½ÃÀ庸°í¼­
»óǰÄÚµå
1726180

ÀÓ»ó °Ë»ç ¸ÅĪ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® º¸°í¼­ : Àü°³ ¸ðµåº°, ÃÖÁ¾ ¿ëµµº°, Áö¿ªº°, ºÎ¹® ¿¹Ãø(2025-2030³â)

Clinical Trials Matching Software Market Size, Share & Trends Analysis Report By Deployment Mode, By End Use, By Region, And Segment Forecasts, 2025 - 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Grand View Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 120 Pages | ¹è¼Û¾È³» : 2-10ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ÀÓ»ó °Ë»ç ¸ÅĪ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀÇ ¼ºÀå°ú µ¿Çâ

Grand View Research, Inc.ÀÇ ÃֽŠº¸°í¼­¿¡ µû¸£¸é ¼¼°è ÀÓ»ó °Ë»ç ¸ÅĪ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå ±Ô¸ð´Â 2030³â±îÁö 3¾ï 9,613¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

2025-2030³âÀÇ CAGRÀº 13.45%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù. ±×¸®°í ÀÇ·á ºÎ¹®¿¡¼­ °¡»ó °Ë»ç ¹× ÀÚµ¿È­¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©ÇÏ´Â ÁÖ¿ä ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù.

ÀÓ»ó °Ë»ç´Â ȯÀÚÀÇ ¸ðÁý°ú ÀÏÄ¡¿¡ ½Ã°£ÀÌ °É¸®°í ÀûÀýÇÑ ÀÏÄ¡¸¦ ã´Â µ¥ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÚ°ÝÀ» °®Ãá ¿¹ºñ ÀÀ´äÀÚ¸¦ ¼±º°Çϰųª ã´Â °Í, ÀÓ»ó½ÃÇèÀÇ ¸ðµç ¿ä¼Ò¸¦ °í·ÁÇϰí ÀνÄÀ» È®ÀÎÇÏ¸ç »çÀü µ¿ÀǸ¦ ¾ò´Â °ÍÀº ȯÀÚ¸¦ ¸ðÁýÇÒ ¶§ °í·ÁÇØ¾ß ÇÒ ¿ä¼ÒÀÔ´Ï´Ù. ÀÚ°Ý ¿ä°Ç¿¡ µû¶ó °³ÀÎÀ» ä¿ëÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇϸç, µû¶ó¼­ COVID-19 ½Ã³ª¸®¿À¿¡¼­´Â Æò°¡ÆÇ ¸ÅĪ ±â¼úÀÌ À¯¿ëÇÏ´Ù´Â °ÍÀÌ ÀÔÁõµÇ¾ú½À´Ï´Ù.

ÀÌ ¼ÒÇÁÆ®¿þ¾î´Â ÀûÀýÇÑ ¸ÅĪÀ» ã´Â °Í»Ó¸¸ ¾Æ´Ï¶ó ¿¬±¸ °³¹ß °ü·Ã ºñ¿ë Àý°¨¿¡µµ µµ¿òÀÌ µÇ¸ç, »ç¶÷ ¼ÕÀ» ÅëÇÏÁö ¾Ê°í ¿øÈ°ÇÑ ¿î¿µÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

ÀÓ»ó °Ë»ç ¸ÅĪ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå º¸°í¼­ ÇÏÀ̶óÀÌÆ®

