시장보고서
상품코드
1870530

수확량 매핑 소프트웨어 시장 : 제공 형태별, 도입 형태별, 농업 유형별, 용도별, 기업 규모별, 채널별 - 세계 예측(2025-2032년)

Yield Mapping Software Market by Offering, Deployment Mode, Agriculture Type, Application, Enterprise Size, Channel - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 194 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

수확량 매핑 소프트웨어 시장은 2032년까지 CAGR 6.84%로 23억 달러 규모로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 13억 5,000만 달러
추정 연도 2025년 14억 4,000만 달러
예측 연도 2032 23억 달러
CAGR(%) 6.84%

최신 수확량 매핑 소프트웨어 도입을 형성하는 기술적 기반, 채택 촉진요인, 운영상의 가치 제안에 대한 종합적인 개요

수확량 매핑 소프트웨어는 현대 농업의 기본 기능으로 부상하고 있으며, 생산자가 지리적 공간 신호와 센서 피드를 실용적인 농업 판단으로 변환할 수 있게 해줍니다. 이 보고서에서는 다양한 작물 시스템에서 현대적 수확량 매핑 솔루션 도입을 정의하는 기술적 기반, 상업적 역학 및 운영 요건을 개괄적으로 설명합니다. 정밀 하드웨어, 클라우드 지원 분석, 머신러닝의 융합은 수확량 매핑을 전문 도구에서 농장 관리 전략의 기본 요소로 전환시켰다는 점을 강조하고 있습니다.

공급업체 전략을 재구성하고 정밀농업의 디지털화를 가속화하는 새로운 기술적, 상업적, 규제적 전환점이 도래하고 있습니다.

수확량 매핑 소프트웨어의 환경은 공급업체의 전략과 농장 단위의 도입이 모두 재구성되는 형태로 변화하고 있습니다. 기술 발전으로 인해 고립된 수율 맵에서 처방적이고 예측 가능한 데이터세트로의 전환이 가속화되고 있습니다. 엣지 컴퓨팅은 농장 내 의사결정의 지연을 줄이고, 분산형 클라우드 시스템은 확장 가능한 이력 분석과 농장 간 벤치마킹을 가능하게 합니다. 이러한 기술적 전환은 여러 데이터 스트림을 확률적 결과로 변환하는 AI 기반 예측 모델에 대한 관심 증가로 보완되며, 관리자는 예측된 영향에 따라 개입의 우선순위를 정할 수 있게 됩니다.

2025년까지 관세 정책의 변화가 수확량 매핑 소프트웨어 및 관련 기술의 공급망, 조달 행동 및 도입 모델에 미치는 영향

2025년까지 미국의 관세 정책 동향은 수확량 매핑 도입에 있어 장비 조달, 소프트웨어 라이선스, 서비스 제공에 영향을 미치는 운영상의 고려 사항을 가져왔습니다. 특정 수입 부품에 대한 관세 인상으로 인해 통합 하드웨어 번들의 실질 비용이 상승함에 따라 일부 공급업체들은 공급망 재검토 및 핵심 부품의 현지 조달 확대를 모색하고 있습니다. 구매자의 경우, 총소유비용(TCO)에 대한 관심이 높아지면서 하드웨어 조달과 분석 구독을 분리하는 모듈형 솔루션에 대한 수요가 증가하고 있습니다.

제공 형태, 도입 선택, 작물 카테고리, 애플리케이션 우선순위, 기업 규모, 판매 채널이 제품 적합성 및 상용화 전략을 결정하는 메커니즘을 파악하는 상세한 세분화 분석

주요 세분화 분석을 통해 제공 형태, 도입 모드, 작물 그룹, 애플리케이션 초점, 기업 규모, 판매 채널에 따라 구매자의 요구와 공급업체 전략이 어떻게 분기되는지 확인했습니다. 서비스형 솔루션은 설치 및 통합, 교육 및 지원, 업그레이드 및 유지보수에 중점을 두어 업무 연속성을 필요로 하는 운영자에게 실질적인 지원을 제공합니다. 소프트웨어 제공 형태는 영구 라이선스 모델과 구독 라이선스 모델로 구분됩니다. 지속적인 분석 업데이트와의 정합성과 소규모 사업자를 위한 확장성 때문에 구독의 중요성이 커지고 있습니다.

