![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1768952
¼¼°èÀÇ ¿ø°Å¸® À½¼ºÀÎ½Ä ½ÃÀåFar-Field Speech and Voice Recognition |
¼¼°èÀÇ ¿ø°Å¸® À½¼ºÀÎ½Ä ½ÃÀåÀº 2030³â±îÁö 204¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á
2024³â¿¡ 62¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ¿ø°Å¸® À½¼ºÀÎ½Ä ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â¿¡ CAGR 21.8%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 204¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ¸¶ÀÌÅ©·ÎÆùÀº CAGR 20.1%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 71¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µðÁöÅÐ ½Ã±×³Î ÇÁ·Î¼¼¼ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 22.2%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 18¾ï ´Þ·¯, Áß±¹Àº CAGR 21.2%·Î ¼ºÀå ¿¹Ãø
¹Ì±¹ÀÇ ¿ø°Å¸® À½¼ºÀÎ½Ä ½ÃÀåÀº 2024³â¿¡ 18¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 32¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 21.2%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 19.0%¿Í 18.3%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR ¾à 15.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿ø°Å¸® À½¼º ÀνÄÀÌ Åº·ÂÀ» ¹Þ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?
¿ø°Å¸® À½¼º ÀÎ½Ä ±â¼úÀº ÇÚÁîÇÁ¸® ±â±â ¹× À½¼º Áö¿ø ±â±â¿¡ ´ëÇÑ ¼ö¿ä°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó Å« ¼ºÀåÀ» ´Þ¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº ¹è°æ ¼ÒÀ½À̳ª ÈÀÚÀÇ ÆíÂ÷ µîÀÇ Àå¾Ö¹°À» ±Øº¹ÇÏ°í ±â±â°¡ ¿ø°Å¸®ÀÇ À½¼ºÀ» Á¤È®ÇÏ°Ô Æ÷ÂøÇϰí ó¸®ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¿ø°Å¸® À½¼º ÀνÄÀÇ Ã¤ÅÃÀº Æí¸®¼º, Á¢±Ù¼º ¹× »ç¿ëÀÚ °æÇè Çâ»ó¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä¿¡ ÈûÀÔ¾î ½º¸¶Æ®È¨ Àåºñ, ÀÚµ¿Â÷ ÀÎÅÍÆäÀ̽º, °ø°ø Á¤º¸ ½Ã½ºÅÛ µîÀÇ ¿ëµµ¿¡¼ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ®È¨ ºÐ¾ß¿¡¼´Â ½º¸¶Æ® ½ºÇÇÄ¿, TV, ȨÀÚµ¿È ½Ã½ºÅÛ µîÀÇ µð¹ÙÀ̽º´Â »ç¿ëÀÚ°¡ ¹°¸®ÀûÀÎ Á¢ÃË ¾øÀ̵µ ¹æÀÇ ¹Ý´ëÆí¿¡¼ µð¹ÙÀ̽º¸¦ Á¶ÀÛÇϰí Åë½ÅÇÒ ¼ö ÀÖ´Â ÆÛÇÊµå ±â´ÉÀÇ ÀÌÁ¡À» ´©¸®°í ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î ÀÚµ¿Â÷ ¹× Â÷·®¿ë ½Ã½ºÅÛµµ ¿ø°Å¸® À½¼º ÀνÄÀ» Ȱ¿ëÇÏ¿© ¿øÈ°ÇÑ ÇÚÁîÇÁ¸® »óÈ£ ÀÛ¿ëÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ¿îÀüÀÚÀÇ ÆíÀǼº°ú ¾ÈÀü¼ºÀ» ¸ðµÎ Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.