  • ¹èÆ÷ ¸ðµåº°·Î À¥ ¹× Ŭ¶ó¿ìµå ±â¹Ý ºÎ¹®ÀÌ 2024³â ¼öÀÍÀ¸·Î ½ÃÀåÀ» µ¶Á¡ÇÏ°í ¿¹Ãø ±â°£ µ¿¾È °¡Àå ºü¸¥ CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ¸ðµ¨Àº À¯Áöº¸¼ö ¹× À¯Áöºñ°¡ ÇÊ¿äÇÏÁö ¾ÊÀ¸¸ç °í°´Àº »ç¿ëÇÑ ¼­ºñ½º¿¡ ´ëÇØ¼­¸¸ ¿ä±ÝÀ» ÁöºÒÇÕ´Ï´Ù. ¹Ý¸é¿¡ On-Premise ¹èÆ÷¿¡´Â »ç³» ÀÎÇÁ¶ó, »ç³» IT Áö¿ø, ¿îÀü ÀÚ±Ý ¹× ³ôÀº ÅëÇÕ ºñ¿ëÀÌ ¼Ò¿äµË´Ï´Ù. µû¶ó¼­ À¥°ú Ŭ¶ó¿ìµå ±â¹Ý ¸ðµ¨À» ¼±È£ÇÕ´Ï´Ù.
  • ÃÖÁ¾ ¿ëµµº°·Î Á¦¾à ±â¾÷°ú »ý¸í °øÇÐ ±â¾÷ÀÌ 2024³â ÃÖ´ë ¼öÀÍ Á¡À¯À²À» ȹµæÇß½À´Ï´Ù.
  • °è¾à ¿¬±¸ ±â°ü(CRO) ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ºü¸¥ CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. CRO´Â ÀÓ»ó °Ë»ç¿¡ ÇÊ¿äÇÑ Àü¹®Àû Áö¿ø, Àü¹® Áö½Ä ¹× ½Ç½Ã °æÇèÀ» ½Å¼ÓÇÏ°Ô Á¦°øÇϱ⠶§¹®¿¡ ½ºÆù¼­°¡ ÀüÀÓ ÀηÂÀ» °í¿ëÇÒ Çʿ䰡 ¾ø½À´Ï´Ù. CROÀÇ ¼­ºñ½º´Â ºñ¿ë È¿°úÀûÀÌ°í ½Ã°£´ë È¿°ú°¡ ³ô±â ¶§¹®¿¡ ¾Æ¿ô¼Ò½Ì ¸ñÀûÁö·Î ¼±È£µË´Ï´Ù.
  • ÀÌ Áö¿ªÀÇ Á¦¾à, ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö, ÀÇ·á °ü·Ã ±â¾÷¿¡ ÀÇÇÑ ÀÓ»ó °Ë»ç ¸ÅĪ ¼ÒÇÁÆ®¿þ¾îÀÇ Ã¤¿ëÀÌ Áõ°¡Çϰí Àֱ⠶§¹®¿¡ 2024³â¿¡´Â ºÏ¹Ì°¡ ±â¾÷ ¼öÀÍÀ¸·Î ½ÃÀåÀ» ¼±µµÇÏ°Ô µË´Ï´Ù.
  • ¾Æ½Ã¾ÆÅÂÆò¾çÀº ȯÀÚ, Èĺ¸ÀÚÀÇ °£ÆíÇÑ ¸ðÁýÀ» Áö¿øÇÏ´Â ´ë±Ô¸ð ȯÀÚ Ç®À» »ç¿ëÇÒ ¼ö ÀÖÀ¸¹Ç·Î ¿¹Ãø ±â°£ µ¿¾È °¡Àå ºü¸¥ ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ÀÓ»ó°Ë»ç ¸ÅĪ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀÇ º¯¼ö, µ¿Çâ, ¹üÀ§

  • ½ÃÀå ¿ªÇÐ
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ ºÐ¼®
    • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ ºÐ¼®
    • ½ÃÀå ±âȸ ºÐ¼®
  • ÀÓ»ó °Ë»ç ¸ÅĪ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå ºÐ¼® Åø
    • »ê¾÷ ºÐ¼® - Porter's Five Forces ºÐ¼®
    • PESTEL ºÐ¼®
    • ½ÅÈï±â¼ú
    • ÀÌ¿ë »ç·Ê¿Í ÅëÂû
    • COVID-19ÀÇ ¿µÇ⠺м®

Á¦4Àå ÀÓ»ó °Ë»ç ¸ÅĪ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : Àü°³ ¸ðµå, ÃßÁ¤ ¹× ¿¹Ãø ºÐ¼®