지역별 동향과 실용적인 도입 고려사항은 아메리카, 유럽, 중동 및 아프리카, 아시아태평양에서의 도입을 형성하고 있으며, 각 지역마다 고유한 농업 기술 및 규제 요인이 존재합니다.

지역별 동향은 아메리카, 유럽, 중동 및 아프리카, 아시아태평양의 도입 패턴, 기술 선호도, 서비스 기대치에 중요한 영향을 미칩니다. 미국 대륙에서는 대규모 열대 농업과 장비 제조업체 및 정밀농업 서비스 제공업체로 구성된 기존 생태계가 통합 하드웨어-소프트웨어 제품 및 첨단 분석 기술의 급속한 보급을 주도하고 있습니다. 이 지역의 판매자는 주류 농장 관리 시스템과의 호환성을 우선시하고, 여러 지점에서 사업을 운영하는 사업자를 위해 확장 가능한 클라우드 지원 서비스를 강조할 필요가 있습니다.

주요 수확량 매핑 소프트웨어 제공업체 간 통합의 깊이, 분석 기술의 성숙도, 현지화된 서비스, 하이브리드 시장 진입 접근 방식에서 경쟁적 차별화를 창출하는 방법

수확량 매핑 소프트웨어 분야의 경쟁 구도는 디지털 서비스를 확장하는 기존 장비 제조업체와 분석 기술 및 사용자 경험에 특화된 전문 소프트웨어 기업의 혼합으로 정의됩니다. 텔레매틱스 및 기계 수준의 텔레메트리를 분석 플랫폼과 통합하는 주요 농업 장비 제조업체는 심층적인 통합 이점을 제공하고, 소프트웨어 중심 기업은 상호운용성, 빠른 기능 업데이트, 데이터 과학 역량을 중시합니다. 이러한 양면성은 하드웨어의 보급력과 소프트웨어의 민첩성을 결합한 제휴와 인수의 여지를 만들어내고 있습니다.

공급자가 제품 아키텍처, 공급망, 데이터 거버넌스, 상업적 모델을 생산자의 요구와 정책 동향에 맞게 조정할 수 있는 실행 가능한 전략적 우선 순위

업계 리더가 입지를 강화하기 위해서는 기술, 상업적 모델, 생태계 개발에 대응하는 통일된 전략적 행동을 우선시해야 합니다. 첫째, 고객이 핵심 기능을 빠르게 도입하고 AI 예측 및 탄소 회계와 같은 고급 모듈을 단계적으로 추가할 수 있는 모듈식 제품 아키텍처에 대한 투자입니다. 이를 통해 소규모 사업자의 도입 장벽을 낮추고, 커스터마이징 및 기간계 시스템과의 통합이 필요한 대기업의 업그레이드 경로를 확보할 수 있습니다.

주요 이해관계자 인터뷰와 2차 기술적 검증을 결합한 투명하고 재현 가능한 조사 프레임워크를 통해 견고하고 감사 가능한 조사 결과를 보장합니다.

본 조사 방법은 구조화된 1차 조사와 2차 조사를 결합하여 실무자의 경험과 검증된 기술적 증거에 기반한 지식을 확보합니다. 1차 조사에서는 농업경영인, 농업학자, 소프트웨어 개발자, 장비 통합업체, 채널 파트너 등 다양한 이해관계자를 대상으로 인터뷰를 실시하여 운영 실태, 조달 기준, 서비스에 대한 기대치를 파악했습니다. 이러한 대화를 통해 다양한 작물 체계와 기업 규모에 따른 도입 장벽, 도입 형태 선호도, 서비스 실행 가능성에 대한 정성적 평가가 이루어졌습니다.

