![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1788353
¼¼°èÀÇ ¿ìÁÖ Å¾翡³ÊÁö ¹ßÀü ½ÃÀåSpace-based Solar Power |
¼¼°èÀÇ ¿ìÁÖ Å¾翡³ÊÁö ¹ßÀü ½ÃÀåÀº 2030³â±îÁö 10¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á
2024³â¿¡ 6¾ï 6,720¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ¿ìÁÖ Å¾翡³ÊÁö ¹ßÀü ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â¿¡ CAGR 7.7%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 10¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ¸¶ÀÌÅ©·ÎÆÄ ¼Û½Å ¼Ö¶ó À§¼ºÀº CAGR 6.1%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 6¾ï 540¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ·¹ÀÌÀú ¼Û½Å ¼Ö¶ó À§¼º ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 10.3%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 1¾ï 7,540¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 7.6%·Î ¼ºÀå ¿¹Ãø
¹Ì±¹ÀÇ ¿ìÁÖ Å¾翡³ÊÁö ¹ßÀü ½ÃÀåÀº 2024³â¿¡ 1¾ï 7,540¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 1¾ï 6,790¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 7.6%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 6.9%¿Í 6.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR ¾à 6.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¼¼°èÀÇ ¿ìÁÖ Å¾翡³ÊÁö ¹ßÀü ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®
¿ìÁÖ Å¾翡³ÊÁö ¹ßÀüÀÌ ¼¼°è ¿¡³ÊÁö Á¤¼¼¿¡¼ Å« ÃßÁø·ÂÀ» ¾ò°í ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?
¿ìÁÖ Å¾翡³ÊÁö ¹ßÀü(SBSP) °³³äÀº °ú°Å¿¡´Â ¾ß½ÉÂù ÀÌ·ÐÀû Ãß±¸·Î ¿©°ÜÁ³Áö¸¸, ÇöÀç´Â Àå±âÀûÀÎ ¿¡³ÊÁö ¾Èº¸¿Í Żź¼Òȸ¦ À§ÇÑ ½ÇÇö °¡´ÉÇÑ ¼Ö·ç¼ÇÀ¸·Î °¢±¤À» ¹Þ°í ÀÖ½À´Ï´Ù. ´ë±â »óÅÂ, ³¯¾¾ º¯È, ³·°ú ¹ãÀÇ Áֱ⿡ Á¦¾àÀ» ¹Þ´Â Áö»ó ž籤¹ßÀü¼Ò¿Í ´Þ¸® ¿ìÁÖ Å¾翡³ÊÁö ¹ßÀü ½Ã½ºÅÛÀº ±Ëµµ¿¡¼ Áß´Ü ¾øÀÌ Å¾翡³ÊÁö¸¦ ÀÌ¿ëÇÏ°í ¸¶ÀÌÅ©·ÎÆÄ³ª ·¹ÀÌÀú Àü¼ÛÀ» ÅëÇØ Áö±¸·Î º¸³¾ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áß´Ü ¾ø´Â ¿¡³ÊÁö °¡¿ë¼ºÀ¸·Î ÀÎÇØ SBSP´Â ±âÀúºÎÇÏ Àç»ý¿¡³ÊÁö ¹ßÀüÀ» À§ÇÑ È¹±âÀûÀÎ ´ë¾ÈÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. Àü ¼¼°è°¡ ź¼Ò¹èÃâ Á¦·Î(Net Zero)¸¦ ´Þ¼ºÇϰí ȼ®¿¬·á¿¡¼ Å»ÇÇÇϱâ À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, ¹«ÇÑÈ÷ ±ú²ýÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿ìÁÖ ¹ßÀüÀÇ ¸Å·ÂÀº Á¡Á¡ ´õ Ä¿Áö°í ÀÖ½À´Ï´Ù. À§¼º ¹èÄ¡, Àü·Â Àü¼Û, ¹«¼± Àü¼Û ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î SBSP´Â ÀÌ·ÐÀû ¿¬±¸ ÁÖÁ¦¿¡¼ ÀϺΠÁ¤ºÎ ¹× ¿¡³ÊÁö °ü°èÀÚÀÇ Àü·«Àû ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¾ß¸ÁÀ¸·Î ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. NASA, ESA, JAXA, Áß±¹ ±¹°¡¿ìÁÖ±¹ µî ¿ìÁÖ ±â°üÀº Ÿ´ç¼º Á¶»ç ¹× Ãʱâ ÇÁ·ÎÅäŸÀÔÀ» Ãâ½ÃÇßÀ¸¸ç, ¹Î°£ ±â¾÷ ¹× ±¹¹æºÎ´Â ¹Î°£ ¹× ÀüÀå ¿¡³ÊÁö º¹¿ø·ÂÀ» À§ÇØ SBSP¿¡ ÁÖ¸ñÇϰí ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº ´õ ÀÌ»ó °ø»ó°úÇÐÀÇ ¼¼°è°¡ ¾Æ´Ñ, ¿¡³ÊÁö°¡ ¾îµð¼ ¾î¶»°Ô »ý»êµÇ´ÂÁö¸¦ À籸¼ºÇÒ ¼ö ÀÖ´Â Àü·«Àû ûÁ¤¿¡³ÊÁö ´ëü±â¼ú·Î ¿©°ÜÁö°í ÀÖ½À´Ï´Ù.
