시장보고서
상품코드
1718032

세계의 스웜 로보틱스 시장 : 플랫폼, 컴포넌트 유형, 용도 분야, 산업별 - 예측(2025-2030년)

Swarm Robotics Market by Platform, Component Types, Application Area, Industries - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 196 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

스웜 로보틱스 시장의 2023년 시장 규모는 7억 591만 달러로 평가되었습니다. 2024년에는 CAGR 22.94%로 8억 6,143만 달러까지 성장하고, 2030년에는 29억 9,772만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2023년 7억 591만 달러
추정 연도 : 2024년 8억 6,143만 달러
예측 연도 : 2030년 29억 9,772만 달러
CAGR(%) 22.94%

군집 로봇 공학은 고도의 자동화와 집단지성을 결합한 현대 기술에서 가장 혁신적인 분야 중 하나입니다. 이 입문서에서는 군집 로봇의 새로운 응용 분야, 고도의 기능성, 그리고 산업이 보다 자율적인 운영으로 전환하는 데 있어 군집 로봇이 수행하는 중요한 역할에 대해 설명합니다. 정교한 제어 알고리즘과 센서 기반 의사결정에 중점을 두어, 평범한 모니터링 작업부터 위험한 환경에서의 복잡한 작업까지 여러 로봇 유닛이 어떻게 조화를 이루어 복잡한 작업을 수행할 수 있는지에 대한 이해의 토대를 마련합니다.

이 분야의 특징은 분야 전반의 변화를 약속하는 급속한 발전입니다. 개별 유닛이 인공지능을 활용하여 정보를 공유하고 공동으로 의사결정을 내릴 때, 그 범위는 단순한 자동화를 넘어서는 것이 분명합니다. 대신 군집 로봇 공학은 이제 다면적인 작업과 견고한 문제 해결 방법론의 근간을 형성하고 있습니다. 이러한 역동적인 상황에서 조직과 기술 전문가 모두 사전 정의된 명령에 반응할 뿐만 아니라 실시간으로 적응하고 학습하는 시스템을 찾아야 하는 상황에 처해 있습니다.

또한, 이 요약은 군집 로봇 공학의 역사적 배경과 궤적을 모두 다루고, 그 진화에 대한 미묘한 이해를 제공합니다. 이 책은 전략적 투자와 정책 프레임워크가 기술 혁신과 보조를 맞출 수 있도록 의사결정자들이 이론적 발전뿐만 아니라 실용적 발전에도 주의를 기울일 것을 촉구하는 분명한 요청입니다. 균형 잡힌 이야기를 제시함으로써, 이 입문서는 오늘날의 군집 로봇 시장을 정의하는 최신 세분화 방법, 지역적 영향, 경쟁 인사이트사항에 대해 깊이 있게 탐구할 수 있는 발판을 마련합니다.

군집 로봇 시장을 재정의하는 전환기

최근의 비약적인 발전으로 군집 로봇 공학은 틈새 연구 주제에서 주류 기술 분야로 부상하고 있습니다. 주목할 만한 발전에는 분산 조정의 진화, 혁신적인 센서 융합 기술, 로봇 개체 간의 실시간 통신의 발전 등이 있습니다. 이러한 변화는 운영 효율성과 신뢰성을 향상시키는 기능을 강화하여 산업계가 자동화를 바라보는 시각을 극적으로 변화시키고 있습니다.

이러한 변화의 중요한 요인은 인공지능과 기계공학의 융합이 진행되고 있다는 점입니다. 과거에는 단독으로 작동하던 기술은 이제 고급 머신러닝 알고리즘과 실시간 데이터 처리를 통합하여 보다 적응력 있고 탄력적인 시스템을 구현하고 있습니다. 이 새로운 로봇 공학의 시대는 환경 자극에 대한 역동적인 반응과 많은 상황에서 인간의 능력을 능가하는 수준의 정확도로 작업을 수행할 수 있는 능력이 특징입니다.

