시장보고서
상품코드
1804822

금속 스크랩 시장 : 금속 유형, 공급원, 가공 기술, 최종 사용 산업별 - 세계 예측(2025-2030년)

Metal Scrap Market by Metal Type, Source, Processing Technique, End Use Industry - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 191 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

금속 스크랩 시장의 2024년 시장 규모는 2,454억 3,000만 달러로 평가되었으며, 2025년에는 2,626억 6,000만 달러, CAGR 7.17%로 성장하여 2030년에는 3,719억 5,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 2,454억 3,000만 달러
추정 연도 2025년 2,626억 6,000만 달러
예측 연도 2030년 3,719억 5,000만 달러
CAGR(%) 7.17%

진화하는 금속 스크랩 생태계에 대한 전략적 방향성은 흐름을 형성하는 촉진요인, 지속가능성 우선순위, 규제 압력에 초점을 맞추고 있습니다.

금속 스크랩의 상황은 전통적인 흐름이 순환성, 기술 업그레이드, 규제 명확화라는 요구의 증가와 교차하는 변곡점에 있습니다. 업계는 점점 더 전통적인 거래 관행과 추적성, 오염 관리, 첨단 제조업을 지원하는 고순도 공급에 대한 최신 요구 사항을 조화시켜야 합니다. 이와 함께 규제 당국, 이해관계자 및 자금 제공자의 기대는 지속가능한 성과를 입증하고 문서화된 Chain of Custody(CoC)로 이동하고 있으며, 이는 스크랩 처리업체 및 가공업체에 새로운 업무 요건을 부과하고 있습니다.

세계 재활용 기술, 공급망 복원력, 순환형 정책 프레임워크의 혁신적 변화가 금속 스크랩 회수를 재정의하는 방법

스크랩을 회수하고, 처리하고, 생산적인 용도로 다시 사용하는 방법을 재구성하기 위한 변혁적 변화가 일어나고 있습니다. 기술적으로는 센서 선별, 광학 및 X선 분리, 전기 화학적 정제의 개선으로 회수율이 향상되어 이전에는 한계가 있었던 흐름을 경제적으로 처리할 수 있게 되었습니다. 이러한 발전은 오염과 관련된 손실을 줄이고, 가공업체가 고급 최종 사용 부문에서 수용할 수 있는 보다 순도 높은 2차 원료를 생산할 수 있게 해줍니다. 그 결과, 디지털 공정 제어와 모듈식 공정 라인에 대한 투자는 전략적 차별화 요소가 되고 있습니다.

미국의 최근 관세 조치가 무역 역학, 가공 인센티브, 공급망 재편에 미치는 누적적 영향 평가

최근 미국이 시행한 관세 조치는 스크랩 무역의 흐름, 국내 가공 경제, 컴플라이언스 체제에 복잡한 결과를 가져왔습니다. 특정 수입 스크랩 품목에 대한 관세 조정으로 인해 일부 수입품이 중간 시장을 경유하거나 관세 부담을 줄이기 위해 재분류되어 전통적인 조달 패턴이 변화하고 있습니다. 동시에, 특정 금속 완제품 및 중간재에 대한 관세 인상은 다운스트림 제조업체들이 안전하고 관세를 피할 수 있는 공급망을 원하고 있기 때문에 고부가가치 가공 공정을 현지화할 유인을 강화하고 있습니다.

야금학적 특성, 조달처의 다양성, 가공 기술, 회수 수익을 촉진하는 사용 패턴에서 도출된 세분화에 대한 주요 인사이트

세분화 중심의 관점은 재료, 공급원, 공정, 최종 용도 축에 걸쳐 회수 기회와 운영상의 선택에 대한 세부적인 요인을 밝혀냅니다. 금속의 종류에 따라 철과 비철의 흐름을 구분하는 것은 다운스트림 응용 및 처리 요구 사항에 매우 중요합니다. 탄소강, 주철, 스테인리스강을 포함한 '철' 카테고리는 오염 허용치 및 가치 회수 프로파일이 다릅니다. 탄소강과 주철은 대량 용해 작업에 적합한 반면, 스테인리스강은 합금의 무결성을 보호하기 위해 높은 분리 정밀도가 요구됩니다. 반대로 알루미늄, 구리, 납, 니켈, 귀금속, 아연 등의 비철류는 전자, 자동차, 항공우주 분야에서 요구하는 고순도를 달성하기 위해 보다 전문적인 분리 및 정제 기술이 필요합니다.

