½ÃÀ庸°í¼­
»óǰÄÚµå
1819885

Àθ޸𸮠ºÐ¼® ½ÃÀå : ¿ëµµº°, Á¶Á÷ ±Ô¸ðº°, ¾÷Á¾º°, Áö¿ªº°(2025-2033³â)

In-Memory Analytics Market Report by Application, Organization Size, Vertical, and Region 2025-2033

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: IMARC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 143 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Àθ޸𸮠ºÐ¼® ¼¼°è ½ÃÀå ±Ô¸ð´Â 2024³â 70¾ï ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. IMARC GroupÀº ÀÌ ½ÃÀåÀÌ 2033³â±îÁö 427¾ï ´Þ·¯¿¡ ´ÞÇϰí, 2025-2033³â 21.14%ÀÇ ¿¬Æò±Õ ¼ºÀå·ü(CAGR)À» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù.

·£´ý ¾×¼¼½º ¸Þ¸ð¸®(RAM) ³» Àθ޸𸮠ºÐ¼®ÀÇ Äõ¸® µ¥ÀÌÅÍ´Â ¼­·Î ´Ù¸¥ ¿ëµµÀÇ ¿©·¯ »ç¿ëÀÚ°¡ ºü¸£°í ¾ÈÀüÇÏ°Ô µ¿½Ã¿¡ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ½ÉÃþÀûÀÎ ÅëÂû·ÂÀ» ½Å¼ÓÇϰí Á¤È®ÇÏ°Ô ¾òÀ» ¼ö ÀÖ¾î Á¤º¸¿¡ ÀÔ°¢ÇÑ ´Éµ¿ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼öÀÍ Áõ´ë, ¸®½ºÅ© °ü¸®, ½ÅÁ¦Ç° ¹× ¼­ºñ½º Çõ½ÅÀ» Áö¿øÇÕ´Ï´Ù. ±× °á°ú, Àü ¼¼°è ¸¹Àº Á¶Á÷µéÀÌ Àθ޸𸮠ºÐ¼®À» µµÀÔÇÏ¿© Äõ¸® ºÐ¼®, Å¥ºê ±¸Ãà, Áý°è Å×ÀÌºí ¼³°è µî ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµÇ´Â ÀÛ¾÷¿¡ ¼Ò¿äµÇ´Â ½Ã°£À» ÃÖ¼ÒÈ­Çϰí ÀÖ½À´Ï´Ù. Àθ޸𸮠ºÐ¼®Àº µ¥ÀÌÅÍ ¼Ò½º¿¡ ´ëÇÑ ¾×¼¼½º¸¦ °£¼ÒÈ­Çϰí, Áï°¢ÀûÀÎ ¾×¼Ç°ú ÀÀ´äÀ» Á¦°øÇÏ¿© ÁøÈ­ÇÏ´Â ¼ÒºñÀÚ ¿ä±¸¿¡ ´ëÀÀÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù.

Àθ޸𸮠ºÐ¼® ½ÃÀå µ¿Çâ :