산업 분야도 이러한 발전의 혜택을 누리고 있습니다. 시스템은 이제 인간의 감시를 최소화하면서 복잡한 다단계 작업을 수행할 수 있게 되었으며, 궁극적으로 오류 마진을 줄이고 처리량을 향상시킬 수 있게 되었습니다. 그 영향은 국방, 농업, 의료, 제조 등 다양한 분야에 영향을 미치고 있습니다. 군집 로봇 공학의 세계에서 소프트웨어와 하드웨어의 결합은 전례 없는 수준의 시너지 효과를 가져오고 있습니다. 이는 기존의 운영 패러다임에 끊임없이 도전하고 연구와 응용의 새로운 길을 개척하는 변혁적 변화입니다.

데이터에 기반한 고려사항이 점점 더 많은 기술 투자를 주도하고 있으며, 시장은 효율성과 경쟁적 차별화를 위해 빠르게 진화하고 있습니다. 의사결정권자들은 미래의 도전을 예측할 뿐만 아니라 혁신과 지속 가능한 성장을 위한 환경을 조성하기 위해 이러한 동향을 지속적으로 파악해야 합니다.

시장 역학을 촉진하는 상세한 세분화 인사이트 제공

군집 로봇 시장 세분화는 종합적이고 다면적이며, 기술이 어떻게 산업을 재편하고 있는지에 대한 매우 중요한 통찰력을 제공합니다. 플랫폼 기반 세분화는 무인 항공기로 작동하는 시스템과 무인 지상 차량으로 작동하는 시스템을 구분합니다. 이러한 분류를 통해 이해관계자들은 특정 운영 환경에 맞는 솔루션을 제공할 수 있으며, 작업 요구사항과 공중 또는 지상 플랫폼이 제공하는 기계적 능력의 완벽한 일치를 보장할 수 있습니다.

또 다른 중요한 세분화는 구성 요소 유형 분석에서 비롯됩니다. 이 시장은 하드웨어 부문과 소프트웨어 부문으로 나뉘어져 있습니다. 하드웨어 구성 요소에는 액추에이터, 통신 모듈, 마이크로컨트롤러, 전원 공급 장치, 센서가 포함되며, 각 구성 요소는 로봇 시스템의 전반적인 성능과 신뢰성에 기여합니다. 한편, 제어 시스템, 데이터 관리, 내비게이션 소프트웨어를 포함한 소프트웨어 측면은 여러 로봇 유닛의 효과적이고 협력적인 작업을 지휘하는 데 중요한 역할을 합니다. 이러한 구성 요소들이 결합되어 정확성, 응답성, 신뢰성이 가장 중요한 세밀하게 조정된 생태계를 구축합니다.

응용 분야에서도 세분화가 두드러지며, 시장은 매핑 및 측량, 수색, 구조, 재난 구호, 보안, 검사, 모니터링, 공급망 및 창고 관리 등 다양한 용도에 따라 세분화됩니다. 이러한 다양성은 실제 문제 해결에서 군집 로봇 공학의 적응성과 광범위한 적용 가능성을 강조합니다. 마지막으로 산업 부문에서는 농업, 국방, 환경 모니터링, 헬스케어, 제조업 등 다양한 산업을 소개합니다. 농업 분야에서는 작물 모니터링, 가축 관리, 정밀 농업, 잡초 방제에 중점을 두고 있으며, 국방 분야에서는 국경 감시 및 정찰 임무에 중점을 두고 있습니다. 환경 모니터링은 공기질 모니터링, 재난 관리, 수질 검사, 야생동물 모니터링으로 세분화되며, 헬스케어는 체내 수술과 표적 약물 전달에 초점을 맞추고, 제조업은 조립 라인 자동화, 재고 관리, 예지보존에 중점을 둡니다.

이러한 세분화에 대한 통찰력은 군집 로봇 도입의 다양한 경로를 강조할 뿐만 아니라, 서로 다른 구성 요소와 용도의 교차점에서 발생하는 기술적 시너지를 강조합니다. 이러한 상세한 분석을 통해 업계 전문가와 이해관계자들은 기회를 파악하고 가장 유망한 부문에 대한 투자를 조정하여 지속적인 혁신과 운영상의 우수성을 확보할 수 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

  • 시장 역학
    • 성장 촉진요인
    • 성장 억제요인
    • 기회
    • 해결해야 할 과제
  • 시장 세분화 분석
  • Porter’s Five Forces 분석
  • PESTLE 분석
    • 정치
    • 경제
    • 사회
    • 기술
    • 법률
    • 환경

