![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1795243
¼¼°èÀÇ ¼ö¼Ò ¿¬·áÀüÁö ¿Â÷ ½ÃÀåHydrogen Fuel Cell Trains |
¼ö¼Ò ¿¬·áÀüÁö ¿Â÷ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 37¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á
2024³â¿¡ 19¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼ö¼Ò ¿¬·áÀüÁö ¿Â÷ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 11.3%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 37¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼¿¡¼ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¾ç¼ºÀÚ ±³È¯¸· ±â¼úÀº CAGR 9.7%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 22¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÎ»ê ±â¼ú ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 14.2%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 5¾ï 1,200¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 10.7%·Î ¼ºÀå ¿¹Ãø
¹Ì±¹ÀÇ ¼ö¼Ò ¿¬·áÀüÁö ¿Â÷ ½ÃÀåÀº 2024³â¿¡ 5¾ï 1,200¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ 2024³âºÎÅÍ 2030³â±îÁö CAGR 10.7%¸¦ ´õµë¾î, 2030³â¿¡´Â 5¾ï 8,150¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 10.2%¿Í 9.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR ¾à 8.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¼¼°èÀÇ ¼ö¼Ò ¿¬·áÀüÁö ¿Â÷ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®
¼ö¼Ò ¿¬·áÀüÁö ¿Â÷°¡ ³ì»ö öµµ ¿î¼ÛÀÇ ¹Ì·¡·Î ¶°¿À¸£´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?