기술, 상업적 모델, 지역적 역학의 수렴이 어떻게 농업에서 수확량 매핑 소프트웨어의 전략적 역할을 가속화하고 있는지에 대한 간결한 통합

본 Executive Summary는 기술 혁신, 진화하는 상업적 모델, 지역적 동향이 결합되어 수확량 매핑 소프트웨어가 현대 농업의 전략적 동력으로 재정의되고 있는 상황을 통합적으로 정리합니다. 클라우드 기반 분석, AI 기반 예측, 모듈형 서비스 제공으로 전환하면서 수확량 매핑은 보다 광범위한 농지 규모와 작물 유형에서 접근성이 높고 영향력이 커지고 있습니다. 동시에 무역 정책의 변화와 공급망 압력으로 인해 공급업체는 도입 장벽을 낮추고 강력한 도입 전략과 유연한 상업 모델을 설계해야 합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 수확량 매핑 소프트웨어 시장 : 제공별

  • 서비스
    • 도입·통합
    • 트레이닝 및 서포트
    • 업그레이드·보수
  • 소프트웨어
    • 영구 라이선스
    • 구독 라이선스

제9장 수확량 매핑 소프트웨어 시장 : 전개 방식별

  • 클라우드
    • 하이브리드 클라우드
    • 프라이빗 클라우드
    • 퍼블릭 클라우드
  • 온프레미스

제10장 수확량 매핑 소프트웨어 시장 : 농업 유형별

  • 곡물
    • 옥수수
  • 원예
    • 화훼
    • 과수
    • 채소
  • 지방종자·두류
    • 병아리콩
    • 렌틸콩
    • 대두

제11장 수확량 매핑 소프트웨어 시장 : 용도별

  • 예측 분석
    • AI 기반 예측
  • 보고서 및 시각화
    • 커스텀 보고서
    • 대시보드
  • 수확량 분석
    • 과거 동향 분석
    • 실시간 모니터링

제12장 수확량 매핑 소프트웨어 시장 : 기업 규모별

  • 대기업
  • 중소기업

제13장 수확량 매핑 소프트웨어 시장 : 채널별

  • 채널 파트너
    • 유통업체
    • 재판업체
    • 시스템 통합사업자
  • 다이렉트 판매
    • OEM
    • 온라인

제14장 수확량 매핑 소프트웨어 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제15장 수확량 매핑 소프트웨어 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제16장 수확량 매핑 소프트웨어 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Deere & Company
    • Trimble Inc.
    • AGCO Corporation
    • CNH Industrial N.V.
    • Bayer AG
    • Topcon Corporation
    • Hexagon AB
    • Ag Leader Technology, Inc.
    • Farmers Edge Inc.
    • Granular, Inc.
KSM 25.12.02

The Yield Mapping Software Market is projected to grow by USD 2.30 billion at a CAGR of 6.84% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 1.35 billion
Estimated Year [2025] USD 1.44 billion
Forecast Year [2032] USD 2.30 billion
CAGR (%) 6.84%

A comprehensive orientation to the technical foundations, adoption drivers, and operational value propositions shaping contemporary yield mapping software deployments

Yield mapping software has emerged as a cornerstone capability for modern agriculture, enabling producers to translate geospatial signals and sensor feeds into actionable farming decisions. This introduction frames the technical foundations, commercial dynamics, and operational imperatives that define contemporary adoption of yield mapping solutions across diverse crop systems. It emphasizes how the convergence of precision hardware, cloud-enabled analytics, and machine learning has moved yield mapping from a specialist tool to a foundational element of farm management strategies.

Adoption pathways vary by enterprise size and agronomic complexity, but common drivers include the desire to increase input efficiency, improve compliance and traceability, and capture longitudinal data to support business planning. Data-driven agronomy now centers on the extraction of spatially resolved yield patterns, which are then integrated with inputs such as soil health metrics, weather histories, and crop protection logs. This integrated approach supports decisions on variable-rate seeding and fertilization, targeted irrigation, and harvest planning.

