시장보고서
상품코드
1676726

세계의 중금속 수질 자동 온라인 모니터 시장 : 구성 요소별, 수원별, 접속성별, 검출 금속 유형별, 기술별, 용도별, 최종 사용자별, 예측(2025-2030년)

Heavy Metal Water Quality Automatic Online Monitor Market by Component, Water Source, Connectivity, Type of Metal Detected, Technology, Application, End User - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 199 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

중금속 수질 자동 온라인 모니터 시장은 2024년에는 6억 2,821만 달러로, 2025년에는 CAGR 8.44%로 6억 8,029만 달러로 성장했으며, 2030년에는 10억 2,176만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도(2024년) 6억 2,821만 달러
추정 연도(2025년) 6억 8,029만 달러
예측연도2030 10억 2,176만 달러
CAGR(%) 8.44%

세계에서는 수질 모니터링의 필요성이 가속화되고 있으며, 중금속 오염은 환경 문제의 최전선에 있습니다. 최근, 산업계와 지자체는 유해 금속을 검출할 뿐만 아니라 공중위생과 환경을 지키는 실시간 모니터링 솔루션의 도입에 대한 압력이 높아지고 있습니다. 자동 온라인 모니터는 현저하게 진보하고 뛰어난 정확성, 적시 통찰력, 최신 인프라와의 통합 용이성을 제공합니다.

이 보고서는 중금속 수질 모니터링에서 진화하는 상황의 종합적인 개요를 제공합니다. 기존의 조사 방법을 스마트하고 커넥티드한 고감도 모니터링 시스템으로 변혁하고 있는 중요한 기술적 획기적인, 시장의 과제, 새로운 동향에 대해 개설하고 있습니다. 최첨단 센서 기술과 견고한 소프트웨어 솔루션을 활용함으로써 업계는 수질 데이터에 즉각적으로 액세스할 수 있으며 행동할 수 있는 미래를 향하고 있습니다. 이 전환은 규제 준수를 보장하고, 가동 중단 시간을 줄이고, 다양한 부서에 걸쳐 물의 안전성을 전반적으로 향상시키는 데 매우 중요합니다. 아래에서는 기술적 진보뿐만 아니라 보다 안전하고 지속 가능한 미래를 향한 길을 여는 전략적 시장 역학에 대해서도 살펴보겠습니다.

중금속 수질 자동 온라인 모니터 시장 변화

최근 몇 년동안 중금속 수질 모니터링 산업은 기술 혁신과 규제 기준의 진화에 견인되어 변혁적인 변화를 경험해 왔습니다. 센서 기술, 알고리즘 및 연결성 혁신은 실시간 업데이트와 핀 포인트 정확도를 제공하는 모니터의 무대를 마련했습니다.

전통적인 방법은 수작업으로 샘플링하고 까다로운 실험실에서 분석에 의존했습니다. 자동화된 센서와 첨단 소프트웨어 솔루션의 통합은 이러한 접근 방식에 혁명을 일으켜 수질 변화에 적응하는 지속적인 모니터링을 가능하게 했습니다. 사물인터넷(IoT) 프레임워크와 블루투스 통합을 통한 연결성 향상은 중요한 수질 정보에 이동 중에도 액세스할 수 있는 원격 애플리케이션 개발을 촉진했습니다.

환경 규제가 세계적으로 강화됨에 따라 운영자는 사전 감지와 예방 경고를 모두 제공하는 시스템을 도입해야합니다. 이 역동적인 변화는 최첨단 모니터링 기술에 대한 투자를 촉진할 뿐만 아니라 연구기관, 기술공급자, 행정기관 간의 협력관계에도 불을 붙였습니다. 그 결과, 이 업계는 기술적으로 정교한 장소로 진화하고 있으며, 데이터 기반 통찰이 이해관계자에게 힘을 주고, 리스크를 효율적으로 경감하고, 물관리 업무를 최적화하고, 공공 안전기준을 전반적으로 높이고 있습니다.

