시장보고서
상품코드
1804392

농업용 스마트 포장 시장 : 구성요소별, 포장 유형별, 소재 유형별, 사용 사례별, 최종사용자별, 용도별, 유통 채널별 - 세계 예측(2025-2030년)

Smart Packaging For Agriculture Market by Component, Packaging Type, Material Type, Use Case, End User, Application, Distribution Channel - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 187 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

농업용 스마트 포장 시장은 2024년에 76억 4,000만 달러로 평가되었으며, 2025년에는 81억 4,000만 달러로 평가되었으며, CAGR 6.77%로 성장하고, 2030년까지 113억 3,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도(2024년) 76억 4,000만 달러
추정 연도(2025년) 81억 4,000만 달러
예측 연도(2030년) 113억 3,000만 달러
CAGR(%) 6.77%

농업 공급망에 혁명을 일으키고, 최첨단 투명성과 효율성, 지속가능성을 촉진하는 스마트 포장의 중요한 역할에 대해 이야기합니다.

농업 부문은 소비자의 기대치 상승, 강화된 규제 프레임워크, 공급망 전반의 낭비 감소 필요성에 힘입어 큰 진화를 거듭하고 있습니다. 센서, 무선 주파수 식별, 클라우드 연결, 고급 분석을 통합한 스마트 포장 기술은 현재 투명성을 높이고, 보존성을 향상시키며, 농장에서 식탁까지 제품의 무결성을 보호하는 중요한 원동력으로 부상하고 있습니다. 이러한 지능형 시스템은 환경 조건, 위치 데이터, 제품 이력에 대한 실시간 인사이트를 제공함으로써 생산자, 유통업체, 소매업체, 최종 소비자 간의 가교 역할을 합니다.

추적성 모니터링과 지속가능성을 향상시킬 수 있는 지능형 솔루션으로 농업용 포장의 진화를 형성하는 시장 요인을 파악할 수 있습니다.

농업의 지능형 패키징 솔루션은 더 이상 미래지향적인 개념이 아닌, 공급망의 각 단계를 재정의하는 구체적인 변화로 구체화되고 있습니다. 센서의 소형화와 전력 효율이 높은 무선 주파수 식별발전으로 온도, 습도, 물리적 충격에 대한 원활한 모니터링이 가능해졌습니다. 한편, 클라우드 네이티브 분석 플랫폼은 머신러닝 알고리즘을 활용하여 부패 패턴을 예측하고, 라우팅을 최적화하며, 임계값을 초과할 경우 자동 개입을 트리거합니다. 이처럼 사물인터넷(IoT) 기술과 소프트웨어 중심의 인사이트이 융합되면서 포장은 수동적인 용기에서 벗어나 품질 관리와 물류 오케스트레이션에 적극적으로 참여하게 되었습니다.

2025년 미국 농산물 관세 조정이 국경 간 무역 비용, 유통 마진, 포장 혁신에 미치는 복합적 영향 분석

2025년 미국 관세 조정의 누적 영향은 농업 포장 가치사슬의 각 계층에 파급되고 있습니다. 일부 전자부품, 센서, RFID 모듈에 관세가 부과되어 하드웨어 제조업체의 수입 비용이 크게 상승했습니다. 이러한 상승은 기술 통합업체에게는 자본 지출 증가, 최종사용자에게는 가격 상승으로 이어져 기능을 유지하면서 예산을 최적화해야 한다는 압박을 가하고 있습니다. 이에 따라 주요 업체들은 인쇄 라벨과 패시브 태그 생산을 현지화하는 니어쇼어링 전략을 모색하는 한편, 관세의 영향을 최소화하면서 국내에서 가공할 수 있는 대체 소재를 조달하고 있습니다.

구성요소, 포장 유형, 재료 유형, 사용 사례, 최종 용도, 최종사용자, 용도, 유통 채널에 대한 중요한 세분화 인사이트를 파악하여 타겟팅 전략을 수립할 수 있습니다.