¼ö¼Ò ¿¬·áÀüÁö ¿Â÷´Â Àü ¼¼°è öµµ ¿î¼Û ºÎ¹®ÀÇ Å»Åº¼Òȸ¦ À§ÇÑ Çõ½Å ¼Ö·ç¼ÇÀ¸·Î ºü¸£°Ô ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ¼ö¼Ò ¿¬·áÀüÁö ¿Â÷´Â ÀÌ»êÈź¼Ò³ª ¹Ì¸³ÀÚ ¹°ÁúÀ» ¹èÃâÇÏ´Â µðÁ© ±â°üÂ÷¿Í ´Þ¸® ¼ö¼Ò °¡½º¸¦ Àü±â ÈÇÐÀû °úÁ¤À» ÅëÇØ Àü±â·Î º¯È¯Çϰí, Á¦Ç°º°·Î ¼öÁõ±â¸¦ ¹ß»ý½Ãų »ÓÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¹«°øÇØ ¿îÀüÀº öµµ ³ë¼±ÀÇ ¿ÏÀüÇÑ Àü±âȰ¡ °æÁ¦ÀûÀ¸·Î ºÒ°¡´ÉÇϰųª Áö¸®ÀûÀ¸·Î ¾î·Á¿î Áö¿ª¿¡¼´Â ƯÈ÷ °¡Ä¡°¡ ÀÖ½À´Ï´Ù. ÀÌ ¿Â÷´Â ÇÑ ¹øÀÇ ¼ö¼Ò ÃæÀüÀ¸·Î Àå°Å¸® ÁÖÇàÀÌ °¡´ÉÇϱ⠶§¹®¿¡ Àü±âÈ ³×Æ®¿öÅ©¿¡ ¿¬°áµÇÁö ¾ÊÀº Áö¹æ ³ë¼±À̳ª Áö¿ª ³ë¼±¿¡ ÀûÇÕÇÕ´Ï´Ù. ¹Î°üÀÌ Àû±ØÀûÀÎ ±âÈĺ¯È ¸ñÇ¥ ´Þ¼ºÀ» À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, ¼ö¼Ò ÃßÁøÀº ±âÁ¸ öµµ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¸Å·ÂÀûÀÎ ´ë¾ÈÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Â÷·®Àº ´ÙÀç´Ù´ÉÇϱ⠶§¹®¿¡ ´ë±Ô¸ð ±Ëµµ ¼öÁ¤ÀÌ ÇÊ¿ä ¾øÀÌ ±âÁ¸ öµµ ÀÎÇÁ¶ó¿¡ ¿øÈ°ÇÏ°Ô ÅëÇÕµÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µðÁ© ¿£Áøº¸´Ù Á¶¿ëÇÏ°Ô ÀÛµ¿Çϱ⠶§¹®¿¡ µµ½ÉÀ̳ª ÁÖÅð¡¿¡¼ ¼ÒÀ½ °øÇظ¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¶¿ëÇÏ°í ±ú²ýÇÑ ±³Åë¼ö´ÜÀº ´õ °Ç°ÇÑ È¯°æ¿¡ ±â¿©ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ½Â°´ÀÇ °æÇè°ú Áö¿ª»çȸÀÇ ¼ö¿ë¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. µ¶ÀÏ, ÇÁ¶û½º, ¿µ±¹, ÀϺ» µî ¾ß½ÉÂù ź¼Ò Á߸³ ¸ñÇ¥¸¦ ¼³Á¤ÇÑ ±¹°¡µéÀº ÀÌ¹Ì ¼ö¼Òöµµ ½Ã¹ü µµÀÔ ¹× »ó¿ëȸ¦ ½ÃÀÛÇß½À´Ï´Ù. ƯÈ÷ ¼ö¼Ò »ý»ê ¹× ÀúÀå ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó, ÀÌ·¯ÇÑ Ãʱ⠳ë·ÂÀº º¸´Ù ±¤¹üÀ§ÇÑ µµÀÔÀ» À§ÇÑ ´Ü°è¸¦ ¹â¾Æ°¡°í ÀÖ½À´Ï´Ù. ±× °á°ú, ¼ö¼Ò ¿¬·áÀüÁö ¿Â÷´Â ´Ü¼øÇÑ Æ´»õ Çõ½ÅÀÌ ¾Æ´Ï¶ó ´Ù¾çÇÑ Áö¿ªÀÇ Ã¶µµ ½Ã½ºÅÛÀ» Çö´ëÈÇϰí Żź¼ÒÈÇϱâ À§ÇÑ È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀ¸·Î Àνĵǰí ÀÖ½À´Ï´Ù.
Á¤Ã¥Àû Áö¿ø°ú ÀÎÇÁ¶ó ÅõÀÚ´Â ¾î¶»°Ô µµÀÔÀ» °¡¼ÓÈÇϰí Àִ°¡?
