![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1791549
¼¼°èÀÇ ºôµù ÀÚµ¿È ¿¡³ÊÁö ¼öÈ® ½ÃÀåBuilding Automation Energy Harvesting |
¼¼°èÀÇ ºôµù ÀÚµ¿È ¿¡³ÊÁö ¼öÈ® ½ÃÀåÀº 2030³â±îÁö 4¾ï 8,030¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á
2024³â¿¡ 2¾ï 9,060¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ºôµù ÀÚµ¿È ¿¡³ÊÁö ¼öÈ® ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 8.7%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 4¾ï 8,030¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼¿¡¼ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀΠž翡³ÊÁö¿øÀº CAGR 9.4%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 3¾ï 760¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿¿¡³ÊÁö¿ø ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 8.3%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 7,640¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 8.4%·Î ¼ºÀå ¿¹Ãø
¹Ì±¹ÀÇ ºôµù ÀÚµ¿È ¿¡³ÊÁö ¼öÈ® ½ÃÀåÀº 2024³â¿¡´Â 7,640¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 7,650¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 8.4%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 8.1%¿Í 7.3%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR ¾à 6.9%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.
´ç½ÅÀÇ ºôµùÀº º¸´Ù ½º¸¶Æ®Çϰí ȯ°æÀ» »ý°¢ÇØÁö°í Àִ°¡? ºôµù ÀÚµ¿È ¿¡³ÊÁö ¼öÈ® ¿ªÇÒ Ã£±â
¼¼°è ºôµù ÀÚµ¿È ¿¡³ÊÁö ¼öÈ® ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®
ºôµù ÀÚµ¿È ¿¡³ÊÁö ¼öÈ® ½ÃÀåÀº °Ç¼³ ¹× ½Ã¼³ °ü¸® ºÎ¹®ÀÌ ¿î¿µ ºñ¿ë Àý°¨, ¿¡³ÊÁö È¿À² °³¼±, Áö¼Ó°¡´É¼º µµÀÔ¿¡ Èû¾²°í ÀÖ´Â °¡¿îµ¥ Å« °ßÀÎÂ÷ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ºôµù ÀÚµ¿È¿¡¼ ¿¡³ÊÁö ¼öÈ®Àº ºû, ¿, Áøµ¿, ¹«¼± Á֯ļö µîÀÇ ¼Ò½º¿¡¼ ÁÖº¯ ¿¡³ÊÁö¸¦ Æ÷ÂøÇϰí ÀúÀåÇÏ¿© ¼¾¼, ½ºÀ§Ä¡, Á¦¾î ÀåÄ¡ µîÀÇ Àú¿¡³ÊÁö ÀåÄ¡¿¡ Àü·ÂÀ» °ø±ÞÇÏ´Â °úÁ¤À» ¸»ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ºôµù ÀÚµ¿È ¼Ö·ç¼Ç(°øÁ¶ Á¦¾î, Á¶¸í ½Ã½ºÅÛ, º¸¾È, ȯ°æ ¸ð´ÏÅ͸µ µî)¿¡ Á¡Á¡ ´õ ¸¹ÀÌ ÅëÇյǰí ÀÖÀ¸¸ç, µ¶¸³Çü ¹èÅ͸® ¾ø´Â ±¸¼º¿ä¼Ò¸¦ ¸¸µé¾î³»°í ÀÖ½À´Ï´Ù. ½º¸¶Æ® ºôµù, ģȯ°æ ÀÎÁõ(LEED, BREEAM µî), ¼ø Á¦·Î ¿¡³ÊÁö ¸ñÇ¥ÀÇ ÃßÁøÀ¸·Î ƯÈ÷ »ó¾÷¿ë ºÎµ¿»ê, ±³À°±â°ü, »ê¾÷½Ã¼³, Á¤ºÎ °Ç¹°¿¡¼ ÀÌ·¯ÇÑ ±â¼úÀÇ Ã¤ÅÃÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
±âÁ¸ÀÇ ¹èÅ͸®½Ä ¼¾¼´Â ƯÈ÷ ´ë±Ô¸ð ½Ã¼³À̳ª Á¢±ÙÀÌ ¾î·Á¿î Àå¼Ò¿¡ ¼³Ä¡ÇÒ °æ¿ì, ¹èÅ͸® ±³Ã¼°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ À¯Áöº¸¼ö ¹× ¶óÀÌÇÁ»çÀÌŬ ºñ¿ë Ãø¸é¿¡¼ ¹®Á¦°¡ ¹ß»ýÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¿¡³ÊÁö ¼öÈ®À» ±â¹ÝÀ¸·Î ÇÑ ½Ã½ºÅÛÀº ÀÌ·¯ÇÑ ºÎ´ãÀ» ¾ø¾Ö°í ´õ ±ä ÀÛµ¿ ¼ö¸íÀ¸·Î À¯Áö º¸¼ö°¡ ÇÊ¿ä ¾ø´Â ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. À̴ ƯÈ÷ ³ëÈÄÈµÈ ÀÎÇÁ¶ó³ª ¸®³ëº£ÀÌ¼Ç ÁßÀÎ °Ç¹°¿¡¼ ½Ã¼³ °ü¸®ÀÚ¿¡°Ô Áß¿äÇÑ Àǹ̸¦ °¡Áý´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â Áö¼Ó °¡´ÉÇÑ °Ç¼³°ú ¿¡³ÊÁö È¿À²À» ÃËÁøÇÏ´Â Á¤ºÎÀÇ ±ÔÁ¦¿Í Àå·ÁÃ¥ Áõ°¡·Î ÀÎÇØ ´õ¿í °ÈµÇ°í ÀÖ½À´Ï´Ù. À¯·´°ú ºÏ¹Ì µîÀÇ Áö¿ª¿¡¼´Â °Ç¹° ¿¡³ÊÁö ¼º´É¿¡ ´ëÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©°¡ °ÈµÇ°í ÀÖÀ¸¸ç, µ¶¸³Çü ÀÎÅÚ¸®Àü½º¸¦ ÅëÇØ ¿¡³ÊÁö ¼Òºñ¸¦ ÃÖ¼ÒÈÇÏ´Â ÀÚµ¿È ½Ã½ºÅÛÀ¸·ÎÀÇ ÀüȯÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
ºôµùÀÇ ¿¡³ÊÁö ¼öÈ®À» Çâ»ó½ÃŰ´Â ½Å±â¼úÀº?
±â¼úÀÇ ¹ßÀüÀº ½º¸¶Æ® ºôµùÀÇ ¿¡³ÊÁö ¼öÈ® ½Ã½ºÅÛÀÇ È¿À²¼º°ú äÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ž籤 ¹ßÀü(PV)À» ÅëÇÑ ¿¡³ÊÁö ¼öÈ®, ƯÈ÷ ½Ç³» Á¶¸íÀ¸·ÎºÎÅÍÀÇ ¿¡³ÊÁö ¼öÈ®Àº ´õ¿í È¿°úÀûÀ̰í Àú·ÅÇØÁö¸é¼ ´õ ±¤¹üÀ§ÇÑ ¼¾¼¿Í ¾×Ãß¿¡ÀÌÅÍ¿¡ ÅëÇÕµÉ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¸¶Âù°¡Áö·Î ¿Àü ¹ßÀü±â(TEG)¿Í ¾ÐÀü ½Ã½ºÅÛµµ °Ç¹° ³» ¿ÂµµÂ÷³ª ±¸Á¶Àû Áøµ¿(ÁÖ·Î °øÁ¶ ÀÛµ¿À̳ª »ç¶÷ÀÇ ¿Õ·¡·Î ÀÎÇÑ Á¦Ç°º°)À¸·ÎºÎÅÍ ¿¡³ÊÁö¸¦ ÃßÃâÇϱâ À§ÇØ °³¼±µÇ°í ÀÖ½À´Ï´Ù. ÃÊÀúÀü·Â ÀüÀÚ±â±â¿Í Àü·Â °ü¸® IC(ÁýÀûȸ·Î)ÀÇ ºñ¾àÀûÀÎ ¹ßÀüÀ¸·Î ¸¶ÀÌÅ©·Î¿ÍÆ®ÀÇ ¿¡³ÊÁö·Î µð¹ÙÀ̽º¸¦ ÀÛµ¿½Ãų ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.