°³³ä¿¡¼ ½ÇÇö °¡´É¼ºÀ¸·Î ÀüȯÀ» ÃËÁøÇÏ´Â ±â¼úÀû Çõ½ÅÀº ¹«¾ùÀΰ¡?
¿ìÁÖ Å¾翡³ÊÁö ¹ßÀüÀÇ °É¸²µ¹À̾ú´ø ±â¼úÀû À庮Àº Ç×°ø¿ìÁÖ°øÇÐ, ¹«¼± ¼ÛÀü, °æ·® Àç·á°úÇÐ µîÀÇ Çõ½ÅÀ» ÅëÇØ ²ÙÁØÈ÷ ±Øº¹µÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä °³¹ß ³»¿ëÀ¸·Î´Â ÃÖ¼ÒÀÇ Áú·®À¸·Î ÃÖ´ë Ãâ·ÂÀ» ¾òÀ» ¼ö ÀÖ´Â Ãʰ淮, °íÈ¿À²ÀÇ Å¾籤¹ßÀü ÆÐ³ÎÀ» °³¹ßÇÏ¿© ±Ëµµ »ó¿¡ ¹èÄ¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¿ìÁÖ¿ë ÆÐ³ÎÀº Áö±¸ µ¿±âÈ ±Ëµµ¿¡¼ ž翡³ÊÁö¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â 1ų·Î¹ÌÅÍ ±Ô¸ðÀÇ ¾î·¹ÀÌ¿¡ ¹èÄ¡ÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. µ¿½Ã¿¡ ¸¶ÀÌÅ©·Î¿þÀ̺ê¿Í ·¹ÀÌÀú¸¦ ÀÌ¿ëÇÑ Àü·Â ºöÀÇ ¹ßÀüÀ¸·Î ¿ìÁÖ¿¡¼ Áö»óÀÇ ¼ö½Å ½ºÅ×À̼Ç(·ºÅ׳ª)À¸·Î ¾ÈÀüÇÏ°í ¸ñÇ¥¿¡ ¸Â´Â ¿¡³ÊÁö Àü¼ÛÀÌ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù. Á¤¹Ð Á¦¾î ½Ã½ºÅÛ, À§»ó ¹è¿ ¾ÈÅ׳ª ±â¼ú, ºö Á¶Çâ ¸ÞÄ¿´ÏÁòÀº Á¤·Ä°ú È¿À²¼ºÀ» º¸ÀåÇϱâ À§ÇØ °³¼±µÇ¾ú½À´Ï´Ù. º¹ÀâÇÑ Áö»ó ÅëÇÕÀ» ÇÊ¿ä·Î ÇÏÁö ¾Ê´Â ´ë±Ô¸ð SBSP Ç÷§ÆûÀÇ ½ÇÇöÀ» À§ÇØ ¸ðµâ½Ä À§¼º Á¶¸³, ¿ìÁÖ°ø°£¿¡¼ÀÇ Á¦Á¶, ·Îº¿¿¡ ÀÇÇÑ °Ç¼³µµ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àç»ç¿ë °¡´ÉÇÑ ¹ß»çü ¹× ¹ß»ç ºñ¿ëÀÇ °¨¼Ò·Î ÀÎÇØ SBSP ±¸¼º ¿ä¼Ò¸¦ ±Ëµµ¿¡ ¿Ã·Á³õ´Â µ¥ ÀÖÀ¸¸ç, °æÁ¦Àû À庮ÀÌ Å©°Ô ³·¾ÆÁ³½À´Ï´Ù. AI ±â¹Ý Á¦¾î ½Ã½ºÅÛÀÇ ÅëÇÕÀº ¶ÇÇÑ ÀÌ·¯ÇÑ ±Ëµµ ¹ßÀü¼Ò°¡ ¿¡³ÊÁö ¼ö¿ä¿Í ¿î¿µ»óÀÇ µ¹¹ß »óȲ¿¡ ÀÚÀ²ÀûÀ¸·Î ÀûÀÀÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ À¶ÇÕ ±â¼úÀº SBSPÀÇ »ó¾÷Àû ½ÇÇö °¡´É¼ºÀ» ºü¸£°Ô ²ø¾î¿Ã¸®°í ÀÖ½À´Ï´Ù.