세계 각지의 스크랩 흐름, 처리 능력, 규제 복잡성, 투자 우선순위를 형성하는 지역적 역학 및 전략적 거점

스크랩이 어디에서 회수되고, 어디에서 처리되고, 어디에서 가치사슬에 재편입되는지는 정책 환경, 에너지 비용, 산업 수요에 대응하는 전략적 허브의 출현 등 지역 역학에 의해 크게 영향을 받습니다. 아메리카에서는 공급망의 탄력성과 대규모 자동차 및 산업 제조 거점과의 근접성이 고품질 2차 원료에 대한 수요를 형성하고 있어, 국내 처리 능력에 대한 중요성이 커지고 있습니다. 에너지와 노동력의 제약을 상쇄하고 구매자의 사양을 충족시키기 위해 자동 선별 및 용광로 효율에 대한 투자가 점점 더 우선 순위가 높아지고 있습니다.

스크랩 처리에서 주요 기업의 행동, 혁신의 길, 파트너십, 위험 완화를 규정하는 경쟁 역학 및 기업 전략

기업 수준의 역학관계는 주요 기업들 간의 전략적 초점 패턴을 드러내며, 기업들은 기술 채택, 수직적 통합, 서비스 범위 등을 통해 차별화를 시도하고 있습니다. 일부 사업자는 공정 혁신과 독자적인 제련 기술을 우선시하고, 센서 기반 선별, 고급 제련 제어, 야금 분석에 투자하여 보다 수익성 높은 합금 흐름을 확보하기 위해 엄격한 구매자의 사양에 부합할 수 있도록 합니다. 또한, 원료의 집적과 물류 최적화를 통해 규모 확대를 추구하며 집하, 1차 가공, 완성된 2차 제품의 유통을 결합한 통합 허브를 구축하는 기업도 있습니다.

자원 회수 최적화, 컴플라이언스 강화, 순환 이니셔티브 가속화, 조달 전략 고도화를 위한 업계 리더를 위한 실행 가능한 제안

업계 리더는 탄력성을 강화하고, 더 높은 가치의 회수를 실현하고, 강화된 규제 기대에 부응하기 위해 일련의 실질적이고 영향력 있는 행동을 추구해야 합니다. 첫째, 오염을 줄이고, 수율을 개선하고, 구매자의 문서화 요구 사항을 충족시키기 위해 고급 선별, 센서 기반 분리, 디지털 추적성에 대한 투자를 우선시합니다. 공정 관리 시스템을 공급업체 추적 가능성과 통합하여 분쟁 해결의 타임라인을 단축하고, 다운스트림 수용률을 향상시킬 수 있습니다. 둘째, 조달 전략을 재평가하여 원료 공급원을 산업 및 소비 후 스트림으로 다양화하면서 자동차 조립업체 및 제조 단지와 같은 대규모 발생원과의 우선 공급업체 관계를 육성할 것입니다. 셋째, 처리 시설의 에너지 효율 및 배출 억제 조치를 가속화하여 운영 위험을 줄이고 기업 구매자와 금융 기관이 적용하는 점점 더 엄격한 기준을 충족시킵니다.

데이터 수집, 이해관계자 참여, 품질 점검, 검증 및 조사 결과를 뒷받침하는 분석 기법의 개요를 제시하는 견고한 조사 기법

본 분석의 기초가 되는 설문조사는 이 분야의 이해관계자들을 대상으로 한 1차 조사와 엄격한 2차 조사를 결합하여 확실하고 실용적인 결과를 확보했습니다. 1차 입력에는 가공 작업자, 자동차, 전기, 산업 기계 부문 구매자, 물류 제공업체, 규제 당국과의 구조화된 인터뷰가 포함되어 업무상의 제약과 새로운 우선순위에 대한 직접적인 인사이트를 제공했습니다. 이러한 정성적 입력은 설비 구성, 자재 흐름, 품질 관리 프로토콜을 관찰하고 문서화된 가공 시설의 현장 시찰을 통해 보완되었습니다.