구성요소 세분화를 통해 스마트 포장 영역에서는 하드웨어, 서비스, 소프트웨어가 각각 명확한 역할을 하는 삼자 구조가 명확해졌습니다. 하드웨어에는 안전한 데이터 수집을 촉진하는 RFID 리더기, 온도 및 습도 변화를 감지하는 환경 센서, 물리적 상품과 디지털 ID를 연결하는 태그 및 라벨이 포함됩니다. 서비스 구성요소는 솔루션 설계 및 통합을 안내하는 컨설팅 계약과 가동 시간, 펌웨어 업데이트, 기술 문제 해결을 보장하는 유지보수 및 지원 계약으로 구성됩니다. 이 소프트웨어는 실행 가능한 인사이트를 위해 스트리밍 데이터를 처리하는 분석 플랫폼과 확장 가능한 스토리지 및 성능 대시보드에 대한 원격 액세스를 제공하는 클라우드 플랫폼으로 구성됩니다.

아메리카, 유럽, 중동 및 아프리카, 아시아태평양 시장에서 스마트 포장 솔루션의 채택과 진화를 형성하는 전략적 지역 역학 하이라이트

아메리카는 북미의 성숙한 기술 생태계와 라틴아메리카의 지속가능성에 대한 관심 증가로 인해 스마트 농업용 패키지 도입의 선구자로 부상하고 있습니다. 미국에서는 규제 혜택과 민간 투자로 인해 냉장 운송에 대한 센서 네트워크의 통합이 가속화되고 있으며, 캐나다에서는 농업 협동조합이 주도하여 고부가가치 작물의 추적성 파일럿을 지원하고 있습니다. 브라질과 멕시코는 위조 위험에 대응하고 수출 규정 준수와 소비자 신뢰를 최적화하기 위해 블록체인 지원 라벨을 실험하기 시작했습니다.

스마트 농업 포장 분야의 기술 발전과 공동 생태계 성장을 주도하는 선도적 혁신가 및 전략적 이동자를 프로파일링합니다.

농업의 스마트 포장 혁명을 주도하는 혁신가와 기존 제조업체의 핵심 집단이 결정화되어 있습니다. 이들 기업은 하드웨어 개발, 분석 플랫폼, 지속적인 서비스 제공을 포함한 엔드투엔드 솔루션 포트폴리오에 대한 헌신을 특징으로 합니다. 이들 기업은 광범위한 R&D 파이프라인을 유지하고, 센서 소형화 및 저전력 무선 통신과 관련된 전략적 특허를 보유하고 있으며, 종종 학계와 합작 투자를 통해 실제 농업 조건에서 신흥 기술을 검증하고 있습니다.

업계 리더들이 스마트 포장 혁신을 활용하기 위한 전략적 로드맵 효율성을 높이고 지속가능한 농업 공급망의 강인함을 키우기 위한 전략적 로드맵

업계 리더들은 기존 운영을 방해하지 않고 스마트 센서와 분석 소프트웨어를 단계적으로 통합할 수 있는 모듈식 기술 아키텍처에 우선적으로 투자해야 합니다. 단계적 도입 방식을 통해 실시간 온도 모니터링, 부패 예측 분석 등의 사용 사례를 검증한 후, 보다 광범위한 지역과 제품 라인으로 확장할 수 있습니다. 또한, 컨설팅 및 지원을 제공하는 전문 서비스 파트너와의 협업을 통해 신속한 배포와 지속적인 최적화를 실현합니다.

정성적 인터뷰 정량적 조사 데이터 삼각측량 전문가 검증 및 2차 데이터 분석을 채택한 엄격한 조사 방법론의 세부 사항

이 분석은 정성적 접근과 정량적 접근을 결합한 엄격한 조사 방법을 통해 이루어졌습니다. 1차 조사는 포장 기술자, 농업 생산자, 물류 제공업체, 기술 공급업체 등 이해관계자들과의 심층 인터뷰로 이루어졌습니다. 이러한 토론을 통해 현실적인 문제점, 기술 도입의 장벽, 새로운 솔루션의 틀이 드러났습니다. 특정 사용 사례, 재료 선호도 및 조달 행동의 보급을 검증하기 위해 여러 지역에 걸쳐 실시된 설문조사를 통해 정량적 인사이트를 수집했습니다.

규제 상황에서 농업 공급망 전반의 탄력성 효율성과 지속가능성을 촉진하기 위한 스마트 포장 혁신 활용에 대한 결론적 관점.

