ ÇൿÀº ƯÈ÷ ½º¸¶Æ®È¨ ±â±â, °ÔÀÓ, °Ç° ¸ð´ÏÅ͸µ°ú °°Àº ¿ëµµ¿¡¼ ½Ç½Ã°£ 󸮸¦ ¼±È£ÇÏ´Â ¹æÇâÀ¸·Î º¯ÈÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È·Î ÀÎÇØ ±â±â Á¦Á¶¾÷üµéÀº ½Ç½Ã°£ ºÐ¼®ÀÌ °¡´ÉÇÑ ¿§Áö AI ĨÀ» Á¦Ç°¿¡ ÅëÇÕÇØ¾ß ÇÒ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î 5G ³×Æ®¿öÅ©¿Í ¿§Áö ÄÄÇ»ÆÃÀÇ ÅëÇÕÀº ¿§Áö AI ĨÀÇ ±â´ÉÀ» °ÈÇÏ´Â º¸¿ÏÀûÀÎ ÀÎÇÁ¶ó¸¦ Á¦°øÇÏ¿© º¸´Ù ºü¸£°í ¾ÈÁ¤ÀûÀÎ ¿¬°áÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼ÒµéÀÇ °áÇÕÀº ¿§Áö AI Ĩ ½ÃÀåÀÇ Çõ½Å°ú È®ÀåÀ» À§ÇÑ ÃÖÀûÀÇ È¯°æÀ» Á¶¼ºÇÏ°í ´Ù¾çÇÑ ¿ëµµ°ú »ê¾÷¿¡¼ ¼ö¿ä¸¦ Áõ°¡½Ãų °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
ºÎ¹®
ÇÁ·Î¼¼¼(CPU, GPU, ASIC, ±âŸ ÇÁ·Î¼¼¼); µð¹ÙÀ̽º À¯Çü(¼ÒºñÀÚ µð¹ÙÀ̽º, ±â¾÷ µð¹ÙÀ̽º); ±â´É(Ãß·Ð, Æ®·¹ÀÌ´×)
AI ÅëÇÕ
Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.
Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Global Edge Artificial Intelligence Chips Market to Reach US$18.6 Billion by 2030
The global market for Edge Artificial Intelligence Chips estimated at US$7.0 Billion in the year 2024, is expected to reach US$18.6 Billion by 2030, growing at a CAGR of 17.7% over the analysis period 2024-2030. CPU, one of the segments analyzed in the report, is expected to record a 16.9% CAGR and reach US$7.0 Billion by the end of the analysis period. Growth in the GPU segment is estimated at 15.8% CAGR over the analysis period.
The U.S. Market is Estimated at US$2.0 Billion While China is Forecast to Grow at 17.2% CAGR
The Edge Artificial Intelligence Chips market in the U.S. is estimated at US$2.0 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.9 Billion by the year 2030 trailing a CAGR of 17.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 15.4% and 14.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 12.2% CAGR.
Why Are Edge AI Chips Gaining Momentum?
Edge AI chips are rapidly gaining prominence due to their unique ability to process data directly on devices rather than relying on cloud servers, which provides significant advantages in terms of speed, privacy, and resource efficiency. With the exponential increase in IoT devices, such as smart home devices, wearables, and connected vehicles, localized data processing has become crucial. The concept behind edge AI chips is to bring computing closer to the source of data generation, allowing devices to process and analyze information instantaneously. This is vital for applications that demand real-time decision-making, such as autonomous driving, industrial automation, and augmented reality, where even slight delays can hinder functionality or lead to operational risks. Additionally, by reducing reliance on centralized cloud services, edge AI chips lower bandwidth costs, improve security by limiting data transfer, and offer a solution for locations where network connectivity is intermittent or unreliable. These advantages are driving the demand for edge AI chips across sectors, creating a booming market for innovative solutions in both hardware and software domains.
In this evolving landscape, edge AI chips are being leveraged to create more responsive, efficient devices that can function independently of the cloud, a necessity as privacy concerns grow worldwide. Consumers, enterprises, and regulatory bodies alike are calling for more robust data protection measures, particularly as data-driven applications become more prevalent. Edge computing addresses these needs by enabling data processing and storage on-device, reducing exposure to external vulnerabilities. Furthermore, the energy efficiency of edge AI chips allows them to operate within devices that may have limited power resources, such as drones or portable medical equipment. By bringing AI processing directly to the device, edge AI chips have the potential to drive new innovations and empower devices in ways that were previously unattainable, marking a pivotal shift from traditional centralized data processing models and offering immense opportunities for both consumers and businesses.
What Technologies Are Powering Edge AI Chips?