투자자, 가공업체, 규제 당국, 기업 조달팀의 우선순위를 명확히 하는 결론과 전략적 추론이 간결하게 정리되어 있습니다.

이 통합은 가치사슬 전반의 이해관계자들에게 중요한 시사점을 도출하고, 당면한 행동의 우선순위를 명확히 합니다. 품질과 추적 가능성은 이제 결정적인 상업적 속성입니다. 고순도 2차 금속과 투명한 출처를 일관되게 제공할 수 있는 가공업체는 프리미엄 구매자를 확보할 수 있을 것입니다. 선별 및 제련 기술 업그레이드는 수율과 합금의 일관성에서 측정 가능한 개선을 가져 오지만 원료의 품질을 보장하기 위해 공급 측의 협력과 결합되어야 합니다. 규제 변화와 관세 조정은 무역 계획에 복잡성을 더하고, 특정 가공 공정의 현지화 및 규정 준수에 대한 투자를 강화하도록 유도합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 금속 스크랩 시장 : 금속 유형별

  • 철금속
    • 탄소강
    • 주철
    • 스테인리스강
  • 비철금속
    • 알루미늄
    • 구리
    • 니켈
    • 귀금속
    • 아연

제9장 금속 스크랩 시장 : 공급원별

  • 산업 스크랩
    • 자동차 스크랩
    • 건설·해체 폐재
    • 제조 폐기물
  • 사용된 스크랩
    • 전자기기 폐기물
    • 가전제품

제10장 금속 스크랩 시장 : 가공 기술별

  • 포장
  • 과립화
  • 용해와 정제
  • 전단
  • 파쇄
  • 선별과 분리

제11장 금속 스크랩 시장 : 최종 이용 산업별

  • 자동차
  • 건설
  • 소비재
  • 전기·전자공학
  • 에너지·유틸리티
  • 산업기계

제12장 아메리카의 금속 스크랩 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제13장 유럽, 중동 및 아프리카의 금속 스크랩 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제14장 아시아태평양의 금속 스크랩 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Nucor Corporation
    • Aurubis AG
    • Alamo Metal Recycling LLP
    • Alter Trading Corporation
    • ArcelorMittal SA
    • Commercial Metals Company
    • Glencore plc
    • KEIAISHA CO., LTD.
    • MTC GROUP
    • Norsk Hydro ASA
    • OmniSource Corporation
    • Radius Recycling, Inc.
    • SA Recycling, LLC
    • Scrapzo Pvt Ltd
    • Sims Limited
    • Steel Dynamics, Inc.
    • Stena Metall AB
    • Tata Steel Limited
    • Umicore S.A.

제16장 리서치 AI

제17장 리서치 통계

제18장 리서치 컨택트

제19장 리서치 기사

제20장 부록

KSM 25.09.11

The Metal Scrap Market was valued at USD 245.43 billion in 2024 and is projected to grow to USD 262.66 billion in 2025, with a CAGR of 7.17%, reaching USD 371.95 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 245.43 billion
Estimated Year [2025] USD 262.66 billion
Forecast Year [2030] USD 371.95 billion
CAGR (%) 7.17%

A strategic orientation to the evolving metal scrap ecosystem highlighting drivers, sustainability priorities and regulatory pressures shaping flows

The metal scrap landscape is at an inflection point where traditional flows intersect with a rising imperative for circularity, technological upgrade and regulatory clarity. Increasingly, the industry must reconcile legacy trading practices with modern demands for traceability, contamination control and higher-purity feeds that support advanced manufacturing. In parallel, stakeholder expectations from regulators, purchasers and financiers are shifting toward demonstrable sustainability outcomes and documented chain-of-custody, which places new operational requirements on scrap handlers and processors.

This introduction frames the critical strategic vectors that participants must consider: how scrap quality and composition drive downstream processing decisions, how source diversification affects logistics and costs, and how environmental compliance reshapes capital allocation. It also situates recent supply chain disruptions and energy cost pressures as catalysts accelerating investment in on-site processing and automation. By establishing these context elements, the narrative that follows examines how policy levers, shifting demand from end-use industries and rapid innovation in separation and refining technologies are collectively redefining competitive advantage.

Looking ahead, firms that integrate advanced sorting, invest in cleaner input streams, and embed compliance and traceability into procurement practices will be better positioned to capture higher-value recovery opportunities. This introduction therefore sets the scene for a deeper analysis of transformative shifts, tariff implications, segmentation-based opportunities, regional dynamics and company-level strategies that together determine near-term resilience and long-term value creation.

How transformative shifts in global recycling technology, supply chain resilience and circular policy frameworks are redefining metal scrap recovery

Transformative shifts are converging to reshape how scrap enters, is processed and returns to productive use. At the technological level, improvements in sensor-based sorting, optical and X-ray separation, and electrochemical refining are raising recovery yields and enabling the economic processing of previously marginal streams. These advances reduce contamination-related losses and enable processors to produce higher-purity secondary materials acceptable to sophisticated end-use sectors. Consequently, investments in digital process controls and modular processing lines are becoming strategic differentiators.

On the policy front, regulatory developments emphasize material traceability, hazardous content limits and extended producer responsibility schemes. These frameworks incentivize upstream collaboration and create pressure for more formalized collection and documentation systems. Financial stakeholders are responding with a greater focus on environmental, social and governance criteria, channeling capital toward facilities that can demonstrate compliance and lower lifecycle emissions. This confluence of policy and capital is accelerating consolidation among operators that can deliver scale, quality and regulatory assurance.

In parallel, shifting consumption patterns in key end-use industries, notably automotive electrification and lightweighting in transport and construction, are altering demand mixes for non ferrous alloys and high-grade stainless inputs. As a result, scrap value pools are evolving and actors must adapt sourcing and processing strategies to align with new alloy specifications. Taken together, these technological, regulatory and demand-side dynamics are creating a commercially significant reordering of priorities across the value chain.

Assessing the cumulative implications of recent United States tariff actions on trade dynamics, processing incentives and supply chain restructuring

Recent tariff actions implemented by the United States have produced a complex set of consequences for scrap trade flows, domestic processing economics and compliance regimes. Tariff adjustments on certain categories of imported scrap have encouraged some imports to reroute through intermediary markets or to be reclassified to reduce duty exposure, altering traditional sourcing patterns. At the same time, increased duties on specific finished metal products and intermediate goods have strengthened incentives for localizing higher-value processing steps, as downstream manufacturers seek secure, tariff-sheltered supply chains.

These dynamics elevate the importance of domestic processing capacity, prompting processors to evaluate expansions in melting, refining and finishing capabilities. However, the transition to increased onshore processing is constrained by energy costs, permitting timelines and the need for skilled operators. Compliance burdens have risen for international traders, increasing documentation requirements and raising the costs of cross-border movement for complex alloy streams. In response, some firms have accelerated investments in traceability systems and contractual safeguards to mitigate classification disputes and tariff exposure.

Moreover, tariff-induced price differentials have sharpened arbitrage opportunities, but they also raise the risk of non-compliant or informal trade practices that can undermine industry integrity. Consequently, firms and policymakers must balance the protectionary objectives of tariffs with measures that preserve legitimate recycling flows, support processing scale-up and minimize unintended distortions in supply networks. Strategic implications include renegotiating offtake contracts, diversifying supplier bases, and prioritizing investments that reduce reliance on vulnerable import corridors while maintaining access to critical alloy feedstocks.

Key segmentation insights drawing on metallurgical characteristics, source diversity, processing techniques and use patterns driving recovery returns

A segmentation-centric view reveals the granular drivers of recovery opportunities and operational choices across material, source, process and end-use axes. Based on Metal Type, distinctions between Ferrous and Non Ferrous streams matter profoundly for downstream applications and processing requirements. The Ferrous category, which includes carbon steel, cast iron and stainless steel, presents varying contamination tolerance and value recovery profiles; carbon steel and cast iron are often suited to bulk melting operations, whereas stainless steel commands higher separation precision to protect alloy integrity. Conversely, Non Ferrous streams such as aluminum, copper, lead, nickel, precious metals and zinc require more specialized separation and refining techniques to achieve the high purity demanded by electronics, automotive and aerospace sectors.

Based on Source, the differentiation between Industrial Scrap and Post-Consumer Scrap informs collection logistics and contamination risk. Industrial Scrap includes automotive scraps, construction and demolition scrap, and manufacturing waste, which are often more homogenous and generated at scale, enabling process optimization. Post-consumer scrap, encompassing electronics waste and household appliances, is typically more heterogeneous and requires extensive manual or automated sorting to recover valuable fractions. Based on Processing Technique, choices among baling, granulation, melting and refining, shearing, shredding, and sorting and separation drive capital intensity, throughput and product specification outcomes; each technique aligns differently with specific metal types and source characteristics. Finally, based on End Use Industry, demand profiles from automotive, construction, consumer goods, electrical and electronics, energy and utilities, and industrial machinery sectors determine alloy specifications and purity thresholds, which in turn shape the economic viability of particular processing investments. Integrating these segmentation lenses enables a nuanced prioritization of resource allocation, technology deployment and customer engagement strategies.

Regional dynamics and strategic hubs shaping scrap flows, processing capacity, regulatory complexity and investment priorities across global geographies

Regional dynamics significantly influence where scrap is collected, processed and reincorporated into value chains, with strategic hubs emerging in response to policy environments, energy costs and industrial demand. In the Americas, emphasis on domestic processing capacity has intensified as supply chain resilience and proximity to large automotive and industrial manufacturing bases shape demand for high-quality secondary feedstocks. Investments in automated sorting and furnace efficiency are increasingly prioritized to offset energy and labor constraints and to meet buyer specifications.

In Europe, Middle East & Africa, diverse regulatory regimes and the prominence of circularity policies in many European markets push operators toward high traceability standards and partnerships that secure upstream collection streams. Advanced refining capabilities and strict waste import controls create an ecosystem where premium, compliant processing attracts long-term offtake agreements. Energy transition investments and localized recycling solutions also influence investment priorities in parts of the Middle East and Africa where industrialization patterns are evolving.

The Asia-Pacific region remains a central processing and consumption hub for many non ferrous streams, driven by large-scale manufacturing and established trading networks. However, tightening environmental regulations, domestic content policies and competition for feedstock necessitate investment in cleaner, more efficient processing and higher levels of on-site value addition. Together, these regional factors require tailored commercial approaches-ranging from strategic partnerships and joint ventures to localized technical training and compliance capacity building-to align operations with the distinct policy, cost and demand realities across geographies.

Competitive dynamics and corporate strategies that define leading company behavior, innovation pathways, partnerships and risk mitigation in scrap processing

Company-level dynamics reveal patterns of strategic focus among leading players, with firms differentiating through technology adoption, vertical integration and service scope. Some operators prioritize process innovation and proprietary refining techniques to capture higher-margin alloy streams, investing in sensor-based sorting, advanced smelting controls and metallurgical analytics to reliably meet exacting buyer specifications. Others pursue scale through aggregation of feedstock and logistics optimization, creating integrated hubs that combine collection, primary processing and finished secondary product distribution.

Partnerships and contract structures have notable strategic importance. Long-term supply agreements, offtake contracts linked to traceability requirements, and joint ventures that secure upstream feedstock sources reduce exposure to commodity cycle volatility and tariff-induced trade shifts. In addition, the growing importance of sustainability credentials is prompting firms to formalize environmental monitoring, supplier audits and transparency mechanisms that can be presented to corporate buyers and finance partners. Risk management strategies increasingly combine insurance instruments, diversified procurement, and compliance programs to mitigate regulatory, quality and supply chain risks.

Collectively, these company practices indicate a shift from transactional commodity trading toward integrated service models that provide quality assurance, regulatory compliance and value-added processing. Firms that combine operational excellence with transparent sustainability reporting and customer-aligned alloy specifications are positioned to attract premium contracts and deeper collaborative relationships with downstream manufacturers.

Actionable recommendations for industry leaders to optimize resource recovery, enhance compliance, accelerate circular initiatives and refine procurement strategies

Industry leaders should pursue a set of pragmatic, high-impact actions to strengthen resilience, capture higher-value recovery and align with tightening regulatory expectations. First, prioritize investments in advanced sorting, sensor-based separation and digital traceability to reduce contamination, increase yield and satisfy buyer documentation requirements. Integrating process control systems with supplier traceability can shorten dispute resolution timelines and improve downstream acceptance rates. Second, re-evaluate procurement strategies to diversify feedstock sources across industrial and post-consumer streams while cultivating preferred-supplier relationships with large-scale generators such as automotive assemblers and manufacturing parks. Third, accelerate energy efficiency and emissions control measures within processing facilities to reduce operating risk and to meet the increasingly stringent standards applied by corporate purchasers and financiers.

Moreover, consider pursuing strategic partnerships or joint ventures to secure upstream collection networks and to share capital-intensive investments in refining technologies. Such arrangements can also serve as a mechanism for geographic expansion without assuming full greenfield risk. Align compliance and sustainability reporting with buyer expectations by implementing standardized chain-of-custody documentation and third-party verification where feasible, thereby unlocking higher-value contracts. Finally, embed scenario planning into capital decision-making to account for tariff volatility, material substitution trends and evolving alloy specifications, ensuring that investments remain adaptable to rapid shifts in demand and policy.

A robust research methodology outlining data collection, stakeholder engagement, quality checks, validation and analytical approaches underpinning findings

The research underpinning this analysis combined primary engagement with sector stakeholders and rigorous secondary synthesis to ensure robust and actionable findings. Primary inputs included structured interviews with processing operators, buyers across automotive, electrical and industrial machinery sectors, logistics providers and regulatory authorities, providing direct insight into operational constraints and emerging priorities. These qualitative engagements were complemented by site visits to processing facilities where equipment configurations, material flows and quality control protocols were observed and documented.

Secondary research involved systematic review of technical literature, policy instruments and industry white papers to map technological trends and regulatory trajectories. Data triangulation was applied to reconcile divergent viewpoints and to validate observed patterns against documented practices and published standards. Quality assurance measures included cross-validation of interview-derived claims with on-site observations and independent technical sources, ensuring that conclusions reflect both practitioner experience and verifiable process realities.

Analytical approaches integrated supply chain mapping, value-driver analysis and scenario-based stress testing to explore how policy shifts, tariff changes and demand evolution could influence operational and strategic choices. Findings were peer-reviewed internally and stress-tested against alternative assumptions to increase robustness. This methodology ensures that recommendations are grounded in empirical observation and industry-validated insight.

A concise synthesis of conclusions and strategic inferences that crystallize the priorities for investors, processors, regulators and corporate procurement teams

This synthesis distills the key implications for actors across the value chain and highlights priorities for near-term action. Quality and traceability are now decisive commercial attributes; processors who can consistently deliver higher-purity secondary metals and transparent provenance will access premium buyers. Technological upgrades in sorting and refining deliver measurable improvements in yield and alloy consistency, but they must be paired with supply-side collaborations to ensure feedstock quality. Regulatory shifts and tariff adjustments add complexity to trade planning, encouraging localization of certain processing steps and heightened compliance investment.

From a strategic vantage, companies should align capital expenditure with end-use demands, prioritizing capabilities that meet the most stringent purity and documentation standards demanded by automotive, electronics and energy sectors. Procurement strategies that balance industrial bulk streams with selectively sourced post-consumer materials can optimize cost and quality. Finally, collective action-industry-led standards, pooled investment in collection infrastructure, and transparent reporting frameworks-can reduce fragmentation and raise the overall credibility of recycled inputs, accelerating acceptance by mainstream manufacturers.

Taken together, these conclusions indicate a clear agenda: invest in quality-improving technologies, secure reliable feedstock through partnerships, and embed compliance and transparency into the core commercial proposition to convert regulatory and trade challenges into competitive advantage.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rising demand for high-grade copper scrap driven by electric vehicle and renewable energy supply chains
  • 5.2. Increased investment in scrap-based electric arc furnace capacity altering long-term steelmaking
  • 5.3. Tighter environmental regulations accelerating adoption of closed-loop steel recycling in developed markets
  • 5.4. Secondary copper and aluminum market tightness leading to higher incentives for formalized collection networks
  • 5.5. Scrap quality degradation from mixed-material construction waste challenging recycling efficiency and pricing
  • 5.6. Trade policy adjustments and anti-dumping measures influencing regional scrap price arbitrage opportunities
  • 5.7. Freight cost inflation and port congestion driving relocation of scrap supply chains closer to end users
  • 5.8. Integration of digital trading platforms and blockchain for transparent scrap traceability and contract settlement
  • 5.9. Growing premiums for low-oxide non-ferrous scrap due to shortages of clean end-of-life electronics feedstock
  • 5.10. Technology-driven sorting and sensor-based scrap segregation improving yield and material value recovery

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Metal Scrap Market, by Metal Type

  • 8.1. Introduction
  • 8.2. Ferrous
    • 8.2.1. Carbon Steel
    • 8.2.2. Cast Iron
    • 8.2.3. Stainless Steel
  • 8.3. Non Ferrous
    • 8.3.1. Aluminum
    • 8.3.2. Copper
    • 8.3.3. Lead
    • 8.3.4. Nickel
    • 8.3.5. Precious Metals
    • 8.3.6. Zinc

9. Metal Scrap Market, by Source

  • 9.1. Introduction
  • 9.2. Industrial Scrap
    • 9.2.1. Automotive Scraps
    • 9.2.2. Construction & Demolition Scrap
    • 9.2.3. Manufacturing Waste
  • 9.3. Post-Consumer Scrap
    • 9.3.1. Electronics Waste
    • 9.3.2. Household Appliances

10. Metal Scrap Market, by Processing Technique

  • 10.1. Introduction
  • 10.2. Baling
  • 10.3. Granulation
  • 10.4. Melting And Refining
  • 10.5. Shearing
  • 10.6. Shredding
  • 10.7. Sorting & Separation

11. Metal Scrap Market, by End Use Industry

  • 11.1. Introduction
  • 11.2. Automotive
  • 11.3. Construction
  • 11.4. Consumer Goods
  • 11.5. Electrical And Electronics
  • 11.6. Energy & Utilities
  • 11.7. Industrial Machinery

12. Americas Metal Scrap Market

  • 12.1. Introduction
  • 12.2. United States
  • 12.3. Canada
  • 12.4. Mexico
  • 12.5. Brazil
  • 12.6. Argentina

13. Europe, Middle East & Africa Metal Scrap Market

  • 13.1. Introduction
  • 13.2. United Kingdom
  • 13.3. Germany
  • 13.4. France
  • 13.5. Russia
  • 13.6. Italy
  • 13.7. Spain
  • 13.8. United Arab Emirates
  • 13.9. Saudi Arabia
  • 13.10. South Africa
  • 13.11. Denmark
  • 13.12. Netherlands
  • 13.13. Qatar
  • 13.14. Finland
  • 13.15. Sweden
  • 13.16. Nigeria
  • 13.17. Egypt
  • 13.18. Turkey
  • 13.19. Israel
  • 13.20. Norway
  • 13.21. Poland
  • 13.22. Switzerland

14. Asia-Pacific Metal Scrap Market

  • 14.1. Introduction
  • 14.2. China
  • 14.3. India
  • 14.4. Japan
  • 14.5. Australia
  • 14.6. South Korea
  • 14.7. Indonesia
  • 14.8. Thailand
  • 14.9. Philippines
  • 14.10. Malaysia
  • 14.11. Singapore
  • 14.12. Vietnam
  • 14.13. Taiwan

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Nucor Corporation
    • 15.3.2. Aurubis AG
    • 15.3.3. Alamo Metal Recycling LLP
    • 15.3.4. Alter Trading Corporation
    • 15.3.5. ArcelorMittal SA
    • 15.3.6. Commercial Metals Company
    • 15.3.7. Glencore plc
    • 15.3.8. KEIAISHA CO., LTD.
    • 15.3.9. MTC GROUP
    • 15.3.10. Norsk Hydro ASA
    • 15.3.11. OmniSource Corporation
    • 15.3.12. Radius Recycling, Inc.
    • 15.3.13. SA Recycling, LLC
    • 15.3.14. Scrapzo Pvt Ltd
    • 15.3.15. Sims Limited
    • 15.3.16. Steel Dynamics, Inc.
    • 15.3.17. Stena Metall AB
    • 15.3.18. Tata Steel Limited
    • 15.3.19. Umicore S.A.

16. ResearchAI

17. ResearchStatistics

18. ResearchContacts

19. ResearchArticles

20. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제