ƯÈ÷ µö·¯´×°ú ÀÚ¿¬ ¾ð¾î ó¸®(NLP)ÀÇ ±â¼ú ¹ßÀüÀº ¿ø°Å¸® À½¼º ÀÎ½Ä ½Ã½ºÅÛÀÇ È¿À²¼º°ú Á¤È®¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î µð¹ÙÀ̽º´Â ±î´Ù·Î¿î ȯ°æ¿¡¼µµ º¹ÀâÇÑ À½¼º ¸í·ÉÀ» Á¤È®ÇÏ°Ô ÀνÄÇϰí ó¸®ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ ´ÙÁß ¸¶ÀÌÅ© ¾î·¹ÀÌ, ºöÆ÷¹Ö, ³ëÀÌÁî ĵ½½¸µ ±â¼úÀÇ ÅëÇÕÀ» ÅëÇØ ¿ø°Å¸® À½¼º ÀÎ½Ä ½Ã½ºÅÛÀº ÁÖº¯ ¼ÒÀ½À» ÇÊÅ͸µÇÏ¸é¼ ÈÀÚÀÇ À½¼ºÀ» ºÐ¸®Çϰí ÁýÁß½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÇ ¹ßÀüÀ¸·Î ¿ø°Å¸® À½¼º ÀÎ½Ä ½Ã½ºÅÛÀº »óÈ£ ÀÛ¿ëÀÇ ¿ëÀ̼º°ú ÅÍÄ¡ Æ÷ÀÎÆ®ÀÇ °¨¼Ò°¡ ¿ì¼±½ÃµÇ´Â ½º¸¶Æ® ȯ°æ¿¡¼ Áß¿äÇÑ ±¸¼º ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ¿ø°Å¸® À½¼º ÀÎ½Ä ±â´ÉÀÌ Å¾ÀçµÈ ±â±â°¡ º¸±ÞµÊ¿¡ µû¶ó ÀÌ ±â¼úÀº °³Àοë ÀüÀÚ±â±âºÎÅÍ »ó¾÷¿ë ¹× »ê¾÷ ¿ëµµ¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ±â±â¿Í »ç¿ëÀÚ°¡ »óÈ£ ÀÛ¿ëÇÏ´Â ¹æ½ÄÀ» ÀçÁ¤ÀÇÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
AI¿Í NLPÀÇ ¹ßÀüÀº ½ÃÀåÀ» ¾î¶»°Ô º¯È½Ãų °ÍÀΰ¡?
ÀΰøÁö´É°ú ÀÚ¿¬ ¾ð¾î 󸮴 ¿ø°Å¸® À½¼º ÀÎ½Ä ±â¼úÀÇ ¹ßÀü¿¡ ÀÖÀ¸¸ç, Çõ½ÅÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, AI ±â¹Ý ¾Ë°í¸®Áò, ƯÈ÷ µö·¯´× ±â¹ÝÀÇ ¾Ë°í¸®ÁòÀº ´Ù¾çÇÑ ¾ï¾ç, ¾ð¾î ¹× À½¼º ´µ¾Ó½º¸¦ ÀÌÇØÇÏ´Â ½Ã½ºÅÛÀÇ ´É·ÂÀ» Çâ»ó½Ã۰í, NLPÀÇ ¹ßÀüÀº ÀÚ¿¬½º·± ´ëÈ È帧À» ó¸®ÇÏ´Â ½Ã½ºÅÛÀÇ ´É·ÂÀ» ´õ¿í Çâ»ó½ÃÄÑ º¸´Ù Á÷°üÀûÀÌ°í º¹ÀâÇÑ »ç¿ëÀÚ ¸í·É¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÚ¿¬½º·¯¿î ´ëÈ È帧À» ó¸®ÇÏ´Â ½Ã½ºÅÛÀÇ ´É·ÂÀ» ´õ¿í Çâ»ó½Ã۰í, º¸´Ù Á÷°üÀûÀÌ°í º¹ÀâÇÑ »ç¿ëÀÚ ¸í·É¿¡µµ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ´É·ÂÀº ÇコÄɾî, ¼Ò¸Å, °í°´ ¼ºñ½º µî ±â±â°¡ ¹Ì¹¦ÇÑ Áö½Ã¸¦ ÇØ¼®ÇØ¾ß Çϰųª »ç¿ëÀÚ »óÈ£ ÀÛ¿ëÀÌ ¹®¸ÆÀûÀ¸·Î º¹ÀâÇÑ È¯°æ¿¡¼ ÇʼöÀûÀ̸ç, AI ¹× NLP ±â¹Ý °ÈµÈ ±â´ÉÀ» ÅëÇØ ¿ø°Å¸® ½Ã½ºÅÛÀº ´õ ¸Õ °Å¸®¿¡¼ À½¼º ¸í·ÉÀ» ½Äº°Çϰí, ½Ã°£ÀÌ Áö³²¿¡ µû¶ó »ç¿ëÀÚ ¸í·ÉÀ» ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ½Ã°£ÀÌ Áö³²¿¡ µû¶ó »ç¿ëÀÚÀÇ ¼±È£µµ¸¦ ÇнÀÇÏ°í °³º° »ç¿ëÀÚÀÇ ¿ä±¸¿¡ ÀûÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù.