Á¤ºÎ Á¤Ã¥°ú ÀÎÇÁ¶ó ÅõÀÚ´Â ¼ö¼Ò ¿¬·áÀüÁö ¿Â÷ ½ÃÀå ¼ºÀåÀÇ Ã˸ÅÁ¦·Î¼ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Àú¹èÃâ ±³Åë¼ö´ÜÀ¸·ÎÀÇ ÀüȯÀÌ ½Ã±ÞÇÏ´Ù´Â °ÍÀ» ÀνÄÇÏ°í ¸¹Àº ±¹°¡¿Í Áö¹æÁ¤ºÎ´Â ¼ö¼Òöµµ¸¦ Áß¿äÇÑ ¿ä¼Ò·Î Æ÷ÇÔÇÏ´Â Á¾ÇÕÀûÀÎ Àü·«À» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤Ã¥¿¡´Â ½Ã¹ü ÇÁ·ÎÁ§Æ® ÀÚ±Ý Áö¿ø, R&D ÀÌ´Ï¼ÅÆ¼ºê, ¼ö¼Ò »ý»ê º¸Á¶±Ý, µðÁ© ±â°üÂ÷ ´Ü°èÀû ÅðÃâ Àǹ«È µîÀÌ Æ÷ÇԵǴ °æ¿ì°¡ ¸¹½À´Ï´Ù. °ø°øÁ¶´Þ ÇÁ·Î±×·¥µµ Àú°øÇØ ´ëü Â÷·®À» ¿ì´ëÇÏ´Â ±¸Á¶·Î µÇ¾î ÀÖ¾î, ¼ö¼Òöµµ Á¦Á¶¾÷ü¿¡ Å« ºñÁî´Ï½º ±âȸ¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ±ÔÁ¦Àû Áö¿ø°ú ´õºÒ¾î ¼ö¼Ò ÃæÀü ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚµµ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀϺΠöµµ ȸ¶û¿¡´Â ¼ö¼Ò ÃæÀü¼Ò°¡ ¼³Ä¡µÇ¾î ¿îÇàÀÇ ½Å·Ú¼º°ú È¿À²¼ºÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù. ÀÎÇÁ¶ó °³¹ß¿¡´Â öµµÂ÷·®±âÁö Àαٿ¡ ±×¸° ¼ö¼Ò Á¦Á¶°øÀåÀ» ¼³Ä¡ÇÏ¿© ¹°·ùºñ¿ë Àý°¨°ú ¾ÈÁ¤ÀûÀÎ ¿¬·á °ø±ÞÀ» È®º¸ÇÏ´Â °Íµµ Æ÷ÇԵ˴ϴÙ. À¯·´¿¬ÇÕ(EU), ij³ª´Ù, Çѱ¹°ú °°Àº ±¹°¡ ¼ö¼Ò Àü·«Àº öµµ ¿î¼ÛÀ» Àü·«Àû ÀÀ¿ë ºÐ¾ß·Î ¼³Á¤Çϰí, ºÎ¹® °£ Çù·Â°ú ¼ö¼Ò »ýŰ迡 ´ëÇÑ Àå±âÀûÀÎ ¾à¼ÓÀ» °Á¶Çϰí ÀÖ½À´Ï´Ù. ´ÙÀÚ°³¹ßÀºÇà°ú ȯ°æ ±â°üµéµµ ±¤¹üÀ§ÇÑ Áö¼Ó°¡´ÉÇÑ ¸ðºô¸®Æ¼ Æ÷Æ®Æú¸®¿ÀÀÇ ÀÏȯÀ¸·Î ¼ö¼Ò öµµ ÀÌ´Ï¼ÅÆ¼ºê¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °³¹ßÀº ´Üµ¶À¸·Î ÁøÇàµÇ´Â °ÍÀÌ ¾Æ´Ï¶ó ¼ö¼Ò ÀÚµ¿Â÷, ÇØ¾ç, »ê¾÷ ÀÀ¿ëÀ» Æ÷ÇÔÇÑ ÅëÇÕÀûÀÎ ÃßÁøÀÇ ÀϺÎÀ̸ç, À̸¦ ÅëÇØ öµµ ºÎ¹®¿¡ ÀÌÀÍÀ» °¡Á®´ÙÁÖ´Â ½Ã³ÊÁö È¿°ú¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ´ëÁß±³Åë, öµµÂ÷·® Á¦Á¶¾÷ü, ¿¡³ÊÁö °ø±Þ¾÷ü °£ÀÇ ÆÄÆ®³Ê½ÊÀ» ÅëÇØ ¼ö¼Ò °¡Ä¡»ç½½ Àü¹ÝÀ» Áö¿øÇÏ´Â »ýŰ踦 Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ °·ÂÇÑ Áö¿ø°ú ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®ÀÇ ¼ºÀå ³×Æ®¿öÅ©¿¡ ÈûÀÔ¾î ¼ö¼Ò ¿¬·áÀüÁö ÀüöÀº ½ÇÇè ´Ü°è¿¡¼ º»°ÝÀûÀÎ º¸±ÞÀ¸·Î ºü¸£°Ô ÀüȯÇϰí ÀÖ½À´Ï´Ù.
±â¼úÀÇ ¹ßÀüÀº ¿Â÷ÀÇ È¿À²¼º°ú È®À强À» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?