¼­ºñ½º ¹× ºñÁî´Ï½º Çõ½ÅÀ» À§ÇÑ µðÁöÅÐ ±â¼ú µµÀÔÀÌ Å©°Ô Áõ°¡ÇÔ¿¡ µû¶ó µ¥ÀÌÅͺ£À̽º ³» µ¥ÀÌÅͰ¡ ´ë·®À¸·Î È®»êµÇ°í ÀÖ½À´Ï´Ù. ÀÌ´Â Á¤º¸¿¡ ºü¸£°Ô Á¢±ÙÇÏ°í ½±°Ô ºÐ¼®ÇÒ ¼ö ÀÖ´Â Àθ޸𸮠ºÐ¼®ÀÇ Çʿ伺À» ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ¿þ¾îÇϿ콺 ±¸Ãà¿¡ ´ëÇÑ Àü¹® Áö½Ä°ú ¸®¼Ò½º°¡ ¾ø´Â Áß¼Ò±â¾÷¿¡°Ô´Â µ¥ÀÌÅÍ¿þ¾îÇϿ콺¸¦ ´ëüÇÒ ¼ö ÀÖ´Â ºñ¿ë È¿À²ÀûÀÎ ´ë¾ÈÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. Àθ޸𸮠ºÐ¼®Àº ´Ù¾çÇÑ ±Ô¸ð¿Í º¹À⼺ÀÇ µ¥ÀÌÅ͸¦ Àú·ÅÇÑ ºñ¿ëÀ¸·Î Àü·Ê ¾ø´Â ¼Óµµ·Î ºÐ¼®ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» Á¦°øÇÕ´Ï´Ù. À̿ʹ º°µµ·Î, ¿Â¶óÀÎ ¹ðÅ· ¼­ºñ½º ÀÌ¿ëÀÇ È®´ë´Â Àü ¼¼°è ÀºÇà, ±ÝÀ¶ ¼­ºñ½º ¹× º¸Çè(BFSI) ºÎ¹®¿¡¼­ Àθ޸𸮠ºÐ¼®ÀÇ ¸®½ºÅ© °ü¸®, °Å·¡ °ü¸® ¹× ºÎÁ¤ °áÁ¦ °¨Áö¿¡ ´ëÇÑ Àû¿ë¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áö¸®Á¤º¸½Ã½ºÅÛ(GIS) 󸮸¦ Æ÷ÇÔÇÑ ¿ëµµ¿¡µµ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¹°·ù ¹× ¿î¼Û ¾÷°è¿¡¼­´Â ±³Åë üÁõ, Ãßõ °æ·Î, ±³Åë À§Çè¿¡ ´ëÇÑ ½Ç½Ã°£ ¾È³»¸¦ À§ÇØ GIS 󸮰¡ ³Î¸® »ç¿ëµÇ°í ÀÖ¾î ½ÃÀåÀ» °ßÀÎÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

º» º¸°í¼­¿¡¼­ ´Ù·é ÁÖ¿ä Áú¹®

  • Àθ޸𸮠ºÐ¼® ¼¼°è ½ÃÀåÀº Áö±Ý±îÁö ¾î¶»°Ô º¯È­Çؿ԰í, ¾ÕÀ¸·Î ¾î¶»°Ô º¯È­ÇÒ °ÍÀΰ¡?
  • Äڷγª19°¡ Àü ¼¼°è Àθ޸𸮠ºÐ¼® ½ÃÀå¿¡ ¹ÌÄ£ ¿µÇâÀº?
  • ÁÖ¿ä Áö¿ª ½ÃÀåÀº?
  • ¿ëµµº° ½ÃÀå ºÐ¼®Àº?
  • Á¶Á÷ ±Ô¸ðº° ½ÃÀå ÇöȲÀº?
  • ¾÷Á¾º° ½ÃÀå ÇöȲÀº?
  • »ê¾÷ °¡Ä¡»ç½½ÀÇ ´Ù¾çÇÑ ´Ü°è´Â?
  • ¾÷°èÀÇ ÁÖ¿ä ÃËÁø¿äÀΰú °úÁ¦´Â?
  • ¼¼°è Àθ޸𸮠ºÐ¼® ½ÃÀåÀÇ ±¸Á¶¿Í ÁÖ¿ä ±â¾÷Àº?
  • ¾÷°è ³» °æÀïÀº ¾î´À Á¤µµÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • Á¶»ç ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • µ¥ÀÌÅÍ ¼Ò½º
    • 1Â÷ Á¤º¸
    • 2Â÷ Á¤º¸
  • ½ÃÀå ÃßÁ¤
    • º¸ÅÒ¾÷ Á¢±Ù
    • Åé´Ù¿î Á¢±Ù
  • Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ¼­·Ð

Á¦5Àå ¼¼°èÀÇ Àθ޸𸮠ºÐ¼® ½ÃÀå

  • ½ÃÀå °³¿ä
  • ½ÃÀå ½ÇÀû
  • COVID-19ÀÇ ¿µÇâ
  • ½ÃÀå ¿¹Ãø

Á¦6Àå ½ÃÀå ºÐ¼® : ¿ëµµº°

  • °í°´ °æÇè °ü¸®
  • µðÀÚÀÎ ¹× Çõ½Å
  • ¿ÀÆÛ·¹ÀÌ¼Ç ÃÖÀûÈ­
  • ¸¶ÄÉÆÃ °ü¸®
  • ½Ç½Ã°£ ºÐ¼® ¹× ÀÇ»ç°áÁ¤
  • ±âŸ