¶ÇÇÑ ¸Ó½Å·¯´×À» ÅëÇÑ °³ÀÎÈµÈ ÀûÀÀÇü À½¼º ÀÎ½Ä ¸ðµ¨ÀÇ °³¹ß·Î ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ½Ã°£ÀÌ Áö³²¿¡ µû¶ó Á¤È®µµ¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ½º¸¶Æ®È¨ÀÇ ¿ø°Å¸® À½¼º ½Ã½ºÅÛÀº »ç¿ëÀÚÀÇ ¼±È£ ¼³Á¤À» Á¡ÁøÀûÀ¸·Î 'ÇнÀ'ÇÏ°í ¹Ýº¹µÇ´Â ¸í·ÉÀ» ÀνÄÇÏ¿© »ç¿ëÀÚ ¸¸Á·µµ¸¦ ³ôÀÌ´Â ¸ÂÃãÇü ¼öÁØÀ» Ãß°¡ÇÒ ¼ö ÀÖÀ¸¸ç, AI¿Í ¸Ó½Å·¯´×À» ÅëÇØ ÀÌ·¯ÇÑ Áö¼ÓÀûÀÎ °³¼±ÀÌ ÀÌ·ç¾îÁú ¼ö ÀÖ½À´Ï´Ù. ¿ø°Å¸® À½¼º ÀνÄÀ» Â÷¼¼´ë À½¼º ÀÛµ¿ ½Ã½ºÅÛÀÇ ±â¹Ý ±â¼ú·Î ÀÚ¸®¸Å±èÇÏ¿© ´Ù¾çÇÑ ¿µ¿ª¿¡¼ Àΰ£°ú ±â°è°¡ ¿øÈ°ÇÏ°Ô »óÈ£ ÀÛ¿ëÇÒ ¼ö ÀÖ´Â ±æÀ» ¿¾îÁÝ´Ï´Ù. ÀÌ·¯ÇÑ AI ±â¹Ý ±â´ÉÀÌ °íµµÈµÊ¿¡ µû¶ó º¹ÀâÇÑ È¯°æ¿¡¼ÀÇ »ç¿ë¼ºÀ» È®´ëÇÔÀ¸·Î½á ¿ø°Å¸® À½¼º ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ½ÃÀå ¼ºÀ强ÀÌ °ÈµÉ °ÍÀÔ´Ï´Ù.
¿ø°Å¸® À½¼º ÀνÄÀÇ ¼ºÀå¿¡¼ »ê¾÷ ¾ÖÇø®ÄÉÀ̼ÇÀº ¾î¶² ¿ªÇÒÀ»Çϴ°¡?
¿ø°Å¸® À½¼º ÀÎ½Ä ±â¼úÀº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡ ±¤¹üÀ§ÇÏ°Ô Àû¿ëµÇ°í ÀÖÀ¸¸ç, °¢ »ê¾÷Àº ±× ±â´ÉÀ» Ȱ¿ëÇÏ¿© ¾÷¹« È¿À²¼º°ú »ç¿ëÀÚ Âü¿©¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ¼Ò¸Å¾÷¿¡¼´Â ¿ø°Å¸® Åë½Å ±â¼úÀ» Ȱ¿ëÇÑ À½¼º Ű¿À½ºÅ©¿Í ¸ÅÀå³» ¾î½Ã½ºÅÏÆ®¸¦ ÅëÇØ °í°´ÀÌ ÃÖ¼ÒÇÑÀÇ ¹°¸®Àû Á¢ÃËÀ¸·Î »óǰ Á¤º¸ ȹµæ, ÁÖ¹®, °í°´ ¼ºñ½º¿¡ Á¢±ÙÇÒ ¼ö ÀÖÀ¸¸ç, ÆíÀǼºÀ» ³ôÀÌ°í ºñÁ¢ÃË½Ä ¼ºñ½º µ¿ÇâÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀÇ·á ºÐ¾ß¿¡¼´Â ¿ø°Å¸® À½¼º ÀνÄÀ» ÅëÇØ ÇÚÁîÇÁ¸®·Î ±â±â¸¦ Á¶ÀÛÇÒ ¼ö ÀÖÀ¸¹Ç·Î ÀÇ·áÁøÀÌ À§»ý ÇÁ·ÎÅäÄÝÀ» ÈѼÕÇÏÁö ¾Ê°íµµ Á¤º¸¿¡ Á¢±ÙÇϰí, »ç·Ê¸¦ ¹®¼ÈÇϰí, ½Ã½ºÅÛ°ú »óÈ£ ÀÛ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷µµ Å« ÃËÁø¿äÀÎÀ¸·Î, ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ¿îÀüÀÚ¿¡°Ô º¸´Ù ¾ÈÀüÇϰí Á÷°üÀûÀÎ À½¼º Á¶ÀÛÀ» À§ÇØ ¿ø°Å¸® À½¼º ÀÎ½Ä ½Ã½ºÅÛÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù.