¾î¶² Àü·«Àû °ü½É°ú ÀÌ¿ë »ç·Ê°¡ ¿ìÁÖ Å¾籤¿¡ ´ëÇÑ ¼ö¿ä¸¦ ºÒ·¯ÀÏÀ¸Å°°í Àִ°¡?
SBSP¿¡ ´ëÇÑ °ü½ÉÀº ÁöÁ¤ÇÐÀû, ȯ°æÀû, °æÁ¦Àû ¿äûÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇÏ¿© Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¸¹Àº ±¹°¡µé¿¡°Ô SBSP´Â Àå±âÀûÀÎ ¿¡³ÊÁö ÁÖ±ÇÀ» ÇâÇÑ ±æÀ̸ç, ¼öÀÔ ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í, Áö»óÀÇ Àç»ý¿¡³ÊÁö °£Ç漺 ¹®Á¦¸¦ ÇØ°áÇØ ÁÙ ¼ö ÀÖ½À´Ï´Ù. ÀϺ»À̳ª Çѱ¹Ã³·³ ´ë±Ô¸ð ž籤À̳ª dz·Â¹ßÀüÀ» ¼³Ä¡ÇÒ ¼ö ÀÖ´Â ÅäÁö°¡ ÇÑÁ¤µÈ ±¹°¡¿¡¼´Â ±Ëµµ ±â¹Ý ¼Ö·ç¼Ç¿¡ ƯÈ÷ °ü½ÉÀ» ±â¿ïÀ̰í ÀÖ½À´Ï´Ù. ±¹¹æ±â°üÀº ±âÁ¸ ¿¡³ÊÁö °ø±ÞÀÌ ³í¸®ÀûÀ¸·Î ¾î·Æ°Å³ª Àü·«ÀûÀ¸·Î Ãë¾àÇÑ ¿ø°ÝÁö ±âÁö ¹× Àü¹æ ÀÛÀü ºÎ´ë¿¡ Àü·ÂÀ» °ø±ÞÇϱâ À§ÇØ SBSP¸¦ ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ÀçÇØ ±¸È£ ½Ã³ª¸®¿À¿¡¼ ±Ëµµ Ç÷§Æû¿¡¼ ¿¡³ÊÁö¸¦ °ø±Þ¹Þ´Â À̵¿½Ä ·ºÅ׳ª ¾î·¹ÀÌ´Â Áö»ó ÀÎÇÁ¶ó°¡ ÇÇÇØ¸¦ ÀÔ¾úÀ» ¶§ Áï°¢ÀûÀ¸·Î Áß´Ü ¾ø´Â Àü·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ½À´Ï´Ù. ½ÅÈï ½ÃÀå°ú ºñÀü±âÈ Áö¿ªÀÇ °æ¿ì, SBSP´Â ±âÁ¸ ¿¡³ÊÁö ÀÎÇÁ¶ó¸¦ ¿ÏÀüÈ÷ ´ëüÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. Áö±¸ ¹Û¿¡¼ SBSP´Â ´Þ ±âÁö³ª ȼº Ž»ç¼±¿¡ Àü·ÂÀ» °ø±ÞÇÏ´Â µ¥¿¡µµ Àû¿ëµÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºñ»óÀå ¿¡³ÊÁö ȸ»çµéÀº SBSP¸¦ ¹Ì·¡ÀÇ ½º¸¶Æ® ±×¸®µå¿¡ ÅëÇÕÇÒ ¼ö ÀÖ´Â °¡´É¼ºÀ» °ËÅäÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ¼¼°è¿¡¼ °¡Àå ½Å·ÚÇÒ ¼ö ÀÖ´Â »õ·Î¿î ¹üÁÖÀÇ ¿¡³ÊÁö °ø±Þ¿øÀ¸·Î¼ SBSP¸¦ ¹Ì·¡ ½º¸¶Æ® ±×¸®µå¿¡ ÅëÇÕÇÒ °¡´É¼ºÀ» °ËÅäÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´Ù¾çÇÑ ÀÀ¿ëÀº ÀáÀçÀûÀÎ ½ÃÀåÀ» È®´ëÇÒ »Ó¸¸ ¾Æ´Ï¶ó SBSP °³¹ßÀ» °¡¼ÓÈÇÒ ¼ö ÀÖ´Â Àü·«Àû ±Ù°Å¸¦ °ÈÇϰí ÀÖ½À´Ï´Ù.
¿ìÁÖ Å¾籤 ½ÃÀåÀÇ Àå±âÀûÀÎ ¼ºÀå µ¿·ÂÀº?
¿ìÁÖ Å¾籤 ½ÃÀåÀÇ ¼ºÀåÀº ¿¡³ÊÁö Çõ½Å, ÁöÁ¤ÇÐÀû Àü·«, ȯ°æÀû Áö¼Ó°¡´É¼º, ¿ìÁÖ »ó¾÷È¿Í °ü·ÃµÈ ¸î °¡Áö »óÈ£ ¿¬°üµÈ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ ¿øµ¿·Â Áß Çϳª´Â ÅäÁö³ª ´ã¼ö¿Í °æÀïÇÏÁö ¾Ê´Â ±ú²ýÇϰí Áö¼ÓÀû À̸ç È®Àå °¡´ÉÇÑ ¿¡³ÊÁö¿ø¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. ¿ìÁÖ Å¾翡³ÊÁö ¹ßÀüÀº Áö¿ªÀû