주요 세분화의 통찰 구성 요소, 소스, 용도 분석

중금속 수질 모니터링 시장의 심층적인 세분화는 이해관계자가 명확한 시장 역학을 이해하고 특정 기회를 효과적으로 노리는 데 도움이 되는 다차원적인 관점을 제공합니다. 시장은 먼저 컴포넌트에 따라 세분화되어 센서와 소프트웨어가 분석 대상이 됩니다. 센서 영역에서는 기술이 더욱 세분화되어 감도와 적응성 정도가 다른 전기화학 센서와 광학 센서로 나뉘며, 소프트웨어 세분화는 의사결정과 업무 효율을 촉진하는 분석 소프트웨어와 데이터 관리 플랫폼으로 나뉩니다. 이러한 미묘한 분류는 다양한 업무 요구를 충족시키는 데 매우 중요하다는 것이 입증되었습니다.

또한, 수원에 기초한 세분화은 지하수의 매장량과 지표수역을 구별합니다. 표류수를 호수와 하천으로 나누어 분석하면 이 구별이 더욱 중요해져 물의 화학적 성질의 차이와 그들이 가져오는 과제가 부각됩니다. 또 다른 중요한 부문인 변속기는 블루투스 연결과 광범위한 사물 인터넷(IoT)이라는 프리즘을 통해 분석됩니다.

세분화의 또 다른 층은 검출되는 금속의 유형에 초점을 맞추며, 주로 카드뮴, 납, 수은과 같은 오염물질을 다룹니다. 이와 병행하여, 기술 세분화은 생물학적 센서, 비색 검출, 전기화학 센서, 분광광도계를 포함한 광범위한 검출 기법을 포함하며, 각각 고유한 기능과 정밀도 지표를 갖추고 있습니다. 응용 분야의 세분화는 똑같이 견고하며 산업 및 지자체를 모두 다룹니다. 산업 용도는 화학 처리, 제조 및 광업으로 복잡하게 나뉘어져 있으며, 시정촌용은 식수 시스템과 폐수 처리 플랜트로 확장됩니다. 마지막으로 최종 사용자 기반 세분화는 기업, 정부 기관, 연구 및 학술 기관으로 면밀히 나뉘어져 있으며, 제조업, 수처리 회사, 환경보호기관, 공중보건국의 특정 수요를 인식하도록 세분화되어 있습니다. 이 종합적인 세분화의 틀은 보다 적극적인 시장 전략과 보다 선명한 경쟁 포지셔닝을 가능하게 합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

  • 시장 역학
    • 성장 촉진요인
      • 중금속 오염의 영향에 관한 산업계의 의식의 고조
      • 수 매개 질환의 발생 증가에 의해 실시간 감시 시스템의 중요성이 부각
      • 수원의 투명성과 안전성에 대한 국민의 요구
    • 억제요인
      • 온라인 수질 모니터의 보급을 방해하는 비용 장벽에 관한 우려
    • 기회
      • NGO와의 파트너십 기회 확대
      • 안전한 관개를 확보하기 위해 농업 분야에 진출
    • 과제
      • 실시간 데이터 분석과 의사 결정 능력의 한계 극복
  • 시장 세분화 분석
    • 구성 요소 : 비용 효율과 이온 검출 감도에 의해 센서의 선호도 증가
    • 응용 : 식수 시스템에서 중금속 수질 자동 온라인 모니터의 응용 확대
  • Porter's Five Forces 분석
  • PESTEL 분석
    • 정치적
    • 경제
    • 사회
    • 기술적
    • 법률상
    • 환경

제6장 중금속 수질 자동 온라인 모니터 시장 : 구성 요소별

  • 센서
    • 전기화학 센서
    • 광학 센서
  • 소프트웨어
    • 분석 소프트웨어
    • 데이터 관리 소프트웨어

제7장 중금속 수질 자동 온라인 모니터 시장 : 수원별

  • 지하수
  • 지표수
    • 호수
    • 하천

제8장 중금속 수질 자동 온라인 모니터 시장 : 접속성별

  • Bluetooth 연결
  • 사물인터넷(IoT)