  • Àü°³ ¸ðµå ½ÃÀå Á¡À¯À², 2024³â°ú 2030³â
  • ºÎ¹® ´ë½Ãº¸µå
  • Àü°³ ¸ðµåº° ¼¼°èÀÇ ÀÓ»ó °Ë»ç ¸ÅĪ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå Àü¸Á
  • À¥°ú Ŭ¶ó¿ìµå ±â¹Ý
  • On-Premise

Á¦5Àå ÀÓ»ó °Ë»ç ¸ÅĪ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : ÃÖÁ¾ ¿ëµµº°, ÃßÁ¤ ¹× ¿¹Ãø ºÐ¼®

  • ÃÖÁ¾ ¿ëµµ ½ÃÀå Á¡À¯À², 2024³â°ú 2030³â
  • ºÎ¹® ´ë½Ãº¸µå
  • ÃÖÁ¾ ¿ëµµº° ÀÓ»ó °Ë»ç ¸ÅĪ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå Àü¸Á
  • Á¦¾à ¹× ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷
  • CRO
  • ÀÇ·á±â±â ±â¾÷

Á¦6Àå ÀÓ»ó °Ë»ç ¸ÅĪ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : Áö¿ª ÃßÁ¤ ¹× ¿¹Ãø ºÐ¼®, Àü°³ ¸ðµåº°, ÃÖÁ¾ ¿ëµµº°

  • Áö¿ªº° ½ÃÀå Á¡À¯À² ºÐ¼®, 2024³â°ú 2030³â
  • Áö¿ªº° ½ÃÀå ´ë½Ãº¸µå
  • ¼¼°è Áö¿ª ½ÃÀå ÇöȲ
  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø µ¿Ç⠺м®, 2018-2030³â
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ³ë¸£¿þÀÌ
    • ½º¿þµ§
    • µ§¸¶Å©
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • Çѱ¹
    • ű¹
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¾Æ¸£ÇîÆ¼³ª
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ³²¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • Äí¿þÀÌÆ®

Á¦7Àå °æÀï ±¸µµ

  • ÁÖ¿ä ½ÃÀå ÁøÃâ±â¾÷¿¡ ÀÇÇÑ ÃÖ±ÙÀÇ µ¿Çâ°ú ¿µÇ⠺м®
  • ±â¾÷, °æÀïÀÇ ºÐ·ù
  • ÁÖ¿ä ±â¾÷ÀÇ ½ÃÀå Á¡À¯À²/À§Ä¡ ºÐ¼®, 2024³â
  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • IBM
    • Antidote Technologies, Inc.
    • RealTime Software Solutions, LLC
    • Optimapharm.
    • Advarra
    • BSI Business Systems Integration AG
    • Clario
    • HealthMatch
    • Microsoft
    • Deep6.ai
    • Inspirata, Inc.
    • Mendel Health Inc.
    • MatchTrial
    • Curewiki
    • Inteliquet(IQVIA)
    • Tempus Labs
SHW 25.05.27

Clinical Trials Matching Software Market Growth & Trends:

The global clinical trials matching software market size is expected to reach USD 396.13 million by 2030, based on a new report by Grand View Research, Inc. It is expected to expand at a CAGR of 13.45% from 2025 to 2030. The significant increase in the number of ongoing clinical trials is likely to drive the market. In addition, the growing adoption of the clinical trial matching software catering to the clinical trials, along with the increased demand for virtual trials and automation in the healthcare sector are some of the key factors contributing to the market growth. The matching software help in effective and fast patient matching with patient-centric approaches.

In clinical trials, patient recruitment or matching can be time-consuming, and finding the right match can be a hurdle. Screening or locating prospective respondents who are qualified, considering all elements of the trials, verifying awareness, and getting informed consent to participate are the factors taken into consideration while recruiting patients. Enlisting the individuals in accordance with the qualifying requirements is crucial, hence the trial matching technology has been proved to be useful, especially in the COVID-19 scenario.

The software helps not only to find the right match but also saves the R&D-related costs, enabling smoother operations without human intervention. The software providers are introducing new innovative techniques to strengthen their market position. For instance, in February 2022, the CTMA expanded CT-SCOUT technology offering in rheumatology.