Á¦¾àÀ» ¾ø¾Ö°í ³¯¾¾¿¡ ±¸¾Ö¹ÞÁö ¾Ê°í 24½Ã°£ 365ÀÏ ¿¡³ÊÁö ¼öÁýÀÌ °¡´ÉÇÏ´Ù´Â µ¶Æ¯ÇÑ ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. ¶Ç ´Ù¸¥ Å« ¿äÀÎÀº ¹ß»ç ºñ¿ëÀÇ °¨¼Ò, Àç»ç¿ë °¡´ÉÇÑ ·ÎÄÏ, °æ·® žçÀüÁöÆÇÀÇ ±â¼ú Çõ½ÅÀÌ ¼ö·ÅÇÏ¸é¼ SBSP ÀÎÇÁ¶ó¸¦ ±× ¾î´À ¶§º¸´Ù ±â¼úÀûÀ¸·Î³ª °æÁ¦ÀûÀ¸·Î ½ÇÇö°¡´ÉÇÏ°Ô ¸¸µé°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. Áß±¹ÀÇ SBSP ·Îµå¸Ê, À¯·´¿ìÁÖ±¹(ESA)ÀÇ ¼Ö¶ó¸®½º ÇÁ·Î±×·¥, ¹Ì±¹ÀÇ ±¹¹æºñ Áö¿ø ¿¬±¸ µî¿¡¼ ¾Ë ¼ö ÀÖµíÀÌ Á¤ºÎÀÇ Áö¼ÓÀûÀÎ °ü½ÉÀÌ ¹Î°üÇù·Â°ú ÀÚ±ÝÁ¶´ÞÀÇ ¸ð¸àÅÒÀ» ¸¸µé¾î³»°í ÀÖ½À´Ï´Ù. ´Ù±ØÈµÇ´Â ¿ìÁÖ°³¹ß °æÀï ¼Ó¿¡¼ ¿¡³ÊÁö ÀÚ±ÞÀÚÁ·°ú ±Ëµµ»óÀÇ ¿¡³ÊÁö ÀÎÇÁ¶ó°¡ ±¹°¡¾Èº¸ÀÇ ¿ì¼±¼øÀ§·Î ¶°¿À¸£¸é¼ Àü·«Àû °í·Áµµ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ SBSP´Â ¼¼°è ź¼ÒÁ߸³ ¸ñÇ¥¿¡ ºÎÇÕÇϸç, ±âÁ¸ Àç»ý¿¡³ÊÁö¿øÀ» º¸¿ÏÇÒ ¼ö ÀÖ´Â ¹Ì·¡ÁöÇâÀûÀÎ ´ëü ¿¡³ÊÁö¸¦ Á¦°øÇÕ´Ï´Ù. ±Ëµµ»ó Á¦Á¶ ¹× ·Îº¿ Á¶¸³ ´É·ÂÀÇ È®ÀåÀº SBSP ½Ã½ºÅÛÀÇ È®À强À» ´õ¿í ³ô¿©ÁÙ °ÍÀÔ´Ï´Ù. ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©°¡ ÁøÈÇÏ°í ¹«¼± Àü¼ÛÀÇ ¾ÈÀü¼º¿¡ ´ëÇÑ ¿ì·Á°¡ ÇØ¼ÒµÊ¿¡ µû¶ó ¿ìÁÖ Å¾翡³ÊÁö ¹ßÀüÀº ¿ìÁÖ °æÁ¦¿Í ¼¼°è ¿¡³ÊÁö ÀüȯÀÇ Áß¿äÇÑ ÇÁ·ÐƼ¾î·Î¼ ºÎ»óÇÒ °ÍÀÔ´Ï´Ù.
ºÎ¹®
À§¼º À¯Çü(¸¶ÀÌÅ©·ÎÆÄ ¼Û½Å ¼Ö¶ó À§¼º, ·¹ÀÌÀú ¼Û½Å ¼Ö¶ó À§¼º), ¾ÖÇø®ÄÉÀ̼Ç(¹ßÀü ¾ÖÇø®ÄÉÀ̼Ç, ¿ìÁÖ ¾ÖÇø®ÄÉÀ̼Ç)
AI ÅëÇÕ
Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.
Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Global Space-based Solar Power Market to Reach US$1.0 Billion by 2030
The global market for Space-based Solar Power estimated at US$667.2 Million in the year 2024, is expected to reach US$1.0 Billion by 2030, growing at a CAGR of 7.7% over the analysis period 2024-2030. Microwave Transmitting Solar Satellite, one of the segments analyzed in the report, is expected to record a 6.1% CAGR and reach US$605.4 Million by the end of the analysis period. Growth in the Laser Transmitting Solar Satellite segment is estimated at 10.3% CAGR over the analysis period.