Technology vendors are responding with modular architectures that combine edge processing for real-time telemetry with cloud-hosted analytics for deeper trend analysis. Governments and agribusiness stakeholders are investing in digital infrastructure and interoperability standards to reduce friction in data exchange, while service providers are expanding their offerings to include installation, training, and lifecycle support. Together, these elements set the stage for the deeper thematic sections that follow by establishing a clear understanding of why yield mapping software has become a strategic priority for operators seeking sustainable productivity improvements.

Emerging technological, commercial, and regulatory inflection points that are reshaping supplier strategies and accelerating precision agriculture digitalization

The landscape for yield mapping software is shifting in ways that reconfigure both supplier strategies and farm-level adoption. Technological advances are accelerating the move from isolated yield maps to prescriptive, prediction-ready datasets. Edge computing is reducing latency for in-field decision-making while distributed cloud systems enable scalable historical analysis and cross-farm benchmarking. This technological pivot is complemented by a growing emphasis on AI-driven forecasting models that translate multiple data streams into probabilistic outcomes, enabling managers to prioritize interventions according to predicted impact.

Commercial models are also evolving. Subscription-based software, bundled services for installation and ongoing maintenance, and outcome-oriented offerings aligned with input suppliers and insurers are changing how value is captured and delivered. These models lower barriers for small and medium enterprises while creating recurring revenue streams for vendors. At the same time, the competitive environment is seeing increased collaboration between traditional equipment manufacturers and pure-play software firms, resulting in tighter hardware-software integration and improved user experience.

Regulatory and sustainability expectations are shifting buyer priorities as well. Environmental compliance, carbon accounting, and traceability requirements are prompting investments in digital recordkeeping and yield analytics that can substantiate sustainability claims. Farmers and agribusinesses are responding by seeking solutions that not only optimize yields but also demonstrate stewardship against evolving policy frameworks. In parallel, data governance and interoperability standards are gaining attention as critical enablers for scalable deployments, because the ability to aggregate and normalize heterogeneous datasets determines the quality of downstream analytics.

How evolving tariff measures through 2025 have influenced supply chains, procurement behavior, and deployment models across yield mapping software and associated technologies

Tariff policy developments in the United States through 2025 have introduced operational considerations that ripple across equipment procurement, software licensing, and service delivery for yield mapping implementations. Increased duties on certain imported components have raised the effective cost of integrated hardware bundles, prompting some vendors to reassess supply chains and seek greater localization of critical components. For buyers, this has meant closer scrutiny of total cost of ownership and a stronger appetite for modular solutions that separate hardware acquisition from analytic subscriptions.

Beyond direct cost implications, tariffs have incentivized strategic partnerships and regional manufacturing investments as vendors pursue ways to mitigate margin exposure. Companies with diversified manufacturing footprints have enjoyed greater flexibility, enabling them to offer bundled services that absorb some short-term cost variability for their customers. On the user side, larger enterprises have leveraged scale to negotiate more favorable procurement terms, while smaller operators have shown increasing interest in subscription models and installation services that convert upfront capital expenses into predictable operating costs.

The net effect has been a rebalancing of procurement and deployment patterns rather than a wholesale slowdown in adoption. Vendors that prioritized supply chain resilience, transparent pricing models, and clear value articulation around software-driven efficiency gains have been better positioned to navigate tariff-related disruption. As the sector adapts, emphasis has shifted toward building flexible deployment options and strengthening local service ecosystems so that growers can maintain continuous access to essential yield mapping capabilities despite evolving trade dynamics.

Deep segmentation analysis revealing how offering types, deployment choices, crop categories, application priorities, enterprise scale, and sales channels determine product fit and commercialization strategies

Key segmentation insights reveal how buyer needs and vendor strategies diverge across offering types, deployment modes, crop groups, application focus, enterprise scale, and sales channels. When considering offering structure, solutions grouped as Services focus on installation and integration, training and support, and upgrade and maintenance, delivering hands-on enablement for operators who require operational continuity. Software offerings break down into perpetual license models and subscription license models, with subscription increasing in prominence due to its alignment with ongoing analytics updates and scalability for smaller operators.