제6장 스웜 로보틱스 시장 : 플랫폼별

  • 무인항공기
  • 무인지상차량

제7장 스웜 로보틱스 시장 : 컴포넌트 유형별

  • 하드웨어
    • 액추에이터
    • 통신 모듈
    • 마이크로컨트롤러
    • 파워 유닛
    • 센서
  • 소프트웨어
    • 제어 시스템
    • 데이터 관리
    • 내비게이션 소프트웨어

제8장 스웜 로보틱스 시장 : 응용 분야별

  • 지도제작 및 측량
  • 수색, 구조 및 재난 구호
  • 보안, 검사 및 모니터링
  • 공급망 및 창고 관리

제9장 스웜 로보틱스 시장 : 업계별

  • 농업
    • 작물 모니터링
    • 축산 관리
    • 정밀농업
    • 잡초 대책
  • 방위
    • 국경 감시
    • 정찰 임무
  • 환경 모니터링
    • 대기질 모니터링
    • 재해 관리
    • 수질 검사
    • 야생동물 모니터링
  • 헬스케어
    • 내과적 외과 수술
    • 표적 약물전달
  • 제조업
    • 조립 라인 자동화
    • 재고 관리
    • 예지보전

제10장 아메리카의 스웜 로보틱스 시장

  • 아르헨티나
  • 브라질
  • 캐나다
  • 멕시코
  • 미국

제11장 아시아태평양의 스웜 로보틱스 시장

  • 호주
  • 중국
  • 인도
  • 인도네시아
  • 일본
  • 말레이시아
  • 필리핀
  • 싱가포르
  • 한국
  • 대만
  • 태국
  • 베트남

제12장 유럽, 중동 및 아프리카의 스웜 로보틱스 시장

  • 덴마크
  • 이집트
  • 핀란드
  • 프랑스
  • 독일
  • 이스라엘
  • 이탈리아
  • 네덜란드
  • 나이지리아
  • 노르웨이
  • 폴란드
  • 카타르
  • 러시아
  • 사우디아라비아
  • 남아프리카공화국
  • 스페인
  • 스웨덴
  • 스위스
  • 튀르키예
  • 아랍에미리트(UAE)
  • 영국

제13장 경쟁 구도

  • 시장 점유율 분석, 2023
  • FPNV 포지셔닝 매트릭스, 2023
  • 경쟁 시나리오 분석
  • 전략 분석과 제안

기업 리스트

  • Adani Group
  • AeroVironment, Inc.
  • AGILOX Services GmbH
  • Amazon.com, Inc.
  • Boston Dynamic by Hyundai Motor Group
  • Capra Robotics ApS
  • Exyn Technologies by Reliance Industries Limited(RIL)
  • Fanuc Corporation
  • FARobot, Inc.
  • Hydromea SA
  • KION GROUP AG
  • KUKA AG
  • L3Harris Technologies, Inc.
  • Marvelmind Robotics
  • NEUROSPACE GmbH
  • Northrop Grumman Corporation
  • Off-World, Inc.
  • Parrot SA
  • Red Cat Holdings, Inc.
  • Robert Bosch GmbH
  • Rolls-Royce PLC
  • Sentien Robotics
  • Siemens AG
  • SwarmFarm Robotics
  • Syrius Robotics Co., Ltd.
  • SZ DJI Technology Co., Ltd.
  • Thales Group
  • The Boeing Company
  • UnboxRobotics Corporation
LSH 25.05.21

The Swarm Robotics Market was valued at USD 705.91 million in 2023 and is projected to grow to USD 861.43 million in 2024, with a CAGR of 22.94%, reaching USD 2,997.72 million by 2030.

KEY MARKET STATISTICS
Base Year [2023] USD 705.91 million
Estimated Year [2024] USD 861.43 million
Forecast Year [2030] USD 2,997.72 million
CAGR (%) 22.94%

Swarm robotics represents one of the most innovative domains in modern technology, merging advanced automation with collective intelligence. This introductory exploration covers emerging applications, advanced functionalities, and the critical role swarm robotics plays in transitioning industries to more autonomous operations. With an emphasis on sophisticated control algorithms and sensor-based decision-making, this overview lays the foundation for understanding how multiple robotic units can work in harmony to complete complex tasks, from mundane surveillance operations to intricate tasks in hazardous environments.