제9장 중금속 수질 자동 온라인 모니터 시장 : 검출 금속 유형별

  • 카드뮴
  • 수은

제10장 중금속 수질 자동 온라인 모니터 시장 : 기술별

  • 생체 센서
  • 비색 검출
  • 전기화학 센서
  • 분광광도계

제11장 중금속 수질 자동 온라인 모니터 시장 : 용도별

  • 산업
    • 화학처리
    • 제조업
    • 광업
  • 시영
    • 식수 시스템
    • 폐수치료장

제12장 중금속 수질 자동 온라인 모니터 시장 : 최종 사용자별

  • 법인
    • 제조업
    • 수처리 회사
  • 정부기관
    • 환경보호기관
    • 공중위생국
  • 조사·학술 기관

제13장 아메리카 중금속 수질 자동 온라인 모니터 시장

  • 아르헨티나
  • 브라질
  • 캐나다
  • 멕시코
  • 미국

제14장 아시아태평양의 중금속 수질 자동 온라인 모니터 시장

  • 호주
  • 중국
  • 인도
  • 인도네시아
  • 일본
  • 말레이시아
  • 필리핀
  • 싱가포르
  • 한국
  • 대만
  • 태국
  • 베트남

제15장 유럽, 중동 및 아프리카 중금속 수질 자동 온라인 모니터 시장

  • 덴마크
  • 이집트
  • 핀란드
  • 프랑스
  • 독일
  • 이스라엘
  • 이탈리아
  • 네덜란드
  • 나이지리아
  • 노르웨이
  • 폴란드
  • 카타르
  • 러시아
  • 사우디아라비아
  • 남아프리카
  • 스페인
  • 스웨덴
  • 스위스
  • 터키
  • 아랍에미리트(UAE)
  • 영국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 시나리오 분석
  • 전략 분석과 제안

기업 목록

  • ABB Ltd.
  • Agilent Technologies, Inc.
  • Beijing SDL Technology Co., Ltd.
  • Bentley Systems, Incorporated
  • Campbell Scientific, Inc.
  • Danaher Corporation
  • Endress Hauser Group
  • Evoqua Water Technologies
  • General Electric Company
  • Hach Company
  • Hanna Instruments, Inc.
  • Horiba Ltd.
  • In-Situ Inc.
  • KROHNE Group
  • Lenntech BV
  • Metrohm AG
  • Omega Engineering, Inc.
  • OTT HydroMet GmbH
  • PerkinElmer, Inc.
  • ProMinent GmbH
  • RS Hydro
  • Shimadzu Corporation
  • Siemens AG
  • SWAN Analytical Instruments
  • Teledyne Technologies Incorporated
  • Thermo Fisher Scientific, Inc.
  • Xylem Inc.
  • Yokogawa Electric Corporation
SHW 25.03.20

The Heavy Metal Water Quality Automatic Online Monitor Market was valued at USD 628.21 million in 2024 and is projected to grow to USD 680.29 million in 2025, with a CAGR of 8.44%, reaching USD 1,021.76 million by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 628.21 million
Estimated Year [2025] USD 680.29 million
Forecast Year [2030] USD 1,021.76 million
CAGR (%) 8.44%

The world is witnessing an accelerating need for advanced water quality monitoring, and heavy metal contamination is at the forefront of environmental concerns. In recent years, industries and municipalities have experienced mounting pressure to deploy real-time monitoring solutions that not only detect harmful metals but also safeguard public health and the environment. Automatic online monitors have advanced significantly, offering superior precision, timely insights, and ease of integration with modern infrastructure.