The U.S. Market is Estimated at US$175.4 Million While China is Forecast to Grow at 7.6% CAGR
The Space-based Solar Power market in the U.S. is estimated at US$175.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$167.9 Million by the year 2030 trailing a CAGR of 7.6% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 6.9% and 6.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.4% CAGR.
Global Space-based Solar Power Market - Key Trends & Drivers Summarized
Why Is Space-based Solar Power Gaining Serious Momentum in the Global Energy Landscape?
The concept of space-based solar power (SBSP)-once viewed as an ambitious theoretical pursuit-is now gaining traction as a viable solution to long-term energy security and decarbonization. Unlike terrestrial solar farms, which are constrained by atmospheric conditions, weather variability, and the day-night cycle, space-based solar power systems can harness uninterrupted solar energy in orbit and beam it back to Earth using microwave or laser transmission. This uninterrupted energy availability positions SBSP as a game-changing option for base-load renewable power. As the world races to achieve net-zero emissions and transition away from fossil fuels, the appeal of limitless, clean, and reliable space-generated electricity is growing. With the rapid advancements in satellite deployment, power beaming, and wireless transmission technologies, SBSP is evolving from a theoretical research topic to a strategic infrastructure ambition for several governments and energy players. Space agencies like NASA, ESA, JAXA, and the China National Space Administration have launched feasibility studies and early prototypes, while private-sector players and defense departments are eyeing SBSP for both civilian and battlefield energy resilience. This technology is no longer seen as science fiction, but as a strategic clean energy alternative that could reshape how and where energy is generated.