The field is characterized by its rapid developments that promise transformation across sectors. As individual units leverage artificial intelligence to share information and execute decisions collaboratively, the scope clearly extends beyond mere automation. Instead, swarm robotics now forms a backbone for multifaceted tasks and robust problem-solving methodologies. In this dynamic landscape, organizations and technical experts alike are compelled to explore systems that not only respond to predefined commands but also adapt and learn in real time.

Moreover, this summary addresses both the historical context and the trajectory of swarm robotics, providing a nuanced understanding of its evolution. It serves as a clarion call for decision-makers to pay attention to theoretical as well as practical advancements, ensuring that strategic investments and policy frameworks keep pace with technological innovations. By presenting a balanced narrative, this introduction sets the stage for a deep dive into modern segmentation practices, regional influences, and competitive insights that define today's swarm robotics market.

Transformative Shifts Redefining the Swarm Robotics Landscape

Recent breakthroughs have propelled swarm robotics from a niche research topic to a mainstream technological frontier. Notable developments include the evolution of decentralized coordination, innovative sensor fusion technologies, and advancements in real-time communication between robotic entities. These transformations have enabled enhanced capabilities that amplify operational efficiency and reliability, dramatically shifting how industries view automation.

A significant factor in this shift is the growing convergence of artificial intelligence and mechanical engineering. Technologies that once operated in isolation now integrate sophisticated machine learning algorithms with real-time data processing, resulting in systems that are more adaptive and resilient. This new era in robotics is marked by dynamic responses to environmental stimuli and the ability to execute tasks with a level of precision that surpasses human capabilities in many contexts.

Industrial applications have also benefited from these advancements. Systems are now capable of executing complex, multi-step operations with minimal human oversight, ultimately reducing error margins and increasing throughput. The implications are profound, impacting sectors such as defense, agriculture, healthcare, and manufacturing. In the world of swarm robotics, the intertwining of software and hardware has led to unprecedented levels of synergy-a transformational shift that continuously challenges conventional operating paradigms and opens up new avenues for research and application.

As data-driven insights increasingly steer technological investments, the market is rapidly evolving toward armed efficiency and competitive differentiation. Decision-makers are urged to stay abreast of these trends to foster an environment that not only anticipates future challenges but also cultivates innovation and sustainable growth.

In-Depth Segmentation Insights Driving Market Dynamics

Market segmentation in swarm robotics is both comprehensive and multifaceted, providing pivotal insights into how technology is reshaping industries. The segmentation based on platform differentiates between systems that operate as unmanned aerial vehicles and those functioning as unmanned ground vehicles. This classification has allowed stakeholders to tailor solutions to specific operational environments, ensuring a perfect match between task requirements and the mechanical capabilities provided by either aerial or terrestrial platforms.

Another important segmentation arises from the analysis of component types. The market is studied across hardware and software divisions. Hardware components include actuators, communication modules, microcontrollers, power units, and sensors, each contributing to the overall performance and reliability of robotic systems. Meanwhile, the software aspect, which covers control systems, data management, and navigation software, plays a critical role in orchestrating the effective, coordinated efforts of multiple robotic units. Together, these components create a finely tuned ecosystem where precision, responsiveness, and reliability are paramount.

Further segmentation is evident in the application area, where the market is dissected based on diverse uses such as mapping and surveying, search, rescue and disaster relief, security, inspection, monitoring, and supply chain and warehouse management. This diversity underlines the adaptability and broad applicability of swarm robotics in solving real-world problems. Lastly, the industrial segmentation showcases a broad spectrum of industries including agriculture, defense, environmental monitoring, healthcare, and manufacturing. In agriculture, the focus extends to crop monitoring, livestock management, precision farming, and weed control, whereas defense applications emphasize border surveillance and reconnaissance missions. Environmental monitoring is subdivided into air quality monitoring, disaster management, water quality testing, and wildlife monitoring; healthcare is directed towards internal surgical procedures and targeted drug delivery; manufacturing segmentation highlights assembly line automation, inventory management, and predictive maintenance.

These segmentation insights not only highlight the varied pathways for deploying swarm robotics but also underscore the technological synergies that emerge when different components and applications intersect. The detailed breakdown allows industry experts and stakeholders to pinpoint opportunities and tailor investments to the most promising segments, ensuring continued innovation and operational excellence.