Deployment mode is an important differentiator because Cloud deployments-comprising hybrid clouds, private clouds, and public clouds-offer elastic compute and collaborative capabilities that suit organizations aggregating multi-season data. On-premises deployments remain relevant for enterprises that require tighter control over data sovereignty or have constrained connectivity. With respect to agriculture type, yield mapping solutions are tailored to cereals, horticulture, and oilseeds and pulses, with cereals further segmented to corn, rice, and wheat; horticulture addressing flowers, fruits, and vegetables; and oilseeds and pulses focusing on chickpeas, lentils, and soybean. Each crop class imposes distinct requirements for sensor density, temporal resolution, and analytic models.

Application segmentation highlights how predictive analytics, reporting and visualization, and yield analysis form the core functional pillars. Predictive analytics increasingly centers on AI-based forecasting that synthesizes weather, soil, and historical yield signals. Reporting and visualization blends custom reports with dashboard experiences designed for rapid operational decision-making, while yield analysis spans historical trend analysis and real-time monitoring to support both strategic planning and immediate field interventions. Enterprise size also shapes solution design, with large enterprises prioritizing integration, enterprise-grade security, and customization, whereas small and medium enterprises emphasize affordability, ease of use, and packaged services. Finally, channel strategies vary between channel partners and direct sales, with channel partners such as distributors, resellers, and system integrators extending reach into regional markets and direct sales routes like OEMs and online channels supporting manufacturer-aligned or self-directed procurement. Understanding these segmentation lenses informs product roadmaps, pricing frameworks, and go-to-market execution for suppliers aiming to align offerings with buyer expectations.

Regional dynamics and practical deployment considerations shaping adoption across the Americas, Europe Middle East & Africa, and Asia-Pacific with distinct agronomic and regulatory drivers

Regional dynamics exert a material influence on adoption patterns, technology preferences, and service expectations across the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, adoption is driven by large-scale row crop operations and an established ecosystem of equipment manufacturers and precision farming service providers, supporting rapid uptake of integrated hardware-software offerings and advanced analytics. Sellers in this region must prioritize compatibility with prevalent farm management systems and emphasize scalable cloud-enabled services for multi-site operators.

Europe, the Middle East & Africa present a diverse set of requirements influenced by regulatory frameworks, smaller average farm sizes in parts of Europe, and a growing emphasis on environmental compliance and traceability. Here, solutions that support rigorous recordkeeping, carbon accounting, and variable-rate inputs tuned to complex landscapes resonate strongly. Local service networks and compliance-focused features are differentiators in procuring and deploying yield mapping solutions in these markets.

Asia-Pacific spans high-intensity horticultural systems, staple cereal production, and emerging commercial farm models. Connectivity constraints in some subregions favor hybrid or on-premises deployments that minimize reliance on continuous broadband access, while high-value horticulture segments demand fine-grained spatial resolution and fast feedback loops. Across all regions, localization of language support, agronomic models, and channel partnerships remains a consistent enabler of adoption because analytics accuracy and user experience are strongly influenced by regional agronomic practices and operational norms.

How competitive differentiation emerges from integration depth, analytics maturity, localized services, and hybrid go-to-market approaches among leading yield mapping software providers

Competitive positioning in the yield mapping software space is defined by a mix of legacy equipment manufacturers extending digital services and specialized software firms focusing on analytics and user experience. Major agricultural OEMs that bundle telematics and machine-level telemetry with analytics platforms offer deep integration benefits, while software-first companies emphasize interoperability, rapid feature iteration, and data science capability. This duality creates room for partnerships and acquisitions that combine hardware reach with software agility.