°ø°øÀå¼Ò¿¡¼´Â °øÇ×, ±âÂ÷¿ª ¹× ±âŸ ³ÐÀº °ø°£¿¡¼ ¿ø°Å¸® À½¼º ±â¼úÀ» »ç¿ëÇÏ¿© ¿©ÇàÀÚ¿¡°Ô Á¤º¸ ¹× Áö¿øÀ» Á¦°øÇÏ°í ´ë¸é ´ëÈÀÇ Çʿ伺À» ÁÙÀÔ´Ï´Ù. ±³À° ±â°ü¿¡¼´Â ½º¸¶Æ® ±³½Ç¿¡¼ÀÇ »ç¿ëÀ» °í·ÁÇϰí ÀÖÀ¸¸ç, ÇлýµéÀÌ ±³½ÇÀÇ ¾î´À À§Ä¡¿¡¼µç À½¼ºÀ¸·Î ÀÛµ¿ÇÏ´Â ÇнÀ Åø¿¡ Âü¿©ÇÒ ¼ö ÀÖÀ¸¸ç, Æ÷°ý¼º°ú Á¢±Ù¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. °¢ »ê¾÷ ºÐ¾ß¿¡¼ÀÇ ´Ù¾çÇÑ ¿ëµµ´Â ¿ø°Å¸® Åë½Å ±â¼úÀÇ ÀûÀÀ¼ºÀ» °Á¶Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÌ¿ë »ç·ÊÀÇ ´Ù¾ç¼ºÀº ¿ø°Å¸® À½¼º ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ °ÈÇϰí, ¼ÒºñÀÚ ¹× »ó¾÷¿ë ¿ëµµÀÇ È®´ë¿¡ µû¶ó ¿ø°Å¸® À½¼º ½Ã½ºÅÛÀÇ ÀÔÁö¸¦ È®°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.
¿ø°Å¸® À½¼º ÀÎ½Ä ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº ¹«¾ùÀΰ¡?
¿ø°Å¸® À½¼º ÀÎ½Ä ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ¼ÒºñÀÚ ¼±È£µµ, ÁøÈÇÏ´Â »ê¾÷ ¿ä±¸ »çÇ×ÀÇ Á¶ÇÕÀ¸·Î ÀÎÇØ AI, ¸Ó½Å·¯´× ¹× NLPÀÇ ±Þ¼ÓÇÑ °³¼±À¸·Î ¿ø°Å¸® Åë½Å ½Ã½ºÅÛÀÇ Á¤È®¼º°ú »ç¿ë ÆíÀǼºÀÌ Çâ»óµÇ¾î °³ÀÎ ¹× »ó¾÷Àû ¿ëµµ·Î ¸Å·ÂÀûÀ¸·Î º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ®È¨ ±â±âÀÇ Àα⠻ó½ÂÀº ÅÍÄ¡ ¾ø´Â ¿øÈ°ÇÑ »óÈ£ ÀÛ¿ë¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ë¿Í ÇÔ²² ÀÌ ±â¼úÀ» Áö¿øÇÏ´Â ÁÖ¿ä ¿øµ¿·Â Áß ÇϳªÀÔ´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷, ¼Ò¸Å, ÇコÄÉ¾î µîÀÇ ¾÷°è´Â »ç¿ëÀÚ °æÇè Çâ»ó°ú ¾÷¹« ÃÖÀûȸ¦ À§ÇØ À½¼º ÀÛµ¿ ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ »ê¾÷¿¡¼ À½¼º ÀÎ½Ä ½º¸¶Æ® ȯ°æ°ú IoT µð¹ÙÀ̽º°¡ È®´ëµÊ¿¡ µû¶ó ÆÛÇÊµå ±â¼úÀÇ ´ëÀÀ °¡´ÉÇÑ ½ÃÀåÀÌ Å©°Ô È®´ëµÇ¾ú½À´Ï´Ù.