ÃÖ±Ù ±â¼úÀÇ ¹ßÀüÀ¸·Î ¼ö¼Ò ¿¬·áÀüÁö ¿Â÷ÀÇ È¿À²¼º, ¼º´É, È®À强ÀÌ Å©°Ô Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °³¼±ÀÇ ÇÙ½ÉÀº º¸´Ù ÄÄÆÑÆ®ÇÏ°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç °íÃâ·ÂÀÇ ¿¬·áÀüÁö ½Ã½ºÅÛÀ» °³¹ßÇÏ¿© ¿Â÷ÀÇ ¹«°Ô¸¦ ´Ã¸®Áö ¾Ê°íµµ Ç׼ӰŸ®¸¦ ´Ã¸®°í °¡¼ÓÀ» ºü¸£°Ô ÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â °ÍÀÔ´Ï´Ù. Ãֽмö¼Òöµµ´Â ¿¬·áÀüÁö¿Í Â÷·®¿ë ¹èÅ͸®ÀÇ »ç¿ëÀ» ÃÖÀûÈÇÏ´Â ¿¡³ÊÁö °ü¸® ½Ã½ºÅÛÀ» °®Ãß°í ÀÖ¾î °æ»ç, ÀæÀº Á¤Â÷ µî ºÎÇϰ¡ º¯µ¿ÇÏ´Â »óȲ¿¡¼µµ È¿À²ÀûÀÎ Àü·Â ¹èºÐÀ» ½ÇÇöÇÕ´Ï´Ù. ȸ»ýÁ¦µ¿½Ã½ºÅÛÀÇ ÅëÇÕÀ¸·Î °¨¼Ó ½Ã ¿¡³ÊÁö¸¦ ȸ¼öÇÏ¿© ¹èÅ͸®¿¡ ÀúÀåÇß´Ù°¡ ³ªÁß¿¡ »ç¿ëÇÒ ¼ö Àֱ⠶§¹®¿¡ Àü¹ÝÀûÀÎ ¿¬·á È¿À²ÀÌ Çâ»óµË´Ï´Ù. ¶ÇÇÑ, ¾ÈÀü°ú ½Â°´ÀÇ Æí¾ÈÇÔÀ» ÇØÄ¡Áö ¾ÊÀ¸¸é¼ Áú·®À» ÁÙÀÌ°í ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ ¿Â÷ ±¸Á¶¿¡ °æ·® ¼ÒÀ縦 »ç¿ëÇÏ°Ô µÇ¾ú½À´Ï´Ù. °í¾ÐÅÊÅ©, º¹ÇÕÀç·á µî Â÷·®¿ë ¼ö¼Ò ÀúÀå ±â¼úÀÇ ¹ßÀüÀ¸·Î ÇÑÁ¤µÈ °ø°£¿¡¼ ´õ ¸¹Àº ¿¬·á¸¦ ÀúÀåÇÒ ¼ö ÀÖ°Ô µÇ¾î ¿Â÷ÀÇ ÁÖÇà °¡´É °Å¸®¸¦ ´õ¿í ´Ã¸± ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ½Ç½Ã°£ Áø´Ü ¹× ¿¹Áöº¸Àü ½Ã½ºÅÛÀ» ÅëÇØ ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈÇÏ°í ¶óÀÌÇÁ»çÀÌŬ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿È¿Í ½º¸¶Æ® Á¦¾î´Â ´õ ºÎµå·¯¿î °¡¼Ó°ú Á¦µ¿À» °¡´ÉÇÏ°Ô Çϰí, ¿¡³ÊÁö »ç¿ëÀ» °³¼±ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ½Â°´ÀÇ °æÇèÀ» Çâ»ó½Ãŵ´Ï´Ù. ¶ÇÇÑ, ģȯ°æÀûÀÎ ¼ö¼Ò Á¦Á¶ ¹æ¹ý, ƯÈ÷ Àç»ý¿¡³ÊÁö¿¡ ÀÇÇÑ Àü±âºÐÇØÀÇ °³¼±À¸·Î ¼ö¼Ò ¿¬·á ÀÚü¿Í °ü·ÃµÈ ÀÌ»êÈź¼Ò ¹èÃâ·®ÀÌ °¨¼ÒÇϰí ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ »ý»ê¿¡¼ ¼Òºñ±îÁö ÁøÁ¤ÇÑ ¹«°øÇØ »çÀÌŬÀ» ½ÇÇöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû ¹ßÀüÀ¸·Î ÀÎÇØ öµµ »ç¾÷ÀÚ´Â ¼ö¼Ò¿Â÷¸¦ º¸´Ù ±¤¹üÀ§ÇÑ ³ë¼±°ú °íÁÖÆÄ ¿îÇà¿¡ ´ëÇØ °ËÅäÇÒ ¼ö ÀÖ°Ô µÇ¾úÀ¸¸ç, ½Ã¹ü ÇÁ·Î±×·¥»Ó¸¸ ¾Æ´Ï¶ó Àå±âÀûÀ¸·Î Àü±¹ öµµ ³×Æ®¿öÅ©¿¡ ÅëÇÕÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.