The technology behind edge AI chips is advancing rapidly, with innovations focused on maximizing processing efficiency, enhancing AI model support, and reducing power consumption. Edge AI chips often incorporate a blend of GPUs, TPUs, and NPUs, which are tailored to handle the complex computations associated with deep learning algorithms. Unlike general-purpose processors, these chips are specialized to manage AI workloads efficiently, making them ideal for devices that require real-time data analysis. A significant breakthrough has been the development of reduced-size transistors through technologies such as FinFET and FD-SOI, which allows chip manufacturers to integrate more transistors within a smaller area, achieving higher computational power and energy efficiency. The ability to handle high-performance AI processing with minimal energy consumption is critical, especially for applications in battery-operated devices. With this technological foundation, edge AI chips are able to support sophisticated functionalities, such as computer vision and natural language processing, on lightweight devices without sacrificing performance.
In addition to hardware advancements, the software ecosystem supporting edge AI chips is also evolving to make model deployment more efficient and accessible. Frameworks like TensorFlow Lite and ONNX have been specifically designed to enable AI model compatibility across different hardware configurations, simplifying the deployment of AI applications on edge devices. This flexibility has spurred interest in edge AI chip development across industries, as businesses recognize the potential for deploying custom AI applications on localized hardware. Furthermore, the adoption of 5G technology is expected to amplify the capabilities of edge AI chips, as faster and more reliable data transfer allows devices to process data quickly while maintaining real-time connectivity. Together, these technological advancements are driving the edge AI chip market forward, as manufacturers continue to innovate to meet the increasing demand for powerful, adaptable edge AI solutions in a range of consumer and industrial applications.
How Are Industries Leveraging Edge AI Chips?
Industries worldwide are increasingly adopting edge AI chips to streamline operations, enhance productivity, and improve user experiences. In the automotive industry, edge AI chips are essential for autonomous vehicles, as they allow for real-time analysis of data from sensors, cameras, and other sources to make split-second driving decisions. These chips power critical vehicle functionalities, from object detection to route planning, ensuring safe and efficient autonomous navigation. Industrial manufacturing is another sector reaping the benefits of edge AI chips. By integrating edge AI chips into factory equipment, manufacturers are enabling predictive maintenance, anomaly detection, and quality control in real-time. This results in reduced downtime, minimized maintenance costs, and optimized production processes. Additionally, the healthcare industry is using edge AI chips in diagnostic equipment and wearable devices, providing on-the-spot data analysis that supports timely patient care. Edge AI chips allow for instantaneous processing of patient data, facilitating the early detection of health issues and improving treatment outcomes in critical situations.
Retailers are also leveraging edge AI chips to provide personalized customer experiences, using these chips to analyze customer behavior, manage inventory, and improve in-store navigation. By deploying edge AI chips within smart shelves and other retail technologies, businesses can obtain actionable insights without relying on cloud connectivity. Consumer electronics have similarly adopted edge AI chips to improve the functionality of devices like smartphones, AR glasses, and virtual assistants. In these devices, edge AI chips facilitate faster response times and more immersive experiences, as data is processed locally on the device rather than in the cloud. For example, AI-powered augmented reality features in smartphones can now operate seamlessly without lag, thanks to edge AI chips. This widespread adoption across multiple industries highlights the versatility of edge AI chips, as they enable efficient, localized processing and open up new possibilities for industry innovation.
What Is Driving Growth in the Edge AI Chip Market?
The growth in the edge AI chip market is driven by several factors, including the escalating demand for IoT devices, increased consumer emphasis on privacy, and innovations in chip manufacturing technology. The rise of IoT devices across industries has led to an influx of data generated at the edge, creating an urgent need for localized processing solutions. With applications ranging from smart cities to connected vehicles, these devices rely on edge AI chips to handle data processing quickly and efficiently, meeting the requirements of real-time operations. A critical driver of market growth is also the global push for data privacy. As privacy regulations tighten, businesses are seeking solutions that limit data exposure to external servers, favoring edge AI chips that allow sensitive data to be processed directly on the device. Additionally, as the demand for fast, low-latency applications like AR, VR, and video analytics grows, edge AI chips provide a solution that meets the high-performance demands of these applications, further driving market adoption.
Advances in semiconductor technology have also contributed to the growth of the edge AI chip market. Manufacturing processes have evolved to support smaller and more efficient chips, with many manufacturers now adopting 7nm and even 5nm process nodes, enabling the production of highly powerful, energy-efficient edge AI chips. Consumer behavior is shifting towards the preference for real-time processing, especially for applications like smart home devices, gaming, and health monitoring. This shift is compelling device manufacturers to integrate edge AI chips, capable of real-time analytics, into their products. Finally, the integration of 5G networks with edge computing is providing a complementary infrastructure that enhances the capabilities of edge AI chips, offering faster and more reliable connections. The convergence of these factors is fostering an environment ripe for innovation and expansion in the edge AI chip market, with demand expected to increase across diverse applications and industries.
SCOPE OF STUDY:
The report analyzes the Edge Artificial Intelligence Chips market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Processor (CPU, GPU, ASIC, Other Processors); Device Type (Consumer Devices, Enterprise Devices); Function (Inference, Training)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 33 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.