This report provides a comprehensive overview of the evolving landscape in heavy metal water quality monitoring. It outlines critical technological breakthroughs, market challenges, and emerging trends that are transforming traditional methodologies into smart, connected, and highly sensitive monitoring systems. By leveraging state-of-the-art sensor technologies and robust software solutions, the industry is moving toward a future where water quality data is instantly accessible and actionable. This shift is pivotal in ensuring regulatory compliance, reducing operational downtime, and enhancing overall water safety across various sectors. The narrative that follows examines not only the technological advancements but also strategic market dynamics that pave the way for a safer and more sustainable future.

Transformative Shifts in the Heavy Metal Water Monitoring Landscape

In recent years, the heavy metal water quality monitoring industry has experienced transformative shifts driven by technological innovations and evolving regulatory standards. Innovation in sensor technology, algorithms, and connectivity has set the stage for monitors that deliver real-time updates and pinpoint accuracy.

Traditional methods once relied on manual sampling and labor-intensive laboratory analyses. The integration of automated sensors and advanced software solutions has revolutionized this approach, permitting continuous monitoring that adapts to fluctuations in water quality. Enhanced connectivity through Internet of Things (IoT) frameworks and Bluetooth integration has fostered the development of remote applications, ensuring that critical water quality information can be accessed on-the-go.

As environmental regulations tighten globally, operators are compelled to embrace systems that provide both proactive detection and preventive alerts. This dynamic change has not only encouraged investments in state-of-the-art monitoring technologies but has also ignited collaborations between research institutions, technology providers, and governing bodies. Consequently, the industry is evolving into a technologically sophisticated arena where data-driven insights empower stakeholders to mitigate risks efficiently, optimize water management operations, and elevate the overall standard of public safety.

Key Segmentation Insights: Analyzing Components, Sources, and Applications

Deep-layered segmentation of the heavy metal water quality monitoring market provides a multi-dimensional perspective that helps stakeholders understand distinct market dynamics and target specific opportunities effectively. The market is first segmented based on component, where the analysis spans sensors and software. Within the sensor domain, technologies are refined further into electrochemical and optical sensors that offer varying degrees of sensitivity and adaptability, while software segmentation is divided into analytics software and data management platforms that drive decision-making and operational efficiency. Such nuanced categorization has proven pivotal in addressing diverse operational needs.

Moreover, segmentation based on water source distinguishes between groundwater reserves and surface water bodies. This distinction becomes even more critical when surface water is further analyzed into lakes and rivers, underscoring the variations in water chemistry and the challenges they pose. Connectivity, as another crucial segment, is analyzed through the prism of Bluetooth connectivity and the broader Internet of Things (IoT), each enabling rapid data transmission and real-time remote monitoring.

Another layer of segmentation focuses on the type of metal detected, predominantly addressing contaminants such as cadmium, lead, and mercury. In parallel, technology segmentation encapsulates the breadth of detection methodologies including biological sensors, colorimetric detection, electrochemical sensors, and spectrophotometers, each with its own set of capabilities and precision metrics. Application segmentation is equally robust, covering both industrial and municipal arenas, with industrial applications intricately divided among chemical processing, manufacturing, and mining, and municipal usage extending to drinking water systems and wastewater treatment plants. Finally, the segmentation based on end users is meticulously broken down into corporations, government bodies, and research and academic institutions, with further subdivisions recognizing the specific demands of manufacturing industries, water treatment companies, environmental protection agencies, and public health departments. This comprehensive segmentation framework enables a more targeted market strategy and sharper competitive positioning.

Based on Component, market is studied across Sensors and Software. The Sensors is further studied across Electrochemical Sensors and Optical Sensors. The Software is further studied across Analytics Software and Data Management Software.

Based on Water Source, market is studied across Groundwater and Surface Water. The Surface Water is further studied across Lakes and Rivers.

Based on Connectivity, market is studied across Bluetooth Connectivity and Internet of Things (IoT).

Based on Type of Metal Detected, market is studied across Cadmium, Lead, and Mercury.