Buyers often evaluate vendors on criteria such as integration depth with existing machinery, the maturity of predictive models, data governance practices, and the availability of localized support and training. Firms that demonstrate robust integration pathways with common farm management systems, transparent model explainability, and proactive lifecycle services typically secure stronger enterprise engagements. Moreover, vendors that provide modular deployment options-allowing customers to adopt core yield mapping and then scale into predictive analytics or bespoke reporting-tend to lower adoption friction for smaller operations while still addressing the needs of larger agribusinesses.

Channel strategies also affect competitive outcomes. Companies that maintain a hybrid go-to-market model, leveraging both direct OEM partnerships and a network of regional distributors and system integrators, can reach a broader spectrum of customers and provide the logistical and support frameworks necessary for successful rollouts. Ultimately, competitive differentiation emerges from the combination of technical excellence, proven agronomic outcomes, and pragmatic commercial models that align vendor incentives with growers' productivity and sustainability goals.

Actionable strategic priorities for providers to align product architectures, supply chains, data governance, and commercial models with grower needs and policy trends

Industry leaders seeking to strengthen their position should prioritize a unified set of strategic actions that address technology, commercial models, and ecosystem development. First, invest in modular product architectures that allow customers to adopt core functionality quickly and add advanced modules-such as AI-based forecasting or carbon accounting-over time. This reduces friction for smaller operators while preserving upgrade paths for larger enterprises that require customization and integration with enterprise resource systems.

Second, build resilient supply chains and diversified deployment options to mitigate exposure to trade policy shifts and component shortages. Localized assembly, regional service hubs, and flexible licensing choices will help maintain continuity for customers facing changing procurement conditions. Third, focus on data portability and open standards to enable interoperability with third-party sensors, farm management systems, and industry platforms. Transparent data governance, encryption, and clear consent frameworks will accelerate trust adoption among growers and corporate buyers concerned about data stewardship.

Fourth, expand channel and service networks to include training, installation, and advisory services that translate analytics into agronomic action. Hands-on support and farmer-centric training programs increase the value realization from yield mapping investments and reduce churn. Fifth, adopt outcome-aligned commercial models where appropriate, combining subscription pricing with performance-linked services for customers who want to share risk and reward. Finally, commit to continuous validation of agronomic models using multi-year, multi-region datasets and invest in model explainability so that operational teams can understand and trust prescriptive recommendations. Together, these actions will help vendors align their offerings with the evolving operational, regulatory, and sustainability needs of modern agriculture.

A transparent, reproducible research framework combining primary stakeholder interviews and secondary technical validation to ensure robust, auditable insights

The research methodology combines structured primary and secondary approaches to ensure findings are grounded in practitioner experience and verified technical evidence. Primary research included interviews with a cross-section of stakeholders-farm operators, agronomists, software developers, equipment integrators, and channel partners-to capture operational realities, procurement criteria, and service expectations. These conversations informed qualitative assessments of adoption barriers, deployment preferences, and service viability across different crop systems and enterprise scales.

Secondary research reviewed technical literature, vendor technical documentation, white papers, and publicly available regulatory guidance to validate product capabilities, deployment architectures, and interoperability approaches. Data triangulation was applied to reconcile differing perspectives between vendor claims and end-user experiences, with emphasis placed on verifying integration features, deployment modalities, and the functional scope of predictive analytics and reporting tools. Where discrepancies emerged, follow-up interviews and demonstrations were used to clarify product behavior and service delivery commitments.

Analytic rigor was maintained through reproducible methods for model validation and comparative feature analysis. Key metrics for evaluation included ease of deployment, data governance provisions, localizability, and service coverage, all of which were assessed against documented performance in operational contexts. The methodology prioritized transparency and repeatability so that assumptions and evidence supporting the conclusions are auditable and accessible to stakeholders seeking to replicate or build upon the study insights.

Concise synthesis of how convergence in technology, commercial models, and regional dynamics is accelerating the strategic role of yield mapping software in agriculture

This executive summary synthesizes how technological innovation, evolving commercial models, and regional dynamics are collectively redefining yield mapping software as a strategic enabler for modern agriculture. The shift toward cloud-enabled analytics, AI-based forecasting, and modular service offerings is making yield mapping more accessible and impactful across a broader spectrum of farm sizes and crop types. At the same time, trade policy shifts and supply chain pressures are prompting vendors to design resilient deployment strategies and flexible commercial models that reduce adoption barriers.