Zigbee, EnOcean, BLE(Bluetooth Low Energy), LoRaWAN µîÀÇ ¹«¼± Åë½Å ÇÁ·ÎÅäÄÝÀº ºôµù ÀÚµ¿È¿¡¼ ¿¡³ÊÁö ¼öÈ® ÀåÄ¡ÀÇ ¼º°øÀÇ Áß½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ç¥ÁØ ±Ô°ÝÀº À¯¼± ÀÎÇÁ¶ó³ª ¿ÜºÎ Àü¿øÀ¸·ÎºÎÅÍ µ¶¸³ÀûÀ¸·Î ÀÛµ¿ÇÏ´Â ±¤¹üÀ§ÇÑ ¹«¼± ¼¾¼ ³×Æ®¿öÅ©¸¦ ±¸ÃàÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ƯÈ÷ EnOcean ÇÁ·ÎÅäÄÝÀº ÃÊÀúÀü·Â ¼Òºñ ¹× ¿¡³ÊÁö ¼öÈ® ¿ëµµ¸¦ À§ÇØ Æ¯º°È÷ ¼³°èµÇ¾úÀ¸¸ç, Á¶¸í, °øÁ¶, °ÅÁÖÀÚ °¨Áö µî¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´×°ú AIµµ »ç¿ë ÆÐÅϰú ȯ°æ Á¶°Ç¿¡ µû¶ó ¿¡³ÊÁö ¼Òºñ¸¦ ÃÖÀûÈÇÏ¿© ½Ã½ºÅÛ Àüü¸¦ ÀÚ¸³½Ãų »Ó¸¸ ¾Æ´Ï¶ó Áö´ÉÀûÀ¸·Î ÀûÀÀ½ÃŰ´Â ¿ªÇÒÀ» Çϱ⠽ÃÀÛÇß½À´Ï´Ù.
¾î¶² °ÇÃà ¿ëµµ ¹× ÀÌ¿ë »ç·Ê°¡ ½ÃÀå µµÀÔÀ» ÃËÁøÇϰí Àִ°¡?
¿¡³ÊÁö ¼öÈ®Àº ƯÈ÷ È®À强, À¯Áöº¸¼ö, ¿î¿µ È¿À²¼ºÀÌ °¡Àå Áß¿ä½ÃµÇ´Â ºÐ¾ß¿¡¼ ÃֽŠºôµù ÀÚµ¿È Àü·«ÀÇ ÇÙ½É ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. »ó¾÷¿ë ¿ÀÇǽº ºôµù, ¼îÇθô, ±³À°±â°ü µî¿¡¼´Â Á¶¸í Á¦¾î, ¿Âµµ Á¶Àý, °ÅÁÖÀÚ °¨Áö, ½Ç³» °ø±âÁú ¸ð´ÏÅ͸µÀ» À§ÇØ ¿¡³ÊÁö ¼öÈ® ¼¾¼¸¦ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ëµµ´Â ¼¾¼°¡ ±¤¹üÀ§ÇÏ°Ô ¹èÄ¡µÇ¾î¾ß Çϰí, ¹èÅ͸® À¯Áöº¸¼ö¿¡ ¹æÇذ¡ µÇ°Å³ª ºñ¿ëÀÌ ¸¹ÀÌ µå´Â °³¹æÇü ȯ°æÀ̳ª À¯µ¿Àα¸°¡ ¸¹Àº Àå¼Ò¿¡¼ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù.