Á¦7Àå ½ÃÀå ºÐ¼® : Á¶Á÷ ±Ô¸ðº°

  • Áß¼Ò±â¾÷
  • ´ë±â¾÷

Á¦8Àå ½ÃÀå ºÐ¼® : ¾÷Á¾º°

  • ÀºÇà, ±ÝÀ¶¼­ºñ½º ¹× º¸Çè(BFSI)
  • ¼Ò¸Å ¹× E-Commerce
  • Á¤ºÎ ¹× ¹æÀ§
  • ÇコÄɾî
  • Á¦Á¶
  • IT ¹× Åë½Å
  • ±âŸ

Á¦9Àå ½ÃÀå ºÐ¼® : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • È£ÁÖ
    • Àεµ³×½Ã¾Æ
    • ±âŸ
  • À¯·´
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ·¯½Ã¾Æ
    • ±âŸ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå SWOT ºÐ¼®

Á¦11Àå ¹ë·ùüÀÎ ºÐ¼®

Á¦12Àå PorterÀÇ Five Forces ºÐ¼®

Á¦13Àå °¡°Ý ºÐ¼®

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå ±¸Á¶
  • ÁÖ¿ä ±â¾÷
  • ÁÖ¿ä ±â¾÷ °³¿ä
    • ActiveViam
    • Amazon Web Services Inc.
    • Hitachi Ltd.
    • Information Builders Inc.(Tibco Software Inc.)
    • International Business Machines Corporation
    • Kognitio Ltd
    • Microstrategy Incorporated
    • Oracle Corporation
    • Qlik Technologies
    • SAP SE
    • SAS Institute Inc.
    • Software AG
LSH 25.09.30

The global in-memory analytics market size reached USD 7.0 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 42.7 Billion by 2033, exhibiting a growth rate (CAGR) of 21.14% during 2025-2033.

In-memory analytics query data in random access memory (RAM) can be used by multiple users across different applications rapidly, securely, and concurrently. It provides deep insights with speed and precision, resulting in informed and proactive decisions. It also increases revenue, manages risks, and assists in new product or service innovation. Consequently, organizations worldwide are adopting in-memory analytics as it helps them minimize the time spent on query analysis, cube building, aggregate table designing, and other time-consuming tasks. It further enables them to simplify access to data sources, deliver immediate actions and responses, and meet evolving consumer demands.

In-Memory Analytics Market Trends:

A considerable rise in the adoption of digital technology to transform services or businesses is resulting in a massive proliferation of data in databases. This acts as a primary factor promoting the need for in-memory analytics for fast access to information and easy analysis. Moreover, it is a cost-effective alternative to data warehouses for small and medium-sized enterprises (SMEs) that lack the expertise and resources to construct a data warehouse. In-memory analytics provides the ability to analyze data of varied sizes and complexities with unprecedented speed at an affordable cost. Apart from this, the growing utilization of online banking services is positively influencing the application of in-memory analytics in the banking, financial services, and insurance (BFSI) sector worldwide for risk and transaction management and detection of fraud payments. Furthermore, it is utilized in applications involving geographic information system (GIS) processing. The widespread use of GIS processing for real-time directions on traffic congestion, recommended routes, and traffic hazards in the logistics and transportation industry is anticipated to drive the market.