Àü ¼¼°è ¼ö¼Ò ¿¬·áÀüÁö ¿Â÷ ½ÃÀåÀÇ ±Þ¼ºÀå ¿äÀÎÀº?
¼¼°è ¼ö¼Ò ¿¬·áÀüÁö ¿Â÷ ½ÃÀåÀÇ ¼ºÀåÀº Áö¼Ó°¡´É¼º ¸ñÇ¥, öµµ Çö´ëÈ ³ë·Â, ±â¼úÀû Áغñ, ¿¡³ÊÁö °æÁ¦ º¯È¿¡ ±â¹ÝÇÑ ¿©·¯ °¡Áö »óÈ£ ¿¬°üµÈ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °¡Àå °·ÂÇÑ ¿øµ¿·Â Áß Çϳª´Â ȼ®¿¬·á ±â¹Ý ¿î¼ÛÀ» ´Ü°èÀûÀ¸·Î ÆóÁöÇϱâ À§ÇÑ È®½ÇÇÑ ±âÇÑÀ» ¼³Á¤ÇÏ´Â °ÍÀ» Æ÷ÇÔÇÏ¿© ¿î¼Û ºÎ¹®¿¡¼ ¿Â½Ç °¡½º ¹èÃâÀ» ÁÙÀ̰ڴٴ Àü ¼¼°èÀÇ ¾à¼ÓÀÔ´Ï´Ù. ƯÈ÷ µðÁ© ¿£Áø¿¡ ÀÇÁ¸Çϰí Àִ öµµ´Â ±¹°¡ ¹× ±¹Á¦ÀûÀÎ ±âÈĺ¯È Á¤Ã¥¿¡ ¸ÂÃç¾ß ÇÑ´Ù´Â °ÇÑ ¾Ð·ÂÀ» ¹Þ°í ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ öµµ ³ë¼±ÀÇ ¿ÏÀü Àü±âȴ ƯÈ÷ ¿Üµý Áö¿ªÀ̳ª ±³Åë·®ÀÌ ÀûÀº Áö¿ª¿¡¼´Â ÀçÁ¤Àû, ±â¼úÀûÀ¸·Î ¹Ýµå½Ã ½ÇÇà °¡´ÉÇÑ °ÍÀº ¾Æ´Õ´Ï´Ù. ¼ö¼Ò ¿¬·áÀüÁö ÀüöÀº ÀÌ·¯ÇÑ °ÝÂ÷¸¦ ÇØ°áÇÒ ¼ö ÀÖ´Â ½Ç¿ëÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇϸç, °í°¡ÀÇ °¡¼± ½Ã½ºÅÛ ¾øÀ̵µ ±ú²ýÇÑ ±³Åë¼ö´ÜÀ» ½ÇÇöÇÒ ¼ö ÀÖ½À´Ï´Ù. Àç»ý¿¡³ÊÁö ¿ë·®ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Àúź¼Ò ¿¬·áÀÎ ±×¸° ¼ö¼ÒÀÇ ÀÌ¿ë °¡´É¼ºÀÌ È®´ëµÇ°í, ¼ö¼ÒöµµÀÇ ½ÇÇö°¡´É¼ºÀÌ ³ô¾ÆÁö¸é¼ Á¤ºÎ¿Í »ç¾÷Àڵ鿡°Ô ¸Å·ÂÀûÀ¸·Î ´Ù°¡¿À°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼ö¼Ò ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ È®´ë·Î ÁøÀÔÀ庮ÀÌ ³·¾ÆÁ® ¿©·¯ ÀÌÇØ°ü°èÀÚ°¡ ¿¬·áÀÇ Á¦Á¶ ¹× À¯Åë ºñ¿ëÀ» ºÐ´ãÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¼ö¼ÒöµµÀÇ È®À强°ú ´Ù¿ëµµ¼ºÀº ÃÖ¼ÒÇÑÀÇ ÀÎÇÁ¶ó °³Á¶·Î Â÷·®À» Çö´ëÈÇÏ·Á´Â öµµ »ç¾÷ÀÚ¿¡°Ôµµ ¸Å·ÂÀûÀÔ´Ï´Ù. ģȯ°æ ´ëÁß±³Åë¿¡ ´ëÇÑ »çȸÀû, Á¤Ä¡Àû ÁöÁö°¡ ³ô¾ÆÁö¸é¼ ¼ö¼Ò ¿¬·á Â÷·® Á¶´ÞÀ» ÃËÁøÇϰí ÀÖÀ¸¸ç, ¸¹Àº °æ¿ì ±âÈĺ¯È ´ëÀÀ ±â±Ý°ú ±×¸°º»µå(Green Bond)¸¦ ÅëÇØ Áö¿øµÇ°í ÀÖ½À´Ï´Ù. ÇÑÆí, öµµ Àåºñ Á¦Á¶¾÷ü¿Í ¿¡³ÊÁö ±â¾÷°úÀÇ Çù·Â °ü°è´Â ±â¼ú Çõ½ÅÀ» °£¼ÒÈÇÏ°í »õ·Î¿î ¸ðµ¨ÀÇ ½ÃÀå Ãâ½Ã ½Ã°£À» ¾Õ´ç±â°í ÀÖ½À´Ï´Ù. ´õ ±ú²ýÇϰí Á¶¿ëÇÑ À̵¿ ¼ö´ÜÀ» ã´Â ½Â°´ÀÇ ¼ö¿ä´Â ƯÈ÷ ȯ°æ ÀǽÄÀÌ ³ôÀº Áö¿ª¿¡¼ äÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼ÒµéÀÌ °áÇÕµÇ¾î ¼ö¼Ò ¿¬·áÀüÁö ¿Â÷´Â Á¡Á¡ ´õ ¸¹Àº ÃßÁø·ÂÀ» ¾ò°í ÀÖÀ¸¸ç, Àü ¼¼°è öµµ ¿î¼ÛÀÇ ÁøÈÇÏ´Â »óȲ¿¡¼ Áö¼Ó°¡´ÉÇϰí È¿À²ÀûÀÌ¸ç ¹Ì·¡ÁöÇâÀûÀÎ ´ë¾ÈÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
ºÎ¹®
±â¼ú(¾ç¼ºÀÚ ±³È¯¸· ±â¼ú, ÀÎ»ê ±â¼ú), ±¸¼º¿ä¼Ò(¼ö¼Ò ¿¬·áÀüÁö ÆÑ, ¹èÅ͸®, Àü±â °ßÀÎ ¸ðÅÍ), öµµ À¯Çü(¿©°´ öµµ, Åë±Ù öµµ, ¶óÀÌÆ® ·¹ÀÏ, Æ®·¥, ȹ° öµµ)
AI ÅëÇÕ
¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.
Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Global Hydrogen Fuel Cell Trains Market to Reach US$3.7 Billion by 2030
The global market for Hydrogen Fuel Cell Trains estimated at US$1.9 Billion in the year 2024, is expected to reach US$3.7 Billion by 2030, growing at a CAGR of 11.3% over the analysis period 2024-2030. Proton Exchange Membrane Technology, one of the segments analyzed in the report, is expected to record a 9.7% CAGR and reach US$2.2 Billion by the end of the analysis period. Growth in the Phosphoric Acid Technology segment is estimated at 14.2% CAGR over the analysis period.
The U.S. Market is Estimated at US$512.0 Million While China is Forecast to Grow at 10.7% CAGR
The Hydrogen Fuel Cell Trains market in the U.S. is estimated at US$512.0 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$581.5 Million by the year 2030 trailing a CAGR of 10.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 10.2% and 9.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 8.5% CAGR.
Global Hydrogen Fuel Cell Trains Market - Key Trends and Drivers Summarized
Why Are Hydrogen Fuel Cell Trains Emerging as the Future of Green Rail Transport?
Hydrogen fuel cell trains are rapidly gaining attention as a transformative solution in the push toward decarbonizing the global rail transport sector. Unlike diesel-powered trains, which emit carbon dioxide and particulate matter, hydrogen fuel cell trains operate by converting hydrogen gas into electricity through an electrochemical process that produces only water vapor as a byproduct. This emission-free operation is particularly valuable in regions where full electrification of railway lines is economically unfeasible or geographically challenging. These trains are capable of traveling long distances on a single hydrogen refill, making them ideal for rural and regional lines that are not connected to electrified networks. As public and private entities aim to meet aggressive climate goals, hydrogen propulsion presents an attractive alternative to traditional rail solutions. The versatility of these trains also allows for seamless integration into existing rail infrastructure without the need for extensive track modifications. Moreover, hydrogen fuel cell trains operate more quietly than diesel engines, reducing noise pollution in urban and residential areas. This quieter, cleaner mode of transport not only contributes to a healthier environment but also enhances passenger experience and community acceptance. Countries with ambitious carbon neutrality targets, including Germany, France, the United Kingdom, and Japan, have already begun pilot deployments and commercial rollouts of hydrogen trains. These early efforts are setting the stage for broader adoption, especially as hydrogen production and storage technologies continue to improve. As a result, hydrogen fuel cell trains are increasingly viewed not just as a niche innovation but as a scalable solution to modernize and decarbonize rail systems across diverse geographies.
How Are Policy Support and Infrastructure Investments Accelerating Adoption?
Government policies and infrastructure investments are playing a critical role in catalyzing the growth of the hydrogen fuel cell train market. Recognizing the urgent need to transition toward low-emission transportation, many national and regional governments have introduced comprehensive strategies that include hydrogen rail as a key component. These policies often include funding for pilot projects, research and development initiatives, subsidies for hydrogen production, and mandates to phase out diesel locomotives over time. Public procurement programs are also being structured to favor low-emission alternatives, thereby opening up significant opportunities for hydrogen train manufacturers. In addition to regulatory support, investments in hydrogen fueling infrastructure are increasing, with several railway corridors being equipped with hydrogen refueling stations that ensure operational reliability and efficiency. Infrastructure development includes the creation of green hydrogen production plants near rail depots, which helps in reducing logistics costs and ensures a consistent fuel supply. National hydrogen strategies, such as those launched by the European Union, Canada, and South Korea, emphasize cross-sector collaboration and long-term commitment to hydrogen ecosystems, with rail transport positioned as a strategic application. Multilateral development banks and environmental agencies are also backing hydrogen train initiatives as part of their broader sustainable mobility portfolios. These developments are not occurring in isolation but are part of an integrated push that includes hydrogen vehicles, maritime applications, and industrial uses, thereby creating synergies that benefit the rail sector. Additionally, partnerships between public transportation authorities, rolling stock manufacturers, and energy providers are fostering ecosystems that support the full hydrogen value chain. With strong governmental support and a growing network of infrastructure projects, hydrogen fuel cell trains are moving rapidly from the experimental phase into full-scale deployment.