»ê¾÷ ȯ°æ¿¡¼ ¿¡³ÊÁö ¼öÈ® ÀåÄ¡´Â À¯¼± Àü¿ø ¿¬°á ¾øÀ̵µ Àåºñ »óŸ¦ ¸ð´ÏÅ͸µÇϰí, °¡½º ´©ÃâÀ» °¨ÁöÇϰí, ½Ã¼³ »óŸ¦ ÃßÀûÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. Çö´ëȰ¡ ÁøÇàµÇ°í ÀÖ´Â ¿ª»çÀû °ÇÃ๰À̳ª À¯»êÀû °ÇÃ๰µµ ÁÖ¿ä ä¿ë ´ë»óÀÔ´Ï´Ù. ¶ÇÇÑ, ´ë±Ô¸ð Ä·ÆÛ½º³ª ¸ÖƼÅ×³ÍÆ® °Ç¹°¿¡¼´Â ¿¡³ÊÁö ºñ¿ëÀ» Àý°¨ÇÏ°í ¿¹Áöº¸ÀüÀ» °¡´ÉÇÏ°Ô Çϱâ À§ÇØ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¹è¼±À» º¯°æÇÏÁö ¾Ê°íµµ ¼¾¼¸¦ À¯¿¬ÇÏ°Ô ¹èÄ¡Çϰí Àç¹èÄ¡ÇÒ ¼ö Àֱ⠶§¹®¿¡ ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ¹æÀÇ ·¹À̾ƿô°ú »ç¿ë ÆÐÅÏÀÌ ÀÚÁÖ ¹Ù²î´Â ¿ªµ¿ÀûÀÎ °ø°£¿¡¼ ƯÈ÷ ¸Å·ÂÀûÀÔ´Ï´Ù.
ºôµù ÀÚµ¿È ¿¡³ÊÁö ¼öÈ® ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?
ºôµù ÀÚµ¿È ¿¡³ÊÁö ¼öÈ® ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ±ÔÁ¦ ¾Ð·Â, »ç¿ëÀÚº° ¿î¿µ ¿ä±¸ »çÇ×°ú Á÷Á¢ÀûÀ¸·Î °ü·ÃµÈ ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿øµ¿·Â Áß Çϳª´Â ½º¸¶Æ® ºôµù¿¡ ´ëÇÑ ³ë·ÂÀÌ ±ÞÁõÇϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¿¡³ÊÁö ¼öÈ®Àº ÀÌ·¯ÇÑ ½Ã½ºÅÛ¿¡ Àü·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ´Â È®Àå °¡´ÉÇϰí À¯Áöº¸¼ö°¡ ÇÊ¿ä ¾ø´Â Á¢±Ù ¹æ½ÄÀ» Á¦°øÇÏ¿© ¹èÅ͸®·Î ±¸µ¿µÇ´Â ÀåÄ¡ÀÇ Á¦¾àÀ» ¾ø¾Ù ¼ö ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº ¿¡³ÊÁö ¼öÈ® È¿À²ÀÇ ´ëÆøÀûÀÎ °³¼±°ú ÃÊÀúÀü·Â ÀüÀÚÁ¦Ç°ÀÇ º¸±ÞÀ¸·Î ½Ç³» ȯ°æ¿¡¼ÀÇ È¯°æ ¿¡³ÊÁö ÀÌ¿ë °¡´É¼ºÀÌ È®´ëµÇ¾ú½À´Ï´Ù´Â Á¡ÀÔ´Ï´Ù.