Clinical Trials Matching Software Market Report Highlights:

  • Based on deployment mode, the web and cloud based segment dominated the market in terms of revenue in 2024 and it is expected to register the fastest CAGR during the forecast period. The cloud computing models operate with no maintenance or upkeep charges and customers only have to pay for the services that are used. On the other hand, on-premises deployment involves in-house infrastructure, in-house IT support, working capital, and higher integration costs. Hence, web and cloud based models are preferred
  • Based on end use, pharmaceuticals and biotechnology companies captured the largest revenue share in 2024 owing to the higher adoption of software during ongoing clinical studies for cost-saving in the R&D activities
  • Contract Research Organizations (CRO) segment is expected to register the fastest CAGR over the forecast period. CROs provide the professional assistance, expertise, and execution experience required for clinical trials quickly, without the need for the sponsor to engage such people full-time. CROs are preferred for outsourcing as their services are cost and time-effective
  • In 2024, North America led the market in terms of revenue owing to the rising adoption of the clinical trial matching software by the pharma, biotech, and medical companies in the region
  • Asia Pacific is anticipated to register the fastest growth rate over the forecast period due to the availability of a large patient pool supporting easy recruitment of patients/candidates

Table of Contents

Chapter 1. Research Methodology and Scope

  • 1.1. Market Segmentation & Scope
    • 1.1.1. Deployment mode
    • 1.1.2. End Use
    • 1.1.3. Regional scope
    • 1.1.4. Estimates and forecast timeline.
  • 1.2. Research Methodology
  • 1.3. Information Procurement
    • 1.3.1. Purchased database.
    • 1.3.2. GVR's internal database
    • 1.3.3. Secondary sources
    • 1.3.4. Primary research
    • 1.3.5. Details of primary research
  • 1.4. Information or Data Analysis
    • 1.4.1. Data analysis models
  • 1.5. Market Formulation & Validation
  • 1.6. Model Details
    • 1.6.1. Commodity flow analysis (Model 1)
    • 1.6.2. Approach 1: Commodity flow approach
  • 1.7. List of Secondary Sources
  • 1.8. List of Primary Sources
  • 1.9. Objectives

Chapter 2. Executive Summary

  • 2.1. Market Outlook
  • 2.2. Segment Outlook
    • 2.2.1. Deployment mode outlook
    • 2.2.2. End use
    • 2.2.3. Regional outlook
  • 2.3. Competitive Insights

Chapter 3. Clinical Trials Matching Software Market Variables, Trends & Scope

  • 3.1. Market Dynamics
    • 3.1.1. Market Driver Analysis
      • 3.1.1.1. Growing Complexity of Clinical Trials
      • 3.1.1.2. Increasing Demand for Precision Medicine & Personalized Trials
      • 3.1.1.3. Regulatory Push for Enhanced Patient Enrollment Efficiency
      • 3.1.1.4. Rising Investments in Digital Health & Clinical Research Technologies
      • 3.1.1.5. Expanding Clinical Trial Pipelines & Decentralized Trials
      • 3.1.1.6. Partnerships Between Pharma Companies & Tech Firms for Advanced Solutions
    • 3.1.2. Market Restraint Analysis
      • 3.1.2.1. High Implementation and Maintenance Costs
      • 3.1.2.2. Data Privacy and Security Concerns
    • 3.1.3. Market Opportunities Analysis
  • 3.2. Clinical Trials Matching Software Market Analysis Tools
    • 3.2.1. Industry Analysis - Porter's
      • 3.2.1.1. Supplier power
      • 3.2.1.2. Buyer power
      • 3.2.1.3. Substitution threat
      • 3.2.1.4. Threat of new entrant
      • 3.2.1.5. Competitive rivalry
    • 3.2.2. PESTEL Analysis
      • 3.2.2.1. Political landscape
      • 3.2.2.2. Economic landscape
      • 3.2.2.3. Social landscape
      • 3.2.2.4. Technological landscape
      • 3.2.2.5. Environmental landscape
      • 3.2.2.6. Legal landscape
    • 3.2.3. Emerging Technologies
    • 3.2.4. Case Studies & Insights
    • 3.2.5. COVID-19 Impact Analysis