농업에서 스마트 포장의 채택을 형성하는 무수한 요인을 종합하면, 기술 통합, 규제 조정, 공급망 연계가 차세대 패러다임의 불가분의 요소임을 알 수 있습니다. 실시간 모니터링, 고급 분석, 상호 운용 가능한 아키텍처는 제품 품질 향상, 폐기물 최소화, 추적성 강화의 기반이 됩니다. 동시에 재료 혁신과 서비스 지향적 비즈니스 모델은 지속가능성 요구 사항을 충족하고 새로운 수익원을 창출할 수 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 농업용 스마트 포장 시장 : 구성요소별

  • 하드웨어
    • RFID 리더
    • 센서
    • 태그와 라벨
  • 서비스
    • 컨설팅
    • 유지관리와 지원
  • 소프트웨어
    • 분석 소프트웨어
    • 클라우드 플랫폼

제9장 농업용 스마트 포장 시장 : 포장 유형별

  • 연질
  • 경질
  • 반경질

제10장 농업용 스마트 포장 시장 : 소재 유형별

  • 생분해성 폴리머
  • 유리
  • 금속
  • 종이·판지
  • 플라스틱

제11장 농업용 스마트 포장 시장 : 사용 사례별

  • 유제품
  • 화훼 재배
  • 신선 농산물
  • 육류 및 가금육
  • 종자와 곡물

제12장 농업용 스마트 포장 시장 : 최종사용자별

  • 농민
  • 물류업체

제13장 농업용 스마트 포장 시장 : 용도별

  • 위조 방지
  • 재고 관리
  • 품질 관리
  • 실시간 모니터링
  • 이력추적

제14장 농업용 스마트 포장 시장 : 유통 채널별

  • 오프라인
  • 온라인

제15장 아메리카의 농업용 스마트 포장 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제16장 유럽, 중동 및 아프리카의 농업용 스마트 포장 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제17장 아시아태평양의 농업용 스마트 포장 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제18장 경쟁 구도

  • 시장 점유율 분석, 2024년
  • FPNV 포지셔닝 매트릭스, 2024년
  • 경쟁 분석
    • Avery Dennison Corporation
    • Zebra Technologies Corporation
    • Impinj, Inc.
    • Checkpoint Systems, Inc.
    • NXP Semiconductors N.V.
    • Identiv, Inc.
    • Wiliot, Ltd.
    • SATO Holdings Corporation
    • Amcor PLC
    • Mondi plc
    • BASF SE
    • WestRock Company
    • Sonoco Products Company
    • Tetra Pak International S.A.
    • Sealed Air Corporation
    • Constantia Flexibles GmbH
    • Crown Holdings, Inc.
    • Smurfit Kappa Group Plc
    • DS Smith Plc
    • Berry Global, Inc.
    • Microchip Technology Incorporated
    • STMicroelectronics N.V.
    • Appetite Creative
    • Coveris GmbH
    • ProAmpac Intermediate, Inc.

제19장 리서치 AI

제20장 리서치 통계

제21장 리서치 컨택트

제22장 리서치 기사

제23장 부록

KSM 25.09.16

The Smart Packaging For Agriculture Market was valued at USD 7.64 billion in 2024 and is projected to grow to USD 8.14 billion in 2025, with a CAGR of 6.77%, reaching USD 11.33 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 7.64 billion
Estimated Year [2025] USD 8.14 billion
Forecast Year [2030] USD 11.33 billion
CAGR (%) 6.77%

Narrating the Critical Role of Smart Packaging in Revolutionizing Agricultural Supply Chains and Fostering Cutting-Edge Transparency Efficiency and Sustainability

The agricultural sector is undergoing a profound evolution driven by heightened consumer expectations, tighter regulatory frameworks, and the imperative to reduce waste across the supply chain. Smart packaging technologies-integrating sensors, radio frequency identification, cloud connectivity, and advanced analytics-are now emerging as critical enablers for increasing transparency, enhancing shelf life, and safeguarding product integrity from farm to fork. These intelligent systems bridge the gap between producers, distributors, retailers, and end consumers by providing real-time insights into environmental conditions, location data, and product history.

This executive summary delivers a concise yet comprehensive exploration of smart packaging within the agriculture industry. It begins by mapping the key drivers and macro trends reshaping packaging paradigms, followed by an analysis of how shifts such as digital transformation, sustainability mandates, and geopolitical factors like U.S. tariff adjustments are influencing market dynamics. Deep segmentation insights illustrate how varied components, packaging formats, materials, use cases, end users, applications, and distribution channels converge to form a complex ecosystem. Regional highlights compare adoption rates and strategic imperatives across the Americas, EMEA, and Asia-Pacific, while company profiles spotlight leading innovators pushing the boundaries of integration and functionality.