Based on Platform, market is studied across Unmanned Aerial Vehicle and Unmanned Ground Vehicle.

Based on Component Types, market is studied across Hardware and Software. The Hardware is further studied across Actuators, Communication Modules, Microcontrollers, Power Unit, and Sensors. The Software is further studied across Control Systems, Data Management, and Navigation Software.

Based on Application Area, market is studied across Mapping & Surveying, Search, Rescue & Disaster Relief, Security, Inspection, Monitoring, and Supply Chain & Warehouse Management.

Based on Industries, market is studied across Agriculture, Defense, Environmental Monitoring, Healthcare, and Manufacturing. The Agriculture is further studied across Crop Monitoring, Livestock Management, Precision Farming, and Weed Control. The Defense is further studied across Border Surveillance and Reconnaissance Missions. The Environmental Monitoring is further studied across Air Quality Monitoring, Disaster Management, Water Quality Testing, and Wildlife Monitoring. The Healthcare is further studied across Internal Surgical Procedures and Targeted Drug Delivery. The Manufacturing is further studied across Assembly Line Automation, Inventory Management, and Predictive Maintenance.

Global Market Trends Influenced by Regional Dynamics

The geographical dispersion of swarm robotics innovations is a testament to its global appeal and diverse application spectrum. In the Americas, rapid advancements in technology and favorable regulatory environments have spurred notable interest. Here, both public and private sectors embrace the integration of autonomous systems, fueling research efforts that translate into commercially viable solutions.

Across Europe, the Middle East, and Africa, a blend of traditional industries and cutting-edge technology convergence catalyzes a unique innovation ecosystem. Research initiatives and strategic partnerships in these regions drive enhancements in control algorithms and communication systems, allowing for customized solutions that meet regional demands. Sustainability and smart infrastructure projects further stimulate investment and integration of swarm robotics in everyday applications.

In the Asia-Pacific region, a surge in industrial automation and smart city developments has positioned it as a frontrunner in adopting advanced robotic technologies. The region exhibits robust growth driven by government initiatives and significant capital investments in technology. Companies and research institutions frequently collaborate, positioning swarm robotics as an integral component of the digital transformation agenda. These regional dynamics collectively underscore the technology's versatile applications and data-driven growth, ensuring that market players can navigate the shifting landscapes with informed strategies and adaptive business models.

Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

Competitive Landscape and Company Insights Shaping the Industry

The competitive landscape in swarm robotics is marked by a diverse array of industry leaders and emerging players alike. Several key companies dominate the conversation through their cutting-edge innovations and strong market presence. Among these, prominent enterprises such as Adani Group, AeroVironment, Inc., and AGILOX Services GmbH provide robust technological solutions and contribute significantly to the field's evolution. The influence of companies like Amazon.com, Inc. and Boston Dynamic by Hyundai Motor Group encourages extensive research and development, while Capra Robotics ApS and Exyn Technologies by Reliance Industries Limited (RIL) push the envelope in autonomous systems and advanced robotics.

Further, established giants like Fanuc Corporation, FARobot, Inc., and Hydromea SA have captivated the industry's attention with their consistent investments in hardware advancements. KION GROUP AG, KUKA AG, and L3Harris Technologies, Inc. continue to shape the market through strategic partnerships and technological breakthroughs. Marvelmind Robotics and NEUROSPACE GmbH are pioneers in communication modules and precision navigation techniques, staying ahead of the competitive curve.

Additionally, Northrop Grumman Corporation, Off-World, Inc., and Parrot SA are notable for their integrated approach toward comprehensive system design and deployment. With contributions from Red Cat Holdings, Inc., Robert Bosch GmbH, Rolls-Royce PLC, and Sentien Robotics, the market benefits from enhanced reliability and innovative system engineering practices. The involvement of Siemens AG, SwarmFarm Robotics, Syrius Robotics Co., Ltd., SZ DJI Technology Co., Ltd., Thales Group, The Boeing Company, and UnboxRobotics Corporation further underscores the breadth of implementation and research within the swarm robotics ecosystem. This diverse landscape is a clear indicator of the sector's transformative potential and its capacity to deliver integrated solutions that meet the complex needs of modern industries.