Chapter 4. Clinical Trials Matching Software Market: Deployment Mode Estimates & Trend Analysis

  • 4.1. Deployment Mode Market Share, 2024 & 2030
  • 4.2. Segment Dashboard
  • 4.3. Global Clinical Trials Matching Software Market by Deployment Mode Outlook
  • 4.4. Web & Cloud-based
    • 4.4.1. Market estimates and forecast 2018 to 2030 (USD Million)
  • 4.5. On-Premises
    • 4.5.1. Market estimates and forecast 2018 to 2030 (USD Million)

Chapter 5. Clinical Trials Matching Software Market: End Use Estimates & Trend Analysis

  • 5.1. End Use Market Share, 2024 & 2030
  • 5.2. Segment Dashboard
  • 5.3. Global Clinical Trials Matching Software Market by End Use Outlook
  • 5.4. Pharmaceutical & Biotechnology Companies
    • 5.4.1. Market estimates and forecast 2018 to 2030 (USD Million)
  • 5.5. CROs
    • 5.5.1. Market estimates and forecast 2018 to 2030 (USD Million)
  • 5.6. Medical Device Companies
    • 5.6.1. Market estimates and forecast 2018 to 2030 (USD Million)

Chapter 6. Clinical Trials Matching Software Market: Regional Estimates & Trend Analysis, By Deployment Mode and By End Use