Key Market Segmentation:

Breakup by Application:

  • Customer Experience Management
  • Design and Innovation
  • Operation Optimization
  • Marketing Management
  • Real-Time Analysis and Decision-making
  • Others

Breakup by Organization Size:

  • Small and Medium Enterprises
  • Large Enterprises

Breakup by Vertical:

  • BFSI
  • Retail and E-commerce
  • Government and Defense
  • Healthcare
  • Manufacturing
  • IT and Telecommunication
  • Others

Breakup by Region:

  • North America
    • United States
    • Canada
  • Asia-Pacific
    • China
    • Japan
    • India
    • South Korea
    • Australia
    • Indonesia
    • Others
  • Europe
    • Germany
    • France
    • United Kingdom
    • Italy
    • Spain
    • Russia
    • Others
  • Latin America
    • Brazil
    • Mexico
    • Others
  • Middle East and Africa

Competitive Landscape:

The competitive landscape of the industry has also been examined along with the profiles of the key players being ActiveViam, Amazon Web Services Inc., Hitachi Ltd., Information Builders Inc. (Tibco Software Inc.), International Business Machines Corporation, Kognitio Ltd, Microstrategy Incorporated, Oracle Corporation, Qlik Technologies, SAP SE, SAS Institute Inc. and Software AG.

Key Questions Answered in This Report:

  • How has the global in-memory analytics market performed so far and how will it perform in the coming years?
  • What has been the impact of COVID-19 on the global in-memory analytics market?
  • What are the key regional markets?
  • What is the breakup of the market based on the application?
  • What is the breakup of the market based on the organization size?
  • What is the breakup of the market based on the vertical?
  • What are the various stages in the value chain of the industry?
  • What are the key driving factors and challenges in the industry?
  • What is the structure of the global in-memory analytics market and who are the key players?
  • What is the degree of competition in the industry?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global In-Memory Analytics Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Application

  • 6.1 Customer Experience Management
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Design and Innovation
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Operation Optimization
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast
  • 6.4 Marketing Management
    • 6.4.1 Market Trends
    • 6.4.2 Market Forecast
  • 6.5 Real-Time Analysis and Decision-making
    • 6.5.1 Market Trends
    • 6.5.2 Market Forecast
  • 6.6 Others
    • 6.6.1 Market Trends
    • 6.6.2 Market Forecast

7 Market Breakup by Organization Size

  • 7.1 Small and Medium Enterprises
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Large Enterprises
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast

8 Market Breakup by Vertical

  • 8.1 BFSI
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Retail and E-commerce
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Government and Defense
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast
  • 8.4 Healthcare
    • 8.4.1 Market Trends
    • 8.4.2 Market Forecast
  • 8.5 Manufacturing
    • 8.5.1 Market Trends
    • 8.5.2 Market Forecast
  • 8.6 IT and Telecommunication
    • 8.6.1 Market Trends
    • 8.6.2 Market Forecast
  • 8.7 Others
    • 8.7.1 Market Trends
    • 8.7.2 Market Forecast

9 Market Breakup by Region

  • 9.1 North America
    • 9.1.1 United States
      • 9.1.1.1 Market Trends
      • 9.1.1.2 Market Forecast
    • 9.1.2 Canada
      • 9.1.2.1 Market Trends
      • 9.1.2.2 Market Forecast
  • 9.2 Asia-Pacific
    • 9.2.1 China
      • 9.2.1.1 Market Trends
      • 9.2.1.2 Market Forecast
    • 9.2.2 Japan
      • 9.2.2.1 Market Trends
      • 9.2.2.2 Market Forecast
    • 9.2.3 India
      • 9.2.3.1 Market Trends
      • 9.2.3.2 Market Forecast
    • 9.2.4 South Korea
      • 9.2.4.1 Market Trends
      • 9.2.4.2 Market Forecast
    • 9.2.5 Australia
      • 9.2.5.1 Market Trends
      • 9.2.5.2 Market Forecast
    • 9.2.6 Indonesia
      • 9.2.6.1 Market Trends
      • 9.2.6.2 Market Forecast
    • 9.2.7 Others
      • 9.2.7.1 Market Trends
      • 9.2.7.2 Market Forecast
  • 9.3 Europe
    • 9.3.1 Germany
      • 9.3.1.1 Market Trends
      • 9.3.1.2 Market Forecast
    • 9.3.2 France
      • 9.3.2.1 Market Trends
      • 9.3.2.2 Market Forecast
    • 9.3.3 United Kingdom
      • 9.3.3.1 Market Trends
      • 9.3.3.2 Market Forecast
    • 9.3.4 Italy
      • 9.3.4.1 Market Trends
      • 9.3.4.2 Market Forecast
    • 9.3.5 Spain
      • 9.3.5.1 Market Trends
      • 9.3.5.2 Market Forecast
    • 9.3.6 Russia
      • 9.3.6.1 Market Trends
      • 9.3.6.2 Market Forecast
    • 9.3.7 Others
      • 9.3.7.1 Market Trends
      • 9.3.7.2 Market Forecast
  • 9.4 Latin America
    • 9.4.1 Brazil
      • 9.4.1.1 Market Trends
      • 9.4.1.2 Market Forecast
    • 9.4.2 Mexico
      • 9.4.2.1 Market Trends
      • 9.4.2.2 Market Forecast
    • 9.4.3 Others
      • 9.4.3.1 Market Trends
      • 9.4.3.2 Market Forecast
  • 9.5 Middle East and Africa
    • 9.5.1 Market Trends
    • 9.5.2 Market Breakup by Country
    • 9.5.3 Market Forecast