By synthesizing primary and secondary research under stringent methodological guidelines, this report offers actionable recommendations for industry leaders aiming to optimize operational efficiency, mitigate risk, and unlock new revenue streams. The conclusion distills overarching insights, and the call-to-action ensures seamless access to a full suite of data and analysis tailored by our Associate Director of Sales & Marketing, Ketan Rohom.

Unveiling Market Forces Shaping the Evolution of Agriculture Packaging into Intelligent Solutions Enabling Improved Traceability Monitoring and Sustainability

Intelligent packaging solutions in agriculture are no longer a futuristic concept; they have crystallized into tangible shifts that are redefining every step of the supply chain. Advances in sensor miniaturization and power-efficient radio frequency identification have enabled seamless monitoring of temperature, humidity, and physical shocks. Meanwhile, cloud-native analytics platforms leverage machine learning algorithms to predict spoilage patterns, optimize routing, and trigger automated interventions when thresholds are exceeded. This convergence of Internet of Things (IoT) technologies with software-driven insights has elevated packaging from a passive container to an active participant in quality control and logistics orchestration.

Regulatory trends emphasizing food safety, anti-counterfeiting, and environmental impact have further propelled adoption. In parallel, consumer demand for transparency has incentivized brands to integrate traceability features that verify origin, certify sustainable practices, and validate cold chain integrity. Sustainability mandates have catalyzed the uptake of biodegradable materials paired with embedded electronics designed for recyclability. As a result, the packaging ecosystem is witnessing a fundamental reconfiguration, with traditional suppliers moving toward end-to-end service models, technology vendors collaborating on interoperability standards, and strategic partnerships emerging across agriculture, logistics, and IT sectors.

Analyzing the Compound Effects of U.S. Agricultural Tariff Adjustments in 2025 on Cross-Border Trade Costs Distribution Margins and Packaging Innovation

The cumulative impact of U.S. tariff adjustments in 2025 has reverberated across every layer of the agricultural packaging value chain. With duties imposed on select electronic components, sensors, and RFID modules, import costs for hardware manufacturers have climbed significantly. These increases have translated into higher capital expenditures for technology integrators and elevated price points for end users, creating pressure to optimize budgets while preserving functionality. In response, leading providers are exploring nearshoring strategies to localize production of printed labels and passive tags, while sourcing alternate materials that can be processed domestically with minimal tariff exposure.

Beyond direct hardware costs, distribution partners and logistics providers are recalibrating service contracts to account for margin fluctuations. Some stakeholders have renegotiated existing agreements to incorporate dynamic pricing clauses tied to tariff indices. Additionally, cross-border flow analysis has become a priority as companies evaluate alternative routing to minimize levy impacts and ensure continuity in the cold chain. Amid these challenges, organizations that proactively addressed tariff volatility by investing in modular technology architectures and flexible sourcing models have regained competitive advantage through improved cost management and enhanced resilience.

Unearthing Critical Segmentation Insights Across Components Packaging Types Material Varieties Use Cases End Users Applications and Distribution Channels for Targeted Strategy Development

Component segmentation reveals a tripartite structure in the smart packaging domain, with hardware, services, and software each playing distinct roles. Hardware encompasses RFID readers that facilitate secure data capture, environmental sensors that detect temperature and humidity fluctuations, and tags and labels that link physical goods to digital identities. The services component comprises consulting engagements that guide solution design and integration, alongside maintenance and support arrangements that ensure uptime, firmware updates, and technical troubleshooting. Software manifests in analytics platforms that process streaming data for actionable insights, as well as cloud platforms that provide scalable storage and remote access to performance dashboards.

Packaging type segmentation highlights the functional divergence between flexible, rigid, and semi-rigid formats. Flexible packaging, with its low material consumption, lends itself to sensor-embedded pouches for grains and seeds, offering cost-effective real-time monitoring. Rigid packaging, such as crates and containers, integrates more robust sensor arrays to support heavier payloads and extended cold chain journeys. Semi-rigid forms combine structural stability with adaptable material thickness, enabling selective deployment in floriculture and produce segments that require both protection and monitoring.