Based on Technology, market is studied across Biological Sensor, Colorimetric Detection, Electrochemical Sensor, and Spectrophotometer.

Based on Application, market is studied across Industrial and Municipal. The Industrial is further studied across Chemical Processing, Manufacturing, and Mining. The Municipal is further studied across Drinking Water Systems and Wastewater Treatment Plants.

Based on End User, market is studied across Corporations, Government Bodies, and Research and Academic Institutions. The Corporations is further studied across Manufacturing Industries and Water Treatment Companies. The Government Bodies is further studied across Environmental Protection Agencies and Public Health Departments.

Key Regional Insights: Global Trends Across Major Regions

Geographical analysis reveals divergent trends that highlight the significance of regional nuances in the heavy metal water quality monitoring market. Observations indicate that developments in the Americas have led the way in adopting innovative monitoring systems, driven by strict regulatory frameworks and a proactive approach towards water safety. Regions spanning Europe, the Middle East, and Africa have simultaneously experienced significant investments in research and technology, spurred by government incentives and the need to meet environmental standards.

In Asia-Pacific, rapid industrialization coupled with increasing public awareness has accelerated the adoption of advanced technologies. This region not only garners attention for its sizeable market potential but also sets global benchmarks through innovation and cost-effective solutions. The interplay of economic growth, regulatory reforms, and localized technological advancements across these regions has collectively sculpted an industry landscape that is both robust and adaptive to evolving customer needs.

Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

Key Companies Insights: Industry Leaders and Innovators Steer Market Growth

An analysis of market leaders underscores the pivotal role played by forward-thinking companies in driving both technological advancements and market penetration. Industry giants such as ABB Ltd. and Agilent Technologies, Inc. have consistently invested in breakthrough sensor technologies while companies like Beijing SDL Technology Co., Ltd. and Bentley Systems, Incorporated have redefined analytics and data management practices. Renowned innovators including Campbell Scientific, Inc. and Danaher Corporation have further propelled industry standards in chemical detection and real-time analysis.

Organizations like Endress+Hauser Group and Evoqua Water Technologies are at the forefront of developing solutions that integrate seamlessly into existing water infrastructure, setting new benchmarks in accuracy and durability. General Electric Company and Hach Company demonstrate further commitment by providing robust hardware capable of withstanding harsh operational environments. Companies such as Hanna Instruments, Inc. and Horiba Ltd. have carved a niche by offering bespoke monitoring solutions tailored to specific industrial and municipal demands.

Emerging leaders like In-Situ Inc. and KROHNE Group, alongside specialized providers such as Lenntech B.V. and Metrohm AG, have accelerated the pace of innovation in this space. Larger conglomerates, including Omega Engineering, Inc. and OTT HydroMet GmbH, continue to expand their footprint in the market, while names like PerkinElmer, Inc., ProMinent GmbH, and RS Hydro push the envelope further with their cutting-edge research. These efforts are harmonized by technology powerhouses such as Shimadzu Corporation, Siemens AG, and SWAN Analytical Instruments, complemented by integrated solutions from Teledyne Technologies Incorporated, Thermo Fisher Scientific, Inc., Xylem Inc., and Yokogawa Electric Corporation. Together, these companies are actively shaping the industry's trajectory by offering high-performance, scalable monitoring solutions that address complex environmental challenges.