The report delves into recent significant developments in the Swarm Robotics Market, highlighting leading vendors and their innovative profiles. These include Adani Group, AeroVironment, Inc., AGILOX Services GmbH, Amazon.com, Inc., Boston Dynamic by Hyundai Motor Group, Capra Robotics ApS, Exyn Technologies by Reliance Industries Limited (RIL), Fanuc Corporation, FARobot, Inc., Hydromea SA, KION GROUP AG, KUKA AG, L3Harris Technologies, Inc., Marvelmind Robotics, NEUROSPACE GmbH, Northrop Grumman Corporation, Off-World, Inc., Parrot SA, Red Cat Holdings, Inc., Robert Bosch GmbH, Rolls-Royce PLC, Sentien Robotics, Siemens AG, SwarmFarm Robotics, Syrius Robotics Co., Ltd., SZ DJI Technology Co., Ltd., Thales Group, The Boeing Company, and UnboxRobotics Corporation. Actionable Recommendations for Strategic Industry Leadership

Industry leaders seeking to harness the potential of swarm robotics should focus on developing a comprehensive strategic framework that embraces innovation and adaptability. It is advisable to invest in advanced research and development to remain ahead of technological curves and emerging market trends. Leaders must foster collaboration between engineering teams, data scientists, and strategic planners, ensuring that every advancement in hardware is matched with innovative software capabilities.

Considering the rapid integration of artificial intelligence and machine learning, organizations should prioritize the development of robust control systems that allow for real-time data processing and decision-making. Synergistic investments in sensor technology, communication modules, and power systems can dramatically enhance the operational reliability of swarm robotics platforms. Furthermore, exploring cross-functional applications in sectors such as agriculture, healthcare, defense, and manufacturing can open new revenue streams while bolstering the resilience of supply chain management and operational efficiency.

Building strong partnerships with academic institutions and technology incubators is critical for fostering a culture of innovation. These collaborative efforts can facilitate the testing of new prototypes in controlled environments before mass deployment. Ultimately, a forward-thinking strategy, paired with a willingness to explore synergistic partnerships, will be essential for capturing the full spectrum of opportunities presented by the evolving dynamics in swarm robotics.

Conclusion: Embracing the Future of Swarm Robotics

In conclusion, the rapid advances and diverse applications of swarm robotics signal a far-reaching transformation that is set to redefine operational paradigms across multiple sectors. The integration of hardware and software in novel ways is unlocking a spectrum of capabilities previously deemed unimaginable. As the technology continues to mature, it promises significant improvements in efficiency, reliability, and operational flexibility.

By understanding the detailed segmentation, regional market trends, and competitive dynamics outlined in this summary, stakeholders are better positioned to navigate this intricate landscape. The insights provided not only emphasize the technology's potential but also guide strategic decisions essential for thriving in an ever-changing global market. Embracing this emerging technology is no longer optional; it is imperative for organizations that aim to maintain relevance and drive innovation in an increasingly automated world.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing demand for smart automation solutions across logistics sector
      • 5.1.1.2. Growing need for swarm robotics in environmental monitoring
    • 5.1.2. Restraints
      • 5.1.2.1. High initial investment required for deploying swarm robotic systems
    • 5.1.3. Opportunities
      • 5.1.3.1. Advancements for the miniaturization of sensors and electronic components for seamless integration into robotic platforms
      • 5.1.3.2. Integration of artificial intelligence (AI) and machine learning (ML) in swarm robotics
    • 5.1.4. Challenges
      • 5.1.4.1. Technical complexities associated with swarm robotic systems
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Platform: Growing preference for unmanned aerial vehicles to perform complex tasks allowing for enhanced scalability and robustness
    • 5.2.2. Component Types: Growing significance of hardware in swarm robotics for contributing to their versatility and adaptability in complex environments
    • 5.2.3. Application Area: Expanding applications of swarm robotics in search, rescue & disaster relief owing to its ability to navigate hazardous environments and locate survivors
    • 5.2.4. Industries: Increasing adoption of swarm robotics in the defense industry to enhance security and operational efficiency
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Swarm Robotics Market, by Platform

  • 6.1. Introduction
  • 6.2. Unmanned Aerial Vehicle
  • 6.3. Unmanned Ground Vehicle