What Technological Breakthroughs Are Driving the Transition from Concept to Feasibility?
The technological barriers that once hindered space-based solar power are now being steadily overcome through innovations across aerospace engineering, wireless power transmission, and lightweight material science. Key breakthroughs include the development of ultra-light, high-efficiency photovoltaic panels that can be deployed in orbit with minimal mass and maximum output. These space-grade panels are designed to unfold into kilometer-scale arrays capable of harvesting solar energy in geosynchronous orbit. Simultaneously, advancements in microwave and laser-based power beaming are enabling the safe and targeted transmission of energy from space to ground-based receiving stations, known as rectennas. Precision control systems, phase-array antenna technology, and beam steering mechanisms are being refined to ensure alignment and efficiency. Modular satellite assembly, in-space manufacturing, and robotic construction are also playing critical roles in realizing large-scale SBSP platforms without the need for complex Earth-based integration. Additionally, reusable launch vehicles and falling launch costs are significantly lowering the economic barrier to transporting SBSP components into orbit. The integration of AI-driven control systems is further allowing these orbital power plants to adapt autonomously to energy demands and operational contingencies. These converging technologies are rapidly pushing SBSP toward commercial viability.
Which Strategic Interests and Use Cases Are Catalyzing Demand for Space-based Solar Power?
Interest in SBSP is being driven by a combination of geopolitical, environmental, and economic imperatives. For many countries, SBSP represents a path to long-term energy sovereignty, reducing reliance on imported fuels and addressing the intermittency challenges of terrestrial renewables. Nations with limited land availability for large-scale solar or wind installations-such as Japan or South Korea-are particularly interested in orbit-based solutions. Defense agencies are exploring SBSP to supply power to remote bases and forward-operating units, where conventional energy supply is logistically challenging or strategically vulnerable. In disaster relief scenarios, mobile rectenna arrays receiving energy from orbital platforms could provide immediate and uninterrupted power where terrestrial infrastructure has been damaged. For emerging markets and off-grid communities, SBSP offers the potential to leapfrog traditional energy infrastructure altogether. Beyond Earth, SBSP also has applications for powering lunar bases and Mars missions, where in-situ solar energy may be inconsistent due to long nights or dust storms. Additionally, private energy companies are examining the feasibility of integrating SBSP into future smart grids as a new category of global, high-reliability energy source. These diverse applications are not only broadening the potential market but also strengthening the strategic case for accelerating SBSP development.
What Is Driving the Long-term Growth of the Space-based Solar Power Market?
The growth in the space-based solar power market is driven by several interconnected factors linked to energy innovation, geopolitical strategy, environmental sustainability, and space commercialization. One of the most critical drivers is the rising global demand for clean, continuous, and scalable energy sources that do not compete for land or freshwater. Space-based solar power offers a unique advantage by eliminating geographic limitations and providing 24/7 energy collection without weather disruptions. Another major factor is the convergence of falling launch costs, reusable rockets, and lightweight solar panel innovations that make deploying SBSP infrastructure more technically and economically feasible than ever before. Continued government interest-illustrated by China’s SBSP roadmap, ESA’s Solaris program, and U.S. defense-funded research-is creating momentum for public-private collaboration and funding. Strategic considerations are also driving growth, as energy independence and orbital energy infrastructure become national security priorities in an increasingly multipolar space race. Additionally, SBSP aligns with global carbon neutrality goals, offering a future-proof energy alternative that complements existing renewable sources. The expansion of orbital manufacturing and robotic assembly capabilities further supports the scalability of SBSP systems. As regulatory frameworks evolve and wireless transmission safety concerns are addressed, space-based solar power is set to emerge as a critical frontier in both the space economy and the global energy transition.
SCOPE OF STUDY:
The report analyzes the Space-based Solar Power market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Satellite Type (Microwave Transmitting Solar Satellite, Laser Transmitting Solar Satellite); Application (Electricity Generation Application, Space Application)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 34 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.