시장보고서
상품코드
1806206

카본블랙 시장 : 제품 유형, 등급, 물리적 형상, 제조 공정, 기능, 용도, 최종 이용 산업, 유통 채널별 - 세계 예측(2025-2030년)

Carbon Black Market by Type, Grade, Physical Form, Production Process, Function, Application, End-Use Industry, Distribution Channel - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 183 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

카본블랙 시장은 2024년에 231억 달러로 평가되었습니다. 2025년에는 242억 5,000만 달러에 이르고, CAGR 5.15%로 성장하여 2030년에는 312억 4,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 231억 달러
추정 연도 : 2025년 242억 5,000만 달러
예측 연도 : 2030년 312억 4,000만 달러
CAGR(%) 5.15%

카본블랙의 생산, 수요 촉진요인, 산업 밸류체인에 미치는 영향을 이해하기 위한 전략적 시장 지향 및 기초 상황

카본블랙 산업은 전통적인 소재 제조와 전기화, 지속가능성 요구, 첨단 폴리머 배합을 통해 빠르게 진화하는 최종 용도 수요의 교차점에 위치하고 있습니다. 이 보고서는 시장의 구조적 역학, 수요 패턴을 형성하는 요인, 생산, 응용, 유통 채널에 걸친 중요한 접점에 대해 간결하고 종합적으로 설명합니다. 독자는 고구조용 퍼니스 블랙부터 고급 전자 부품 및 배터리 부품에 사용되는 특수 등급까지 제품 분류를 명확하게 이해할 수 있습니다.

카본블랙의 전체 가치사슬에서 전기화, 지속가능성 의무화, 첨단 생산기술이 경쟁 우위와 제품 차별화를 재정의하는 방법

최근 몇 년 동안 카본블랙의 상황은 경쟁사의 포지셔닝과 제품 전략을 재조정하는 혁신적인 변화를 가져왔습니다. 전기화 및 배터리 기술의 채택이 가속화됨에 따라 전도성 및 특수 등급에 대한 수요가 증가함에 따라 공급업체는 제품 포트폴리오를 재평가하고 더 엄격한 성능 사양을 충족하기 위해 공정 최적화에 투자해야 합니다. 동시에 지속가능성에 대한 고려가 중요해지면서 제조업체들은 저탄소 원료, 에너지 효율 개선, 라이프사이클 배출량 투명성 향상을 요구하고 있습니다. 이러한 우선순위에 따라 생산자들은 공정의 단계적 개선과 대체 원료의 병행 생산과 같은 보다 구조적인 변화를 추구할 수밖에 없습니다.

2025년 미국의 관세 조치가 카본블랙 공급망의 조달, 공급업체 전략, 생산 탄력성에 미치는 다각적인 운영 및 전략적 영향을 평가합니다.

2025년에 도입된 관세 정책은 카본블랙 생태계 전체에 파급효과를 가져왔고, 제조업체와 다운스트림 고객의 조달 전략, 공급업체 다변화, 당장의 비용 구조에 영향을 미쳤습니다. 특정 수입 카본블랙 중간체 및 관련 원료에 대한 추가 관세 부과로 인해 많은 바이어들이 오랜 공급업체와의 관계를 재평가하고 현지화 이니셔티브를 가속화해야 할 필요성이 대두되었습니다. 그 결과, 조달팀은 대체 공급업체 선정이 강화되었고, 관세 영향과 컴플라이언스의 복잡성을 반영한 총양륙비용 모델을 재검토했습니다.

유형, 등급, 형태, 공정, 기능, 용도, 채널별, 차별화된 가치 창출 및 기술 요구사항이 어떻게 도출되는지 파악할 수 있는 상세한 세분화 분석

세분화된 시장 세분화에 기반한 관점은 제품 유형, 등급, 물리적 형태, 생산 공정, 기능, 용도, 최종 사용 산업, 유통 채널에서 차별화된 성능의 궤적을 보여줍니다. 아세틸렌 블랙과 채널 블랙은 높은 전도성과 특수한 입자 구조가 요구되는 분야에서 강력한 발판을 유지하고 있으며, 퍼니스 블랙과 램프 블랙은 전통적인 안료와 보강 역할을 계속 지배하고 있습니다. 스페셜티 등급과 표준 등급 간의 등급 차별화는 성능 요구사항과 관련된 가치 획득의 차이를 강조하며, 스페셜티 등급은 더 깊은 기술적 관여와 배합사와의 긴밀한 협업을 요구하고 있습니다.

지역 시장의 뉘앙스와 전략적 의미는 지역, 규제 및 공급망 역학이 세계 허브에서 경쟁적 포지셔닝을 어떻게 재구성하고 있는지를 강조합니다.