The report delves into recent significant developments in the Heavy Metal Water Quality Automatic Online Monitor Market, highlighting leading vendors and their innovative profiles. These include ABB Ltd., Agilent Technologies, Inc., Beijing SDL Technology Co., Ltd., Bentley Systems, Incorporated, Campbell Scientific, Inc., Danaher Corporation, Endress+Hauser Group, Evoqua Water Technologies, General Electric Company, Hach Company, Hanna Instruments, Inc., Horiba Ltd., In-Situ Inc., KROHNE Group, Lenntech B.V., Metrohm AG, Omega Engineering, Inc., OTT HydroMet GmbH, PerkinElmer, Inc., ProMinent GmbH, RS Hydro, Shimadzu Corporation, Siemens AG, SWAN Analytical Instruments, Teledyne Technologies Incorporated, Thermo Fisher Scientific, Inc., Xylem Inc., and Yokogawa Electric Corporation. Actionable Recommendations: Strategic Pathways for Industry Leaders

For decision-makers aiming to consolidate their footprint in the heavy metal water quality monitoring market, a multifaceted approach is essential. Industry leaders should continuously invest in research and development to refine sensor accuracy and enhance real-time data processing capabilities. Collaboration with academic institutions and technology innovators can further expand the maturity of detection systems. It is equally crucial to align product development with evolving regulatory frameworks to ensure that all monitoring systems meet strict environmental standards.

Additionally, expansion into emerging markets and strengthening regional partnerships can provide a competitive edge. Harnessing modern connectivity solutions, such as Bluetooth and IoT, can facilitate remote monitoring and predictive maintenance, reducing downtime and operational risks. A focus on customer-centric design-ensuring ease of integration, user-friendly interfaces, and actionable data interpretation-will enable organizations to differentiate themselves in an increasingly crowded market.

Conclusion: Embracing a Future of Enhanced Water Safety

In summary, the heavy metal water quality monitoring market is witnessing a paradigm shift fueled by advanced sensor technologies, innovative software solutions, and an increasingly interconnected operational landscape. By incorporating meticulous segmentation strategies and leveraging global regional trends, industry stakeholders can navigate the complexities of regulatory expectations and the demands of diverse water sources. The market is characterized by a dynamic interplay of technology, policy, and consumer needs that call for a proactive, integrated approach to water safety. Embracing these innovations does not just ensure compliance; it serves as a catalyst for sustainable growth and enhanced public health outcomes. The insights presented in this report pave the way for organizations to adopt robust solutions that keep pace with evolving challenges and seize opportunities in a fast-changing marketplace.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Rising awareness among industries on the impact of heavy metal contamination
      • 5.1.1.2. Increasing occurrences of waterborne diseases highlight the importance of real-time monitoring systems
      • 5.1.1.3. Public demand for transparency and safety in water sources
    • 5.1.2. Restraints
      • 5.1.2.1. Concerns regarding cost barriers limiting the widespread implementation of online water monitors
    • 5.1.3. Opportunities
      • 5.1.3.1. Growing partnership opportunities with NGOs
      • 5.1.3.2. Expanding into agricultural sectors to ensure safe irrigation
    • 5.1.4. Challenges
      • 5.1.4.1. Overcoming limitations in real-time data analysis and decision-making capabilities
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Component: Increasing preference for sensors owing to its cost-effectiveness and sensitivity in detecting ions
    • 5.2.2. Application: Expanding application of heavy metal water quality automatic online monitor in the drinking water systems
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Heavy Metal Water Quality Automatic Online Monitor Market, by Component

  • 6.1. Introduction
  • 6.2. Sensors
    • 6.2.1. Electrochemical Sensors
    • 6.2.2. Optical Sensors
  • 6.3. Software
    • 6.3.1. Analytics Software
    • 6.3.2. Data Management Software

7. Heavy Metal Water Quality Automatic Online Monitor Market, by Water Source

  • 7.1. Introduction
  • 7.2. Groundwater
  • 7.3. Surface Water
    • 7.3.1. Lakes
    • 7.3.2. Rivers

8. Heavy Metal Water Quality Automatic Online Monitor Market, by Connectivity

  • 8.1. Introduction
  • 8.2. Bluetooth Connectivity
  • 8.3. Internet of Things (IoT)