7. Swarm Robotics Market, by Component Types

  • 7.1. Introduction
  • 7.2. Hardware
    • 7.2.1. Actuators
    • 7.2.2. Communication Modules
    • 7.2.3. Microcontrollers
    • 7.2.4. Power Unit
    • 7.2.5. Sensors
  • 7.3. Software
    • 7.3.1. Control Systems
    • 7.3.2. Data Management
    • 7.3.3. Navigation Software

8. Swarm Robotics Market, by Application Area

  • 8.1. Introduction
  • 8.2. Mapping & Surveying
  • 8.3. Search, Rescue & Disaster Relief
  • 8.4. Security, Inspection, Monitoring
  • 8.5. Supply Chain & Warehouse Management

9. Swarm Robotics Market, by Industries

  • 9.1. Introduction
  • 9.2. Agriculture
    • 9.2.1. Crop Monitoring
    • 9.2.2. Livestock Management
    • 9.2.3. Precision Farming
    • 9.2.4. Weed Control
  • 9.3. Defense
    • 9.3.1. Border Surveillance
    • 9.3.2. Reconnaissance Missions
  • 9.4. Environmental Monitoring
    • 9.4.1. Air Quality Monitoring
    • 9.4.2. Disaster Management
    • 9.4.3. Water Quality Testing
    • 9.4.4. Wildlife Monitoring
  • 9.5. Healthcare
    • 9.5.1. Internal Surgical Procedures
    • 9.5.2. Targeted Drug Delivery
  • 9.6. Manufacturing
    • 9.6.1. Assembly Line Automation
    • 9.6.2. Inventory Management
    • 9.6.3. Predictive Maintenance

10. Americas Swarm Robotics Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific Swarm Robotics Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa Swarm Robotics Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
    • 13.3.1. UnboxRobotics harnesses swarm robotics to develop order fulfillment and redefine logistics efficiency in eCommerce
    • 13.3.2. Thales expanded with the acquisition of Aeromapper and launched Cortex expanding its product range
    • 13.3.3. OpenAI unveiled the experimental Swarm framework for organizing AI agent networks
    • 13.3.4. Anna University and Dhaksha Unmanned Systems joined hands to develop algorithms for swarm drones
    • 13.3.5. Tesseract Ventures secures an Other Transaction Agreement (OTA) from the U.S. special operations
    • 13.3.6. Red Cat holding, Inc. joined hands with Sentien Robotics to enhance autonomous drone swarming operations
    • 13.3.7. HyperTunnel secured funding from the UK government to demonstrate swarm robotics in construction
    • 13.3.8. SwarmFarm Robotics advances agricultural autonomy with North American SwarmBot launch and innovative development framework
    • 13.3.9. HyperTunnel partnered with the University of Birmingham to innovate tunneling using swarm robotics
  • 13.4. Strategy Analysis & Recommendation
    • 13.4.1. Hydromea SA
    • 13.4.2. FARobot, Inc.
    • 13.4.3. KUKA AG
    • 13.4.4. L3Harris Technologies, Inc.

Companies Mentioned

  • 1. Adani Group
  • 2. AeroVironment, Inc.
  • 3. AGILOX Services GmbH
  • 4. Amazon.com, Inc.
  • 5. Boston Dynamic by Hyundai Motor Group
  • 6. Capra Robotics ApS
  • 7. Exyn Technologies by Reliance Industries Limited (RIL)
  • 8. Fanuc Corporation
  • 9. FARobot, Inc.
  • 10. Hydromea SA
  • 11. KION GROUP AG
  • 12. KUKA AG
  • 13. L3Harris Technologies, Inc.
  • 14. Marvelmind Robotics
  • 15. NEUROSPACE GmbH
  • 16. Northrop Grumman Corporation
  • 17. Off-World, Inc.
  • 18. Parrot SA
  • 19. Red Cat Holdings, Inc.
  • 20. Robert Bosch GmbH
  • 21. Rolls-Royce PLC
  • 22. Sentien Robotics
  • 23. Siemens AG
  • 24. SwarmFarm Robotics
  • 25. Syrius Robotics Co., Ltd.
  • 26. SZ DJI Technology Co., Ltd.
  • 27. Thales Group
  • 28. The Boeing Company
  • 29. UnboxRobotics Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제