ÇÁ¶óÀ̹ö½Ã ¹× µ¥ÀÌÅÍ º¸¾ÈÀ» Áß½ÃÇÏ´Â ±ÔÁ¦ µ¿Çâµµ ±â¾÷ÀÌ °·ÂÇÑ µ¥ÀÌÅÍ º¸È£ Á¶Ä¡¸¦ ÃëÇϵµ·Ï ¿ä±¸ÇÏ¸é¼ ¿ø°Å¸® À½¼º ÀÎ½Ä µµÀÔ¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÆÒµ¥¹Í ÀÌÈÄ ºñÁ¢ÃË½Ä ¹× À½¼º ±â¹Ý »óÈ£ ÀÛ¿ëÀ¸·ÎÀÇ ÀüȯÀº ƯÈ÷ °ø°øÀå¼Ò ¹× ÀÇ·á ȯ°æ¿¡¼ ÅÍÄ¡ Æ÷ÀÎÆ® °¨¼Ò°¡ ¿ì¼±½ÃµÇ´Â »óȲ¿¡¼ ¿ø°Å¸® ½Ã½ºÅÛ Ã¤ÅÃÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¸¶ÀÌÅ© ¾î·¹ÀÌ¿Í ³ëÀÌÁî ĵ½½¸µ ±â¼úÀÇ ¹ßÀüÀ¸·Î ¼ÒÀ½ÀÌ ¸¹°í ¿ªµ¿ÀûÀΠȯ°æ¿¡¼µµ ¿ø°Å¸® ½Ã½ºÅÛÀ» »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¸é¼ ±³Åë Çãºê, ±³À° ±â°ü, ´ë±Ô¸ð »ó¾÷ °ø°£¿¡¼ ±âȸ°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú, ±ÔÁ¦, ¼ÒºñÀÚ ÁÖµµÀû ¿äÀÎÀÇ °áÇÕÀº ¿ø°Å¸® À½¼º ÀÎ½Ä ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖÀ¸¸ç, Çö´ëÀÇ ÈÞ¸Õ ¸Ó½Å ÀÎÅÍÆäÀ̽º¿¡ ÇʼöÀûÀÎ ±¸¼º ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
ºÎ¹®
ÄÄÆ÷³ÍÆ®(¸¶ÀÌÅ©·ÎÆù, µðÁöÅÐ ½Ã±×³Î ÇÁ·Î¼¼¼, ¼ÒÇÁÆ®¿þ¾î); ¾ÖÇø®ÄÉÀ̼Ç(½º¸¶Æ® ½ºÇÇÄ¿, ½º¸¶Æ® TV/STB, ÀÚµ¿Â÷, ·Îº¿, ±âŸ ¾ÖÇø®ÄÉÀ̼Ç)
AI ÅëÇÕ
Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.
Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Global Far-Field Speech and Voice Recognition Market to Reach US$20.4 Billion by 2030
The global market for Far-Field Speech and Voice Recognition estimated at US$6.2 Billion in the year 2024, is expected to reach US$20.4 Billion by 2030, growing at a CAGR of 21.8% over the analysis period 2024-2030. Microphones, one of the segments analyzed in the report, is expected to record a 20.1% CAGR and reach US$7.1 Billion by the end of the analysis period. Growth in the Digital Signal Processors segment is estimated at 22.2% CAGR over the analysis period.
The U.S. Market is Estimated at US$1.8 Billion While China is Forecast to Grow at 21.2% CAGR
The Far-Field Speech and Voice Recognition market in the U.S. is estimated at US$1.8 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$3.2 Billion by the year 2030 trailing a CAGR of 21.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 19.0% and 18.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 15.2% CAGR.
Why Is Far-Field Speech and Voice Recognition Gaining Momentum?
Far-field speech and voice recognition technology is experiencing significant growth as the demand for hands-free and voice-enabled devices continues to rise. This technology enables devices to accurately capture and process speech from a distance, overcoming obstacles like background noise and speaker variability. The adoption of far-field voice recognition has surged in applications across smart home devices, automotive interfaces, and public information systems, driven by consumer demand for convenience, accessibility, and enhanced user experiences. In the smart home sector, devices like smart speakers, TVs, and home automation systems benefit from far-field capabilities, allowing users to control and communicate with their devices from across the room without physical contact. Similarly, automotive and in-car systems are leveraging far-field voice recognition to enable seamless, hands-free interactions, improving both driver convenience and safety.