Material type segmentation spans biodegradable polymers designed to decompose under controlled conditions, glass containers favored for premium dairy and specialty oils, metal enclosures prized for tamper resistance, paper and paperboard options prioritized for recyclability, and various plastic formulations engineered for impact durability. Each material choice informs compatibility with electronics integration and end-of-life processing.

Use case segmentation illustrates how distinct product categories leverage smart packaging differently: dairy products demand tight temperature control, floriculture requires humidity regulation, fresh produce benefits from ethylene detection, meat and poultry necessitate pathogen monitoring, and seeds and grains exploit moisture sensors to prevent spoilage during storage.

End user segmentation distinguishes between farmers who implement on-site monitoring solutions to preserve crop yield post-harvest and logistics providers that integrate packaging intelligence into fleet management systems for coordinated cold chain operations.

Application segmentation underscores specialized functions such as anti-counterfeiting measures that authenticate origin credentials, inventory management workflows that automate stock reconciliation, quality control protocols that trigger alerts upon deviation from thresholds, real-time monitoring capabilities that feed control towers, and traceability frameworks that chronicle each handoff and environmental exposure.

Distribution channel segmentation contrasts offline channels, where solutions are sold through traditional distributors and system integrators, with online platforms that enable direct access to modular sensor kits and subscription-based analytics from specialized vendors.

Highlighting Strategic Regional Dynamics Shaping the Adoption and Evolution of Smart Packaging Solutions Across the Americas EMEA and Asia-Pacific Markets

The Americas region has emerged as a forerunner in the deployment of smart agricultural packaging, driven by mature technology ecosystems in North America and an increasing focus on sustainability in Latin America. In the United States, regulatory incentives and private-sector investments have accelerated the integration of sensor networks into refrigerated transport, while Canadian initiatives championed by agricultural cooperatives support traceability pilots for high-value crops. Brazil and Mexico have begun experimenting with blockchain-enabled labels to address counterfeiting risks, optimizing export compliance and consumer trust.

Within Europe, the Middle East, and Africa, regulatory frameworks in the European Union have raised the bar for circular economy practices, mandating clear guidelines for packaging recyclability and electronic disposal. As a result, solution providers in Western Europe have innovated compostable sensor housings and partnered with waste management firms to create closed-loop collection programs. Meanwhile, Middle Eastern agribusinesses are piloting smart crates in date production, and African supply chains are exploring simplified mobile dashboards to improve distribution to remote areas.

The Asia-Pacific arena presents a diverse landscape characterized by rapid adoption in developed markets and nascent growth in emerging economies. In Japan and South Korea, established IoT infrastructure underpins sophisticated cold chain monitoring, while Australia's expansive farmlands drive demand for solar-powered tracking devices. India and China, with their immense agricultural output, are witnessing a surge in partnerships between packaging manufacturers and logistics startups, focusing on cost-effective sensor modules and cloud-enabled quality assurance for both domestic consumption and export markets.

Profiling Leading Innovators and Strategic Movers Driving Technological Advancements and Collaborative Ecosystem Growth in the Smart Agricultural Packaging Domain

A core contingent of innovators and established manufacturers has crystallized to lead the smart packaging revolution in agriculture. These companies are characterized by their commitment to end-to-end solution portfolios, encompassing hardware development, analytics platforms, and ongoing service offerings. They maintain extensive R&D pipelines, hold strategic patents in sensor miniaturization and low-power wireless communication, and often engage in joint ventures with academic institutions to validate emerging technologies under real-world agricultural conditions.

This landscape also features agile startups that specialize in niche applications, such as ethylene sensing for produce or tamper-evident electronic seals for meat and poultry. These specialized providers frequently partner with larger packaging firms to integrate their modules into scalable manufacturing processes. In addition, logistics giants and cold chain operators are investing in in-house capabilities or acquiring specialized vendors to incorporate data analytics directly into transportation fleets. Collaborative ecosystems have taken shape, with cross-sector alliances forging interoperability standards and shared data platforms to enhance trust and streamline integration efforts.

Strategic Roadmap for Industry Leaders to Capitalize on Smart Packaging Innovations Enhance Efficiency and Foster Sustainable Agri Supply Chain Resilience

Industry leaders should prioritize investment in modular technology architectures that allow incremental integration of smart sensors and analytics software without disrupting existing operations. By adopting a phased rollout approach, organizations can validate use cases such as real-time temperature monitoring and predictive spoilage analytics before scaling to broader regions or product lines. Collaboration with specialized service partners for consulting and support ensures rapid deployment and continuous optimization.