¹Ì±¹, À¯·´, ¾Æ½Ã¾Æ ÀϺΠÁö¿ª¿¡¼ ¿¡³ÊÁö Àý¾à °Ç¹°¿¡ ´ëÇÑ ±ÔÁ¦°¡ °ÈµÇ°í ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀå¿¡ ÈûÀ» º¸Å°í ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â ÀÌ»êÈź¼Ò ¹èÃâ·® °¨¼Ò, °Ç¹° ¼º´É Æò°¡ °³¼±, ¼ø Á¦·Î ¸ñÇ¥ ÃßÁø¿¡ ÃÊÁ¡À» ¸ÂÃá ÁöħÀÌ Æ÷ÇԵ˴ϴÙ. µû¶ó¼ ½Ã¼³ °ü¸®ÀÚ´Â ±¸Á¶Àû Á¡°Ë ¾øÀ̵µ ¿¡³ÊÁö °ü¸®¸¦ °ÈÇÒ ¼ö ÀÖ´Â ¸®³ëº£À̼ǿ¡ ÀûÇÕÇÑ ¼Ö·ç¼Ç¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, EnOcean ¹× Zigbee¿Í °°Àº ¿¡³ÊÁö ¼öÈ®¿¡ ÃÖÀûÈµÈ ¹«¼± Åë½Å Ç¥ÁØÀÇ Ã¤ÅÃÀº »óÈ£ ¿î¿ë °¡´ÉÇÑ ÀÚ°¡¹ßÀüÇü ºôµù ÀÚµ¿È ½Ã½ºÅÛÀÇ ½Å¼ÓÇÑ ¹èÆ÷¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ½º¸¶Æ® ½ÃƼ¿Í Áö´ÉÇü Ä·ÆÛ½º¿¡¼ À¯¿¬Çϰí ÀûÀÀ·Â ÀÖ´Â ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä´Â ¹Ì·¡ ´ëÀÀ °¡´ÉÇÑ °Ç¹°ÀÇ ±âº» ±¸¼º ¿ä¼Ò·Î¼ ¿¡³ÊÁö ¼öÈ® ¼¾¼ÀÇ ÅëÇÕÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
ºÎ¹®
¼Ò½º(ž翡³ÊÁö ¼Ò½º, ¿¿¡³ÊÁö ¼Ò½º, Áøµ¿ ¹× ¿îµ¿ ¿¡³ÊÁö ¼Ò½º, ¹«¼± Á֯ļö(RF) ¼Ò½º, ±âŸ ¼Ò½º), ÄÄÆ÷³ÍÆ®(¿¡³ÊÁö ¼öÈ® º¯È¯±â, Àü·Â °ü¸® ÁýÀûȸ·Î(PMIC), ±âŸ ÄÄÆ÷³ÍÆ®)
AI ÅëÇÕ
´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.
Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Global Building Automation Energy Harvesting Market to Reach US$480.3 Million by 2030
The global market for Building Automation Energy Harvesting estimated at US$290.6 Million in the year 2024, is expected to reach US$480.3 Million by 2030, growing at a CAGR of 8.7% over the analysis period 2024-2030. Solar Energy Source, one of the segments analyzed in the report, is expected to record a 9.4% CAGR and reach US$307.6 Million by the end of the analysis period. Growth in the Thermal Energy Source segment is estimated at 8.3% CAGR over the analysis period.
The U.S. Market is Estimated at US$76.4 Million While China is Forecast to Grow at 8.4% CAGR
The Building Automation Energy Harvesting market in the U.S. is estimated at US$76.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$76.5 Million by the year 2030 trailing a CAGR of 8.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.1% and 7.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.9% CAGR.
Is Your Building Getting Smarter and Greener? Exploring the Role of Energy Harvesting in Building Automation
Global Building Automation Energy Harvesting Market - Key Trends & Drivers Summarized
The building automation energy harvesting market is gaining significant traction as the construction and facilities management sectors strive to reduce operational costs, improve energy efficiency, and embrace sustainability. Energy harvesting in building automation refers to the process of capturing and storing ambient energy from sources like light, heat, vibration, or radio frequency to power low-energy devices such as sensors, switches, and control units. These systems are increasingly embedded into building automation solutions-HVAC controls, lighting systems, security, and environmental monitoring-to create self-sustaining, battery-free components. The push towards smart buildings, green certifications (such as LEED and BREEAM), and net-zero energy goals is accelerating the adoption of such technology, especially in commercial real estate, educational institutions, industrial facilities, and government buildings.
Traditional battery-powered sensors often present challenges in terms of maintenance and lifecycle costs due to battery replacement needs, especially in large-scale or inaccessible installations. Energy harvesting-based systems eliminate this burden, offering maintenance-free alternatives with longer operational lifespans. This has significant implications for facility managers, especially in aging infrastructures or buildings undergoing retrofits. The trend is also being reinforced by increasing government regulations and incentives that promote sustainable construction and energy efficiency. In regions like Europe and North America, regulatory frameworks are becoming more stringent regarding building energy performance, prompting a shift towards automation systems that minimize energy consumption through self-sustaining intelligence.