Technological advancements, particularly in deep learning and natural language processing (NLP), are enhancing the effectiveness and accuracy of far-field voice recognition systems. These advancements allow devices to recognize and process complex voice commands with high precision, even in challenging environments. Furthermore, the integration of multiple microphone arrays, beamforming, and noise-canceling technologies enables far-field recognition systems to isolate and focus on the speaker’s voice, filtering out ambient noise. This evolution in technology has positioned far-field voice recognition as a key component in smart environments, where ease of interaction and reduced touchpoints are prioritized. As devices with far-field voice capabilities become more prevalent, this technology is set to redefine how users interact with a wide range of devices, from personal electronics to commercial and industrial applications.
How Are Advancements in AI and NLP Transforming the Market?
Artificial intelligence and natural language processing play a transformative role in the evolution of far-field speech and voice recognition technology. AI-driven algorithms, especially those based on deep learning, improve the ability of these systems to understand various accents, languages, and vocal nuances. NLP advancements further refine the systems' ability to process natural conversation flows, making them more intuitive and responsive to complex user commands. These capabilities are critical in environments where devices need to interpret nuanced instructions or where user interactions are contextually complex, such as healthcare, retail, and customer service. With AI and NLP-driven enhancements, far-field systems can identify voice commands from greater distances and even learn user preferences over time, making them adaptable to individual user needs.
Additionally, the development of personalized and adaptive voice recognition models powered by machine learning enables these systems to improve their accuracy over time. For example, far-field voice systems in smart homes can gradually “learn” users' preferred settings or recognize recurring commands, adding a level of customization that enhances user satisfaction. This continuous improvement, driven by AI and machine learning, positions far-field voice recognition as a foundational technology for the next generation of voice-activated systems, paving the way for seamless human-machine interaction across various domains. As these AI-driven capabilities become more sophisticated, they drive demand for far-field speech technology by expanding its usability in complex environments, reinforcing the market's growth potential.
What Role Do Industry Applications Play in the Growth of Far-Field Speech and Voice Recognition?
Far-field speech and voice recognition technology has wide-ranging applications across diverse industries, each leveraging its capabilities to enhance operational efficiency and user engagement. In retail, for instance, voice-activated kiosks and in-store assistants powered by far-field technology allow customers to get product information, place orders, and access customer service with minimal physical contact, promoting convenience and supporting contactless service trends. In healthcare, far-field voice recognition enables hands-free operation of devices, allowing medical professionals to access information, document cases, and interact with systems without compromising hygiene protocols. The automotive industry is a significant growth driver as well, with car manufacturers integrating far-field systems to facilitate safer and more intuitive voice-activated controls for drivers.
In public settings, far-field voice technology is also being used in airports, train stations, and other large spaces to provide information and assistance to travelers, reducing the need for face-to-face interaction. Educational institutions are exploring its use in smart classrooms, where students can engage with voice-activated learning tools from any position in the room, enhancing inclusivity and accessibility. The diversity of applications across industries underscores the adaptability of far-field technology, which can be customized to meet unique requirements in each sector. This versatility in use cases bolsters demand for far-field voice systems, solidifying its presence across an expanding range of consumer and commercial applications.
What Factors Are Driving Growth in the Far-Field Speech and Voice Recognition Market?
The growth in the far-field speech and voice recognition market is driven by a combination of technological advancements, consumer preferences, and evolving industry requirements. Rapid improvements in AI, machine learning, and NLP are increasing the accuracy and usability of far-field systems, making them more appealing for both personal and professional use. The rising popularity of smart home devices, coupled with consumer expectations for seamless, touch-free interaction, is one of the primary drivers behind this technology. Moreover, industries like automotive, retail, and healthcare are investing heavily in voice-activated technologies, aiming to improve user experiences and optimize operations. The expansion of voice-enabled smart environments and IoT devices across various industries has significantly broadened the addressable market for far-field technology.
Regulatory trends emphasizing privacy and data security also influence the adoption of far-field voice recognition, as companies are required to implement robust data protection measures. In addition, post-pandemic shifts towards contactless and voice-based interactions have accelerated the adoption of far-field systems, particularly in public spaces and healthcare environments where reducing touchpoints is a priority. Furthermore, advancements in microphone arrays and noise-canceling technologies are making far-field systems more viable for noisy and dynamic environments, opening up opportunities in transportation hubs, educational institutions, and large commercial spaces. This convergence of technological, regulatory, and consumer-driven factors is propelling the growth of the far-field speech and voice recognition market, establishing it as an essential component of modern human-machine interfaces.
SCOPE OF STUDY:
The report analyzes the Far-Field Speech and Voice Recognition market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Component (Microphones, Digital Signal Processors, Software); Application (Smart Speakers, Smart TV / STB, Automotive, Robotics, Other Applications)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 33 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.