Segmentation- and region-specific considerations underscore that one-size-fits-all offerings are unlikely to maximize adoption. Instead, modular architectures, hybrid deployment options, and strong local service networks are the practical levers that accelerate value realization. Competitive advantage accrues to providers that combine deep integration with machinery, transparent data governance, and demonstrable agronomic outcomes. For industry stakeholders, the pathway forward centers on pragmatic investments in interoperability, localized support, and outcome-focused commercial constructs that align incentives across the value chain. In sum, the evolving ecosystem presents substantial opportunities for vendors and adopters who can translate spatial data into consistent agronomic and commercial value.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Development of AI-driven predictive algorithms for hyperlocal crop yield mapping
  • 5.2. Integration of real-time IoT sensor networks with cloud-based yield mapping platforms for precision decisions
  • 5.3. Adoption of multispectral drone imaging to enhance spatial resolution accuracy in yield maps
  • 5.4. Emergence of blockchain-based data security protocols for safeguarding yield mapping datasets
  • 5.5. Growing demand for user-friendly mobile interfaces in yield mapping applications for field operators
  • 5.6. Combining weather forecasting analytics with yield mapping software for proactive irrigation management
  • 5.7. Use of advanced geospatial heat mapping to identify soil variability trends affecting crop performance

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Yield Mapping Software Market, by Offering

  • 8.1. Service
    • 8.1.1. Installation & Integration
    • 8.1.2. Training & Support
    • 8.1.3. Upgrade & Maintenance
  • 8.2. Software
    • 8.2.1. Perpetual License
    • 8.2.2. Subscription License

9. Yield Mapping Software Market, by Deployment Mode

  • 9.1. Cloud
    • 9.1.1. Hybrid Cloud
    • 9.1.2. Private Cloud
    • 9.1.3. Public Cloud
  • 9.2. On-Premises

10. Yield Mapping Software Market, by Agriculture Type

  • 10.1. Cereals
    • 10.1.1. Corn
    • 10.1.2. Rice
    • 10.1.3. Wheat
  • 10.2. Horticulture
    • 10.2.1. Flowers
    • 10.2.2. Fruits
    • 10.2.3. Vegetables
  • 10.3. Oilseeds & Pulses
    • 10.3.1. Chickpeas
    • 10.3.2. Lentils
    • 10.3.3. Soybean

11. Yield Mapping Software Market, by Application

  • 11.1. Predictive Analytics
    • 11.1.1. AI-Based Forecasting
  • 11.2. Reporting & Visualization
    • 11.2.1. Custom Reports
    • 11.2.2. Dashboard
  • 11.3. Yield Analysis
    • 11.3.1. Historical Trend Analysis
    • 11.3.2. Real-Time Monitoring

12. Yield Mapping Software Market, by Enterprise Size

  • 12.1. Large Enterprises
  • 12.2. Small & Medium Enterprises

13. Yield Mapping Software Market, by Channel

  • 13.1. Channel Partners
    • 13.1.1. Distributors
    • 13.1.2. Resellers
    • 13.1.3. System Integrators
  • 13.2. Direct Sales
    • 13.2.1. OEM
    • 13.2.2. Online

14. Yield Mapping Software Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. Yield Mapping Software Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. Yield Mapping Software Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Deere & Company
    • 17.3.2. Trimble Inc.
    • 17.3.3. AGCO Corporation
    • 17.3.4. CNH Industrial N.V.
    • 17.3.5. Bayer AG
    • 17.3.6. Topcon Corporation
    • 17.3.7. Hexagon AB
    • 17.3.8. Ag Leader Technology, Inc.
    • 17.3.9. Farmers Edge Inc.
    • 17.3.10. Granular, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제