  • 6.1. Regional Market Share Analysis, 2024 & 2030
  • 6.2. Regional Market Dashboard
  • 6.3. Global Regional Market Snapshot
  • 6.4. Market Size & Forecasts Trend Analysis, 2018 to 2030:
  • 6.5. North America
    • 6.5.1. U.S.
      • 6.5.1.1. Key country dynamics
      • 6.5.1.2. Regulatory framework
      • 6.5.1.3. Competitive scenario
      • 6.5.1.4. U.S. market estimates and forecasts 2018 to 2030 (USD Million)
    • 6.5.2. Canada
      • 6.5.2.1. Key country dynamics
      • 6.5.2.2. Regulatory framework
      • 6.5.2.3. Competitive scenario
      • 6.5.2.4. Canada market estimates and forecasts 2018 to 2030 (USD Million)
    • 6.5.3. Mexico
      • 6.5.3.1. Key country dynamics
      • 6.5.3.2. Regulatory framework
      • 6.5.3.3. Competitive scenario
      • 6.5.3.4. Canada market estimates and forecasts 2018 to 2030 (USD Million)
  • 6.6. Europe
    • 6.6.1. UK
      • 6.6.1.1. Key country dynamics
      • 6.6.1.2. Regulatory framework
      • 6.6.1.3. Competitive scenario
      • 6.6.1.4. UK market estimates and forecasts 2018 to 2030 (USD Million)
    • 6.6.2. Germany
      • 6.6.2.1. Key country dynamics
      • 6.6.2.2. Regulatory framework
      • 6.6.2.3. Competitive scenario
      • 6.6.2.4. Germany market estimates and forecasts 2018 to 2030 (USD Million)
    • 6.6.3. France
      • 6.6.3.1. Key country dynamics
      • 6.6.3.2. Regulatory framework
      • 6.6.3.3. Competitive scenario
      • 6.6.3.4. France market estimates and forecasts 2018 to 2030 (USD Million)
    • 6.6.4. Italy
      • 6.6.4.1. Key country dynamics
      • 6.6.4.2. Regulatory framework
      • 6.6.4.3. Competitive scenario
      • 6.6.4.4. Italy market estimates and forecasts 2018 to 2030 (USD Million)
    • 6.6.5. Spain
      • 6.6.5.1. Key country dynamics
      • 6.6.5.2. Regulatory framework
      • 6.6.5.3. Competitive scenario
      • 6.6.5.4. Spain market estimates and forecasts 2018 to 2030 (USD Million)
    • 6.6.6. Norway
      • 6.6.6.1. Key country dynamics
      • 6.6.6.2. Regulatory framework
      • 6.6.6.3. Competitive scenario
      • 6.6.6.4. Norway market estimates and forecasts 2018 to 2030 (USD Million)
    • 6.6.7. Sweden
      • 6.6.7.1. Key country dynamics
      • 6.6.7.2. Regulatory framework
      • 6.6.7.3. Competitive scenario
      • 6.6.7.4. Sweden market estimates and forecasts 2018 to 2030 (USD Million)
    • 6.6.8. Denmark
      • 6.6.8.1. Key country dynamics
      • 6.6.8.2. Regulatory framework
      • 6.6.8.3. Competitive scenario
      • 6.6.8.4. Denmark market estimates and forecasts 2018 to 2030 (USD Million)
  • 6.7. Asia Pacific
    • 6.7.1. Japan
      • 6.7.1.1. Key country dynamics
      • 6.7.1.2. Regulatory framework
      • 6.7.1.3. Competitive scenario
      • 6.7.1.4. Japan market estimates and forecasts 2018 to 2030 (USD Million)
    • 6.7.2. China
      • 6.7.2.1. Key country dynamics
      • 6.7.2.2. Regulatory framework
      • 6.7.2.3. Competitive scenario
      • 6.7.2.4. China market estimates and forecasts 2018 to 2030 (USD Million)
    • 6.7.3. India
      • 6.7.3.1. Key country dynamics
      • 6.7.3.2. Regulatory framework
      • 6.7.3.3. Competitive scenario
      • 6.7.3.4. India market estimates and forecasts 2018 to 2030 (USD Million)
    • 6.7.4. Australia
      • 6.7.4.1. Key country dynamics
      • 6.7.4.2. Regulatory framework
      • 6.7.4.3. Competitive scenario
      • 6.7.4.4. Australia market estimates and forecasts 2018 to 2030 (USD Million)
    • 6.7.5. South Korea
      • 6.7.5.1. Key country dynamics
      • 6.7.5.2. Regulatory framework
      • 6.7.5.3. Competitive scenario
      • 6.7.5.4. South Korea market estimates and forecasts 2018 to 2030 (USD Million)
    • 6.7.6. Thailand
      • 6.7.6.1. Key country dynamics
      • 6.7.6.2. Regulatory framework
      • 6.7.6.3. Competitive scenario
      • 6.7.6.4. Singapore market estimates and forecasts 2018 to 2030 (USD Million)
  • 6.8. Latin America
    • 6.8.1. Brazil
      • 6.8.1.1. Key country dynamics
      • 6.8.1.2. Regulatory framework
      • 6.8.1.3. Competitive scenario
      • 6.8.1.4. Brazil market estimates and forecasts 2018 to 2030 (USD Million)
    • 6.8.2. Argentina
      • 6.8.2.1. Key country dynamics
      • 6.8.2.2. Regulatory framework
      • 6.8.2.3. Competitive scenario
      • 6.8.2.4. Argentina market estimates and forecasts 2018 to 2030 (USD Million)
  • 6.9. MEA
    • 6.9.1. South Africa
      • 6.9.1.1. Key country dynamics
      • 6.9.1.2. Regulatory framework
      • 6.9.1.3. Competitive scenario
      • 6.9.1.4. South Africa market estimates and forecasts 2018 to 2030 (USD Million)
    • 6.9.2. Saudi Arabia
      • 6.9.2.1. Key country dynamics
      • 6.9.2.2. Regulatory framework
      • 6.9.2.3. Competitive scenario
      • 6.9.2.4. Saudi Arabia market estimates and forecasts 2018 to 2030 (USD Million)
    • 6.9.3. UAE
      • 6.9.3.1. Key country dynamics
      • 6.9.3.2. Regulatory framework
      • 6.9.3.3. Competitive scenario
      • 6.9.3.4. UAE market estimates and forecasts 2018 to 2030 (USD Million)
    • 6.9.4. Kuwait
      • 6.9.4.1. Key country dynamics
      • 6.9.4.2. Regulatory framework
      • 6.9.4.3. Competitive scenario
      • 6.9.4.4. Kuwait market estimates and forecasts 2018 to 2030 (USD Million)