9. Heavy Metal Water Quality Automatic Online Monitor Market, by Type of Metal Detected

  • 9.1. Introduction
  • 9.2. Cadmium
  • 9.3. Lead
  • 9.4. Mercury

10. Heavy Metal Water Quality Automatic Online Monitor Market, by Technology

  • 10.1. Introduction
  • 10.2. Biological Sensor
  • 10.3. Colorimetric Detection
  • 10.4. Electrochemical Sensor
  • 10.5. Spectrophotometer

11. Heavy Metal Water Quality Automatic Online Monitor Market, by Application

  • 11.1. Introduction
  • 11.2. Industrial
    • 11.2.1. Chemical Processing
    • 11.2.2. Manufacturing
    • 11.2.3. Mining
  • 11.3. Municipal
    • 11.3.1. Drinking Water Systems
    • 11.3.2. Wastewater Treatment Plants

12. Heavy Metal Water Quality Automatic Online Monitor Market, by End User

  • 12.1. Introduction
  • 12.2. Corporations
    • 12.2.1. Manufacturing Industries
    • 12.2.2. Water Treatment Companies
  • 12.3. Government Bodies
    • 12.3.1. Environmental Protection Agencies
    • 12.3.2. Public Health Departments
  • 12.4. Research and Academic Institutions

13. Americas Heavy Metal Water Quality Automatic Online Monitor Market

  • 13.1. Introduction
  • 13.2. Argentina
  • 13.3. Brazil
  • 13.4. Canada
  • 13.5. Mexico
  • 13.6. United States

14. Asia-Pacific Heavy Metal Water Quality Automatic Online Monitor Market

  • 14.1. Introduction
  • 14.2. Australia
  • 14.3. China
  • 14.4. India
  • 14.5. Indonesia
  • 14.6. Japan
  • 14.7. Malaysia
  • 14.8. Philippines
  • 14.9. Singapore
  • 14.10. South Korea
  • 14.11. Taiwan
  • 14.12. Thailand
  • 14.13. Vietnam

15. Europe, Middle East & Africa Heavy Metal Water Quality Automatic Online Monitor Market

  • 15.1. Introduction
  • 15.2. Denmark
  • 15.3. Egypt
  • 15.4. Finland
  • 15.5. France
  • 15.6. Germany
  • 15.7. Israel
  • 15.8. Italy
  • 15.9. Netherlands
  • 15.10. Nigeria
  • 15.11. Norway
  • 15.12. Poland
  • 15.13. Qatar
  • 15.14. Russia
  • 15.15. Saudi Arabia
  • 15.16. South Africa
  • 15.17. Spain
  • 15.18. Sweden
  • 15.19. Switzerland
  • 15.20. Turkey
  • 15.21. United Arab Emirates
  • 15.22. United Kingdom

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Scenario Analysis
    • 16.3.1. Innovasea and Mowi renew partnership for environmental monitoring equipment and software
    • 16.3.2. Scientists develop an affordable sensor for lead contamination
  • 16.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. ABB Ltd.
  • 2. Agilent Technologies, Inc.
  • 3. Beijing SDL Technology Co., Ltd.
  • 4. Bentley Systems, Incorporated
  • 5. Campbell Scientific, Inc.
  • 6. Danaher Corporation
  • 7. Endress+Hauser Group
  • 8. Evoqua Water Technologies
  • 9. General Electric Company
  • 10. Hach Company
  • 11. Hanna Instruments, Inc.
  • 12. Horiba Ltd.
  • 13. In-Situ Inc.
  • 14. KROHNE Group
  • 15. Lenntech B.V.
  • 16. Metrohm AG
  • 17. Omega Engineering, Inc.
  • 18. OTT HydroMet GmbH
  • 19. PerkinElmer, Inc.
  • 20. ProMinent GmbH
  • 21. RS Hydro
  • 22. Shimadzu Corporation
  • 23. Siemens AG
  • 24. SWAN Analytical Instruments
  • 25. Teledyne Technologies Incorporated
  • 26. Thermo Fisher Scientific, Inc.
  • 27. Xylem Inc.
  • 28. Yokogawa Electric Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제