Second, forging alliances with local material suppliers and contract manufacturers can mitigate tariff exposure and support sustainability goals. Engaging in co-development programs for biodegradable polymers paired with embedded electronics fosters innovation while addressing end-of-life considerations. Leaders should also explore dynamic procurement models that balance cost and performance, leveraging geographic diversification to hedge against regulatory shifts.

Finally, building a data-driven culture within both agricultural enterprises and logistics networks will be essential. Establishing clear governance for data collection, privacy, and sharing protocols accelerates cross-stakeholder collaboration. Enabling frontline teams through user-friendly dashboards and automated alerts empowers rapid response to deviations. By embedding smart packaging within broader digital transformation agendas, companies can unlock new efficiencies, enhance supply chain resilience, and strengthen brand equity through transparent, traceable agricultural offerings.

Detailing Rigorous Research Methodology Employing Qualitative Interviews Quantitative Surveys Data Triangulation Expert Validation and Secondary Data Analysis

This analysis is underpinned by a rigorous research methodology that blends qualitative and quantitative approaches. Primary research comprised in-depth interviews with a cross-section of stakeholders, including packaging engineers, agricultural producers, logistics providers, and technology vendors. These discussions illuminated real-world pain points, technology adoption barriers, and emerging solution frameworks. Quantitative insights were gathered through surveys deployed across geographic regions to validate the prevalence of specific use cases, material preferences, and procurement behaviors.

Secondary research supplemented these findings with a comprehensive review of industry reports, regulatory publications, patent databases, and peer-reviewed journals. Data triangulation was conducted by cross-referencing interview outputs, survey metrics, and publicly available filings to ensure consistency and accuracy. An expert validation panel then reviewed intermediate deliverables to refine assumptions, contextualize regional variances, and stress-test scenario analyses. This robust process guarantees that the resulting insights reflect current market realities and future trajectories within smart packaging for agriculture.

Concluding Perspectives on Harnessing Smart Packaging Innovations to Drive Resilience Efficiency and Sustainability Across the Agri Supply Chain in a Regulatory Landscape

In synthesizing the myriad factors shaping smart packaging adoption in agriculture, it becomes clear that technology integration, regulatory alignment, and supply chain collaboration are inseparable elements of the next-generation paradigm. Real-time monitoring, advanced analytics, and interoperable architectures provide the foundation for improved product quality, minimized waste, and enhanced traceability. Concurrently, material innovations and service-oriented business models address sustainability requirements and create new revenue streams.

As the effects of tariff adjustments, regional dynamics, and shifting consumer expectations continue to unfold, organizations that embrace a data-driven mindset and cultivate flexible partnerships will emerge as industry frontrunners. By leveraging the insights and recommendations presented, stakeholders can navigate complexity with confidence, invest selectively in high-impact initiatives, and position themselves at the forefront of an industry defined by innovation and resilience.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of RFID sensors with IoT platforms for real-time produce tracking and quality monitoring
  • 5.2. Development of biodegradable smart labels to reduce plastic waste in produce packaging
  • 5.3. Adoption of printed electronic indicators for freshness detection in fruit and vegetable supply chains
  • 5.4. Use of blockchain enabled traceability systems integrated with smart tags for farm to fork transparency
  • 5.5. Implementation of temperature responsive color changing packaging films to minimize postharvest spoilage risk
  • 5.6. Application of machine learning driven gas sensors in modified atmosphere packaging to optimize shelf life
  • 5.7. Growing collaboration between agritech startups and packaging companies to co-develop smart biodegradable packaging solutions
  • 5.8. Integration of AI powered hyperspectral imaging modules in packaging for non-invasive crop quality assessment across supply chains

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Smart Packaging For Agriculture Market, by Component

  • 8.1. Introduction
  • 8.2. Hardware
    • 8.2.1. RFID Readers
    • 8.2.2. Sensors
    • 8.2.3. Tags & Labels
  • 8.3. Services
    • 8.3.1. Consulting
    • 8.3.2. Maintenance & Support
  • 8.4. Software
    • 8.4.1. Analytics Software
    • 8.4.2. Cloud Platforms