How Are Emerging Technologies Elevating Energy Harvesting in Buildings?
Technological advancements are driving the efficiency and adoption of energy harvesting systems in smart buildings. Photovoltaic (PV) energy harvesting, particularly from indoor light, is becoming more effective and affordable, enabling integration into a wider range of sensors and actuators. Similarly, thermoelectric generators (TEGs) and piezoelectric systems are being refined to draw energy from temperature differentials or structural vibrations within buildings-often byproducts of HVAC operations or foot traffic. These energy sources, once considered too weak or inconsistent, are now increasingly viable thanks to breakthroughs in ultra-low power electronics and power management ICs (integrated circuits), which allow devices to function on microwatts of energy.
Wireless communication protocols such as Zigbee, EnOcean, Bluetooth Low Energy (BLE), and LoRaWAN are central to the success of energy harvesting devices in building automation. These standards enable the creation of extensive wireless sensor networks that can operate independently of wired infrastructure or external power supplies. The EnOcean protocol, in particular, is designed specifically for ultra-low power and energy harvesting applications and is widely used in lighting, HVAC, and occupancy sensing. Machine learning and AI are also starting to play a role by optimizing energy consumption based on usage patterns and environmental conditions, making the whole system not just self-sustaining but also intelligently adaptive.
Which Building Applications and Use Cases Are Pushing Market Adoption?
Energy harvesting is becoming a core component of modern building automation strategies, particularly in sectors where scalability, maintenance, and operational efficiency are paramount. Commercial office buildings, shopping malls, and educational institutions are incorporating energy-harvesting sensors for lighting control, temperature regulation, occupancy sensing, and indoor air quality monitoring. These applications are especially beneficial in open-plan environments or high-traffic areas where sensors must be deployed extensively, and battery maintenance would be disruptive or cost-prohibitive.
In industrial settings, energy-harvesting devices are being used to monitor equipment status, detect gas leaks, or track facility conditions without the need for wired power connections. Historic or heritage buildings undergoing modernization are also key adopters, as retrofitting wired systems in such structures is often impractical. Moreover, large campuses and multi-tenant properties are installing these systems to reduce energy costs and enable predictive maintenance. The ability to deploy and redeploy sensors flexibly without rewiring makes these solutions particularly attractive for dynamic spaces where room layouts or occupancy patterns frequently change.
What’s Driving the Growth in the Building Automation Energy Harvesting Market?
The growth in the building automation energy harvesting market is driven by several factors directly tied to technology evolution, regulatory pressure, and user-specific operational demands. One of the primary drivers is the surge in smart building initiatives, which require large-scale deployment of interconnected sensors and control systems. Energy harvesting offers a scalable and maintenance-free approach to power these systems, eliminating the limitations posed by battery-powered devices. Another key factor is the significant improvement in energy harvesting efficiency and the proliferation of ultra-low power electronics, which has expanded the viability of using ambient energy in indoor environments.
Increasing regulatory mandates for energy-efficient buildings across the U.S., Europe, and parts of Asia are also propelling the market. These include directives focused on lowering carbon emissions, improving building performance ratings, and promoting net-zero targets. Facility managers are thus investing in retrofit-friendly solutions that enhance energy management without the need for structural overhauls. Additionally, the adoption of wireless communication standards optimized for energy harvesting-such as EnOcean and Zigbee-has facilitated the rapid deployment of interoperable and self-powered building automation systems. Lastly, the demand for flexible, adaptive infrastructure in smart cities and intelligent campuses is driving the integration of energy harvesting sensors as a foundational component of future-ready buildings.
SCOPE OF STUDY:
The report analyzes the Building Automation Energy Harvesting market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Source (Solar Energy Source, Thermal Energy Source, Vibration and Kinetic Energy Source, Radio Frequency (RF) Source, Other Sources); Component (Energy Harvesting Transducer, Power Management Integrated Circuits (PMIC), Other Components)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 39 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.