How Are Technological Advances Enhancing Train Efficiency and Scalability?
Recent technological advances are significantly improving the efficiency, performance, and scalability of hydrogen fuel cell trains. At the heart of these improvements is the development of more compact, durable, and higher-output fuel cell systems that allow for extended range and faster acceleration without increasing train weight. Modern hydrogen trains also feature energy management systems that optimize the use of fuel cells and onboard batteries, ensuring efficient power distribution during variable load conditions such as inclines or frequent stops. The integration of regenerative braking systems allows energy to be recaptured during deceleration and stored in batteries for later use, improving overall fuel efficiency. Additionally, lightweight materials are being used in train construction to reduce mass and enhance performance without compromising safety or passenger comfort. Advances in onboard hydrogen storage technologies, such as high-pressure tanks and composite materials, are making it possible to store more fuel within limited space, further extending the operational range of these trains. Digital technologies are also contributing to operational efficiency, with real-time diagnostics and predictive maintenance systems helping to minimize downtime and reduce lifecycle costs. Automation and smart controls are enabling smoother acceleration and braking, which not only improves energy use but also enhances passenger experience. Furthermore, improvements in green hydrogen production methods, particularly electrolysis powered by renewable energy, are reducing the carbon footprint associated with hydrogen fuel itself. This creates a truly zero-emission cycle from production to consumption. These technological strides are enabling rail operators to consider hydrogen trains for more extensive routes and higher frequency services, making them viable not just for pilot programs but for long-term integration into national rail networks.
What Factors Are Fueling the Rapid Expansion of the Hydrogen Fuel Cell Train Market Globally?
The growth in the global hydrogen fuel cell train market is driven by several interconnected factors rooted in sustainability targets, rail modernization efforts, technological readiness, and shifting energy economics. One of the most powerful drivers is the global commitment to reduce greenhouse gas emissions from the transport sector, which includes setting firm deadlines for phasing out fossil fuel-based transportation. Railways, particularly those still dependent on diesel engines, are under mounting pressure to align with national and international climate policies. At the same time, full electrification of rail lines is not always financially or technically viable, especially in remote or less trafficked regions. Hydrogen fuel cell trains offer a practical solution for these gaps, providing clean transport without the need for costly overhead catenary systems. As renewable energy capacity grows, the availability of green hydrogen as a low-carbon fuel is expanding, making hydrogen trains more feasible and attractive to governments and operators. Additionally, increased investment in hydrogen infrastructure is reducing the barriers to entry, allowing multiple stakeholders to share fuel production and distribution costs. The scalability and versatility of hydrogen trains are also appealing to rail operators seeking to modernize fleets with minimal infrastructure overhaul. Growing public and political support for green public transit is encouraging procurement of hydrogen-powered rolling stock, often backed by climate funding or green bonds. Meanwhile, collaborations between rail equipment manufacturers and energy companies are streamlining innovation and accelerating time-to-market for new models. Passenger demand for cleaner and quieter travel options is further reinforcing adoption, especially in regions with high environmental awareness. Together, these drivers are building momentum for hydrogen fuel cell trains, positioning them as a sustainable, efficient, and future-ready alternative in the evolving landscape of global rail transport.
SCOPE OF STUDY:
The report analyzes the Hydrogen Fuel Cell Trains market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Technology (Proton Exchange Membrane Technology, Phosphoric Acid Technology); Component (Hydrogen Fuel Cell Pack, Batteries, Electric Traction Motors); Rail Type (Passenger Rail, Commuter Rail, Light Rail, Trams Freight)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 43 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.