9. Smart Packaging For Agriculture Market, by Packaging Type

  • 9.1. Introduction
  • 9.2. Flexible
  • 9.3. Rigid
  • 9.4. Semi-Rigid

10. Smart Packaging For Agriculture Market, by Material Type

  • 10.1. Introduction
  • 10.2. Biodegradable Polymers
  • 10.3. Glass
  • 10.4. Metal
  • 10.5. Paper & Paperboard
  • 10.6. Plastics

11. Smart Packaging For Agriculture Market, by Use Case

  • 11.1. Introduction
  • 11.2. Dairy Products
  • 11.3. Floriculture
  • 11.4. Fresh Produce
  • 11.5. Meat & Poultry
  • 11.6. Seeds & Grains

12. Smart Packaging For Agriculture Market, by End User

  • 12.1. Introduction
  • 12.2. Farmers
  • 12.3. Logistics Providers

13. Smart Packaging For Agriculture Market, by Application

  • 13.1. Introduction
  • 13.2. Anti Counterfeiting
  • 13.3. Inventory Management
  • 13.4. Quality Control
  • 13.5. Real Time Monitoring
  • 13.6. Traceability

14. Smart Packaging For Agriculture Market, by Distribution Channel

  • 14.1. Introduction
  • 14.2. Offline
  • 14.3. Online

15. Americas Smart Packaging For Agriculture Market

  • 15.1. Introduction
  • 15.2. United States
  • 15.3. Canada
  • 15.4. Mexico
  • 15.5. Brazil
  • 15.6. Argentina

16. Europe, Middle East & Africa Smart Packaging For Agriculture Market

  • 16.1. Introduction
  • 16.2. United Kingdom
  • 16.3. Germany
  • 16.4. France
  • 16.5. Russia
  • 16.6. Italy
  • 16.7. Spain
  • 16.8. United Arab Emirates
  • 16.9. Saudi Arabia
  • 16.10. South Africa
  • 16.11. Denmark
  • 16.12. Netherlands
  • 16.13. Qatar
  • 16.14. Finland
  • 16.15. Sweden
  • 16.16. Nigeria
  • 16.17. Egypt
  • 16.18. Turkey
  • 16.19. Israel
  • 16.20. Norway
  • 16.21. Poland
  • 16.22. Switzerland

17. Asia-Pacific Smart Packaging For Agriculture Market

  • 17.1. Introduction
  • 17.2. China
  • 17.3. India
  • 17.4. Japan
  • 17.5. Australia
  • 17.6. South Korea
  • 17.7. Indonesia
  • 17.8. Thailand
  • 17.9. Philippines
  • 17.10. Malaysia
  • 17.11. Singapore
  • 17.12. Vietnam
  • 17.13. Taiwan

18. Competitive Landscape

  • 18.1. Market Share Analysis, 2024
  • 18.2. FPNV Positioning Matrix, 2024
  • 18.3. Competitive Analysis
    • 18.3.1. Avery Dennison Corporation
    • 18.3.2. Zebra Technologies Corporation
    • 18.3.3. Impinj, Inc.
    • 18.3.4. Checkpoint Systems, Inc.
    • 18.3.5. NXP Semiconductors N.V.
    • 18.3.6. Identiv, Inc.
    • 18.3.7. Wiliot, Ltd.
    • 18.3.8. SATO Holdings Corporation
    • 18.3.9. Amcor PLC
    • 18.3.10. Mondi plc
    • 18.3.11. BASF SE
    • 18.3.12. WestRock Company
    • 18.3.13. Sonoco Products Company
    • 18.3.14. Tetra Pak International S.A.
    • 18.3.15. Sealed Air Corporation
    • 18.3.16. Constantia Flexibles GmbH
    • 18.3.17. Crown Holdings, Inc.
    • 18.3.18. Smurfit Kappa Group Plc
    • 18.3.19. DS Smith Plc
    • 18.3.20. Berry Global, Inc.
    • 18.3.21. Microchip Technology Incorporated
    • 18.3.22. STMicroelectronics N.V.
    • 18.3.23. Appetite Creative
    • 18.3.24. Coveris GmbH
    • 18.3.25. ProAmpac Intermediate, Inc.

19. ResearchAI

20. ResearchStatistics

21. ResearchContacts

22. ResearchArticles

23. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제