10 SWOT Analysis

  • 10.1 Overview
  • 10.2 Strengths
  • 10.3 Weaknesses
  • 10.4 Opportunities
  • 10.5 Threats

11 Value Chain Analysis

12 Porters Five Forces Analysis

  • 12.1 Overview
  • 12.2 Bargaining Power of Buyers
  • 12.3 Bargaining Power of Suppliers
  • 12.4 Degree of Competition
  • 12.5 Threat of New Entrants
  • 12.6 Threat of Substitutes

13 Price Analysis

14 Competitive Landscape

  • 14.1 Market Structure
  • 14.2 Key Players
  • 14.3 Profiles of Key Players
    • 14.3.1 ActiveViam
      • 14.3.1.1 Company Overview
      • 14.3.1.2 Product Portfolio
    • 14.3.2 Amazon Web Services Inc.
      • 14.3.2.1 Company Overview
      • 14.3.2.2 Product Portfolio
      • 14.3.2.3 Financials
      • 14.3.2.4 SWOT Analysis
    • 14.3.3 Hitachi Ltd.
      • 14.3.3.1 Company Overview
      • 14.3.3.2 Product Portfolio
      • 14.3.3.3 Financials
      • 14.3.3.4 SWOT Analysis
    • 14.3.4 Information Builders Inc. (Tibco Software Inc.)
      • 14.3.4.1 Company Overview
      • 14.3.4.2 Product Portfolio
    • 14.3.5 International Business Machines Corporation
      • 14.3.5.1 Company Overview
      • 14.3.5.2 Product Portfolio
      • 14.3.5.3 Financials
      • 14.3.5.4 SWOT Analysis
    • 14.3.6 Kognitio Ltd
      • 14.3.6.1 Company Overview
      • 14.3.6.2 Product Portfolio
    • 14.3.7 Microstrategy Incorporated
      • 14.3.7.1 Company Overview
      • 14.3.7.2 Product Portfolio
      • 14.3.7.3 Financials
      • 14.3.7.4 SWOT Analysis
    • 14.3.8 Oracle Corporation
      • 14.3.8.1 Company Overview
      • 14.3.8.2 Product Portfolio
      • 14.3.8.3 Financials
      • 14.3.8.4 SWOT Analysis
    • 14.3.9 Qlik Technologies
      • 14.3.9.1 Company Overview
      • 14.3.9.2 Product Portfolio
    • 14.3.10 SAP SE
      • 14.3.10.1 Company Overview
      • 14.3.10.2 Product Portfolio
      • 14.3.10.3 Financials
      • 14.3.10.4 SWOT Analysis
    • 14.3.11 SAS Institute Inc.
      • 14.3.11.1 Company Overview
      • 14.3.11.2 Product Portfolio
      • 14.3.11.3 SWOT Analysis
    • 14.3.12 Software AG
      • 14.3.12.1 Company Overview
      • 14.3.12.2 Product Portfolio
      • 14.3.12.3 Financials
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