Chapter 7. Competitive Landscape

  • 7.1. Recent Developments & Impact Analysis, By Key Market Participants
  • 7.2. Company/Competition Categorization
  • 7.3. Key company market share/position analysis, 2024
  • 7.4. Company Profiles
    • 7.4.1. IBM
      • 7.4.1.1. Company overview
      • 7.4.1.2. Financial performance
      • 7.4.1.3. Technology Type benchmarking
      • 7.4.1.4. Strategic initiatives
    • 7.4.2. Antidote Technologies, Inc.
      • 7.4.2.1. Company overview
      • 7.4.2.2. Financial performance
      • 7.4.2.3. Technology Type benchmarking
      • 7.4.2.4. Strategic initiatives
    • 7.4.3. RealTime Software Solutions, LLC
      • 7.4.3.1. Company overview
      • 7.4.3.2. Financial performance
      • 7.4.3.3. Technology Type benchmarking
      • 7.4.3.4. Strategic initiatives
    • 7.4.4. Optimapharm.
      • 7.4.4.1. Company overview
      • 7.4.4.2. Financial performance
      • 7.4.4.3. Technology Type benchmarking
      • 7.4.4.4. Strategic initiatives
    • 7.4.5. Advarra
      • 7.4.5.1. Company overview
      • 7.4.5.2. Financial performance
      • 7.4.5.3. Technology Type benchmarking
      • 7.4.5.4. Strategic initiatives
    • 7.4.6. BSI Business Systems Integration AG
      • 7.4.6.1. Company overview
      • 7.4.6.2. Financial performance
      • 7.4.6.3. Technology Type benchmarking
      • 7.4.6.4. Strategic initiatives
    • 7.4.7. Clario
      • 7.4.7.1. Company overview
      • 7.4.7.2. Financial performance
      • 7.4.7.3. Technology Type benchmarking
      • 7.4.7.4. Strategic initiatives
    • 7.4.8. HealthMatch
      • 7.4.8.1. Company overview
      • 7.4.8.2. Financial performance
      • 7.4.8.3. Technology Type benchmarking
      • 7.4.8.4. Strategic initiatives
    • 7.4.9. Microsoft
      • 7.4.9.1. Company overview
      • 7.4.9.2. Financial performance
      • 7.4.9.3. Technology Type benchmarking
      • 7.4.9.4. Strategic initiatives
    • 7.4.10. Deep6.ai
      • 7.4.10.1. Company overview
      • 7.4.10.2. Financial performance
      • 7.4.10.3. Technology Type benchmarking
      • 7.4.10.4. Strategic initiatives
    • 7.4.11. Inspirata, Inc.
      • 7.4.11.1. Company overview
      • 7.4.11.2. Financial performance
      • 7.4.11.3. Technology Type benchmarking
      • 7.4.11.4. Strategic initiatives
    • 7.4.12. Mendel Health Inc.
      • 7.4.12.1. Company overview
      • 7.4.12.2. Financial performance
      • 7.4.12.3. Technology Type benchmarking
      • 7.4.12.4. Strategic initiatives
    • 7.4.13. MatchTrial
      • 7.4.13.1. Company overview
      • 7.4.13.2. Financial performance
      • 7.4.13.3. Technology Type benchmarking
      • 7.4.13.4. Strategic initiatives
    • 7.4.14. Curewiki
      • 7.4.14.1. Company overview
      • 7.4.14.2. Financial performance
      • 7.4.14.3. Technology Type benchmarking
      • 7.4.14.4. Strategic initiatives
    • 7.4.15. Inteliquet (IQVIA)
      • 7.4.15.1. Company overview
      • 7.4.15.2. Financial performance
      • 7.4.15.3. Technology Type benchmarking
      • 7.4.15.4. Strategic initiatives
    • 7.4.16. Tempus Labs
      • 7.4.16.1. Company overview
      • 7.4.16.2. Financial performance
      • 7.4.16.3. Technology Type benchmarking
      • 7.4.16.4. Strategic initiatives
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