미주, 유럽, 중동 및 아프리카, 아시아태평양 각 지역의 원동력과 제약이 명확하고, 지역적 원동력이 업계 전체의 전략적 우선순위와 자본 배치를 형성하고 있습니다. 미주지역은 주요 자동차 및 타이어 제조 거점과의 근접성과 더불어 전동화가 강력하게 추진되고 있어 전도성 및 특수 카본블랙에 대한 수요가 증가하고 있으며, 현지 생산과 전략적 파트너십을 통해 물류의 복잡성을 최소화하고 있습니다. 이 지역의 설비투자와 생산능력의 재편은 종종 공급 안보와 진화하는 환경 규제의 균형을 맞출 필요성에 따라 이루어집니다.

경쟁 환경 분석은 규모, 기술 차별화, 지속가능성에 대한 노력이 어떻게 시장 리더십과 장기적인 상업적 회복력을 결정하는지 보여줍니다.

카본블랙 산업경쟁 구도는 규모의 우위를 가진 레거시 제조업체와 기술적 차별화를 통해 프리미엄 부문을 확보하는 전문 제조업체의 균형을 반영하고 있습니다. 주요 기업들은 일반적으로 생산 노하우와 기술 서비스 역량을 통합하여 배터리, 전자 및 고성능 엘라스토머의 엄격한 성능 요구 사항을 충족하는 배합을 공동 개발할 수 있도록 합니다. 또한, 이들 기업은 특수 용도에 필수적인 일관된 입자 형태와 표면 특성을 보장하기 위해 공정 관리 및 품질 관리 시스템에도 투자하고 있습니다.

제품 혁신, 공급 탄력성, 지속가능성에 대한 투자를 진화하는 최종 용도 및 규제 수요에 맞게 조정할 수 있는 제조업체의 실행 가능한 전략적 필수 사항

업계 리더들은 상업적 전략을 진화하는 기술 및 규제 요구사항과 일치시키는 현실적이고 미래지향적인 일련의 행동을 취해야 합니다. 첫째, 원가경쟁력을 향상시키면서 지속가능성에 대한 기대치를 높이기 위해 공정 최적화와 배출량 감축에 대한 투자를 우선시합니다. 에너지 효율을 개선하고, 대체 원료를 탐색함으로써 탄소 원단위 조사를 받을 기회를 줄이고, 라이프사이클 요구사항이 까다로운 고객에게 대응할 수 있는 기회를 열어줄 수 있습니다. 둘째, 전도성 강화, 보강, 자외선 차단을 지원하는 특수 등급과 기능성 첨가제에 중점을 둔 제품 개발을 가속화하여 상품화된 안료에서 가치를 전환합니다.

1차 인터뷰, 2차 기술 조사, 시나리오 분석을 결합한 투명하고 반복 가능한 조사 방법을 통해 통찰력과 제안을 검증합니다.

조사 방법은 정성적 접근과 정량적 접근을 통합하여 전제조건과 분석 프레임워크의 투명성을 유지하면서 통찰력의 확실성을 보장합니다. 1차 조사에서는 소재 공급업체와 다운스트림 제조업체의 생산, 조달, R&D 부서의 고위 경영진과 구조화된 인터뷰를 통해 기술 채택률, 사양 동향, 상업적 고려사항에 대한 현장감 있는 견해를 얻을 수 있었습니다. 이와 병행하여 2차 조사에서는 기술 문헌, 규제 당국에 제출한 서류, 일반에 공개된 기업 정보 등을 조사하여 제품 혁신, 공정 설명, 지속가능성 노력 등을 검증했습니다.

카본블랙 시장에서 지속적인 경쟁 우위를 확보하기 위해서는 제품, 지속가능성, 지역 전략을 통합하는 것이 필수적임을 강조하는 결론을 요약하면 다음과 같습니다.

결론적으로, 카본블랙 산업은 기술 발전, 규제 압력, 최종 용도 수요의 변화가 수렴하여 경쟁 역학을 재구성하는 매우 중요한 교차로에 서 있습니다. 특수 제품 역량, 공정 효율성, 지속가능성에 적극적으로 투자하는 기업은 전기화 및 첨단 폴리머 응용 분야에서 증가하는 수요를 포착하는 데 유리한 위치를 차지할 수 있을 것으로 보입니다. 물류의 탄력성과 관세 노출을 고려한 지역 전략은 정책의 불확실성 속에서 공급의 연속성을 유지하고 이윤을 보호하기 위해 필수적입니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 카본블랙 시장 : 유형별

  • 아세틸렌 블랙
  • 채널 블랙
  • 퍼니스 블랙
  • 램프 블랙

제9장 카본블랙 시장 : 등급별

  • 특수 등급
  • 표준 등급

제10장 카본블랙 시장 : 물리적 형태별

  • 과립
  • 분말

제11장 카본블랙 시장 : 생산 공정별

  • Channel Process
  • Furnace Process
  • Thermal Process

제12장 카본블랙 시장 : 기능별

  • 착색 및 염색
  • 전도성 향상
  • 보강
  • 자외선 차단

제13장 카본블랙 시장 : 용도별

  • 배터리 및 전자기기
  • 코팅
  • 잉크 및 인쇄 토너
  • 타이어 이외 고무 제품
    • 벨트
    • 호스
  • 플라스틱
  • 타이어

제14장 카본블랙 시장 : 최종 이용 산업별

  • 자동차
  • 건설
  • 소비재
  • 일렉트로닉스
  • 패키지

제15장 카본블랙 시장 : 유통 채널별

  • 오프라인
  • 온라인

제16장 아메리카의 카본블랙 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제17장 유럽, 중동 및 아프리카의 카본블랙 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제18장 아시아태평양의 카본블랙 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제19장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Asahi Carbon Co., Ltd.
    • Atlas Organics Private Limited
    • Birla Carbon
    • Black Bear Carbon B.V.
    • Cabot Corporation
    • CANCARB LIMITED
    • CONTEC S.A.
    • Continental Carbon Company
    • Epsilon Carbon Private Limited
    • Evonik Industries AG
    • Finster Black Pvt Ltd.
    • Himadri Speciality Chemical
    • Imerys S.A.
    • Jiangxi Black Cat Carbon balck Inc.,Ltd
    • Klean Industries Inc.
    • Mitsubishi Chemical Group Corporation
    • NIPPON STEEL Chemical & Material Co., Ltd.
    • OCI Ltd.
    • Omsk Carbon Group
    • Orion S.A.
    • PCBL Chemical Limited
    • Pyrum Innovations
    • Ralson
    • RCB Nanotechnologies GmbH
    • Tokai Carbon Co., Ltd.

제20장 리서치 AI

제21장 리서치 통계

제22장 리서치 컨택트

제23장 리서치 기사

제24장 부록

LSH 25.09.17

The Carbon Black Market was valued at USD 23.10 billion in 2024 and is projected to grow to USD 24.25 billion in 2025, with a CAGR of 5.15%, reaching USD 31.24 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 23.10 billion
Estimated Year [2025] USD 24.25 billion
Forecast Year [2030] USD 31.24 billion
CAGR (%) 5.15%

Strategic market orientation and foundational context for understanding carbon black production, demand drivers, and industry value chain implications

The carbon black industry sits at the intersection of traditional materials manufacturing and rapidly evolving end-use demands driven by electrification, sustainability imperatives, and advanced polymer formulations. This report provides a concise yet comprehensive entry to the market's structural dynamics, the factors reshaping demand patterns, and the critical touchpoints across production, application, and distribution channels. Readers will gain a clear understanding of the product taxonomy, from high-structure furnace blacks to specialty grades used in sophisticated electronic and battery components.

Across the supply chain, raw material sourcing, energy intensity, and capital investments in production processes create both barriers and opportunities for new entrants and incumbent producers. Moreover, technological advances in conductive additives and surface treatments are expanding the functional role of carbon black beyond pigmentation into conductivity enhancement and reinforcement for next-generation applications. The introduction contextualizes these developments and frames the subsequent sections that explore transformative shifts, tariff impacts, segmentation dynamics, regional variations, and competitive implications.

By grounding the discussion in structural drivers and near-term operational levers, this introduction primes executives and technical leaders to prioritize investments, partnership strategies, and product development pathways that align with evolving regulatory expectations and customer requirements.

How electrification, sustainability mandates, and advanced production technologies are redefining competitive advantages and product differentiation across the carbon black value chain

Recent years have produced transformative shifts in the carbon black landscape that recalibrate competitive positioning and product strategies. Electrification and the accelerating adoption of battery technologies have increased demand for conductive and specialty grades, prompting suppliers to re-evaluate product portfolios and invest in process optimization to meet tighter performance specifications. Concurrently, sustainability considerations have gained prominence, with manufacturers seeking lower-carbon feedstocks, improved energy efficiency, and increased transparency across lifecycle emissions. These priorities are compelling producers to pursue both incremental process upgrades and more structural changes such as co-processing of alternative feedstocks.

At the same time, circularity and material efficiency are reshaping formulations in polymers, inks, and rubber compounds, reducing reliance on commodity-grade blacks for pigmentation while expanding applications where performance attributes like conductivity enhancement and UV protection are decisive. Technological advancements in production processes, including thermal and advanced furnace methods, are enabling finer control over particle structure and surface chemistry, making it possible to tailor products for high-value applications. As a result, the market is undergoing segmentation by function and grade, creating distinct value pools for specialty and standard offerings.

These shifts have material implications for investment priorities, R&D roadmaps, and commercial go-to-market models, since companies that align product innovation with stringent quality and sustainability expectations will be better positioned to capture premium applications and long-term customer relationships.

Assessing the multifaceted operational and strategic consequences of United States tariff actions in 2025 on sourcing, supplier strategies, and production resiliency within the carbon black supply chain

Tariff policies introduced in 2025 have produced a ripple effect across the carbon black ecosystem, influencing procurement strategies, supplier diversification, and near-term cost structures for manufacturers and downstream customers. The imposition of additional duties on certain imported carbon black intermediates and related feedstocks forced many buyers to re-evaluate long-standing supplier relationships and accelerate localization initiatives. As a consequence, procurement teams intensified qualification of alternate suppliers and reassessed total landed cost models that now incorporate tariff exposure and compliance complexity.

In response, several firms shifted towards longer-term contracts and dual-sourcing arrangements to mitigate disruption and to maintain continuity for critical end-use applications such as tire reinforcement and battery conductive components. Simultaneously, regional production assets gained renewed strategic value as companies sought to reduce cross-border tariff risk and compress lead times. For companies with integrated upstream capabilities, there was an evident advantage in absorbing some incremental duty-related costs while preserving customer margins through integrated logistics and value-added services.

These tariff shifts also catalyzed closer collaboration between commercial teams and regulatory specialists to optimize tariff classifications and leverage free trade arrangements where possible. Moving forward, organizations that build tariff sensitivity into their sourcing models and proactively pursue process and product strategies that reduce dependence on tariff-exposed imports will be more resilient to policy volatility.

Deep segmentation analysis revealing how type, grade, form, process, function, application, and channel distinctions drive differentiated value creation and technical requirements

A granular segmentation-driven view of the market reveals differentiated performance trajectories across types, grades, physical forms, production processes, functions, applications, end-use industries, and distribution channels. Examining product type distinctions highlights divergent demand characteristics: acetylene black and channel black retain strong footholds where high electrical conductivity and specific particle structures are required, whereas furnace black and lamp black continue to dominate traditional pigmentation and reinforcement roles. Grade differentiation between specialty and standard grades underscores a bifurcation in value capture tied to performance requirements; specialty grades command deeper technical engagement and closer collaboration with formulators.

Physical form-whether granules or powder-affects handling, dispersion behavior, and suitability for automated processing lines, influencing procurement decisions for downstream manufacturers. Production process segmentation between channel, furnace, and thermal approaches governs achievable product structures and consistency, shaping which processes are preferred for high-performance versus commodity applications. Functional segmentation elucidates shifting end-user priorities: coloring and tinting remain essential for visual applications, while conductivity enhancement, reinforcement, and UV protection increasingly determine engineering-grade selections. Application-focused segmentation outlines where demand elasticity and technical thresholds converge, from batteries and electronics to coatings, inks, printing toners, non-tire rubber products including belts, hoses, and seals, as well as plastics and tires. Finally, end-use industry segmentation across automotive, construction, consumer goods, electronics, and packaging reveals divergent growth catalysts, and distribution channel differences between offline and online procurement models reflect changing buying behaviors and logistics considerations. Collectively, these segmentation lenses enable a nuanced understanding of where margin expansion and technical differentiation will be realized.

Regional market nuances and strategic implications highlighting how geography, regulation, and supply chain dynamics are reshaping competitive positioning across global hubs

Regional dynamics are shaping strategic priorities and capital deployment across the industry, with distinct drivers and constraints in the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, proximity to major automotive and tire manufacturing hubs combined with a strong push for electrification has elevated demand for conductive and specialty carbon blacks, incentivizing localized production and strategic partnerships to minimize logistic complexity. Capital investments and capacity realignments in this region are often guided by the need to balance supply security with evolving environmental regulation.

Europe, Middle East & Africa presents a diversified policy landscape where stringent environmental standards and circular economy initiatives are raising the bar for lifecycle performance and carbon intensity transparency. Manufacturers in this region are increasingly investing in energy efficiency, emissions reporting, and alternative feedstock trials to align with regulatory trajectories and brand-level sustainability commitments. Asia-Pacific remains the largest manufacturing base for many downstream industries, including tire production and plastics processing, which sustains robust demand for a broad range of carbon black grades. The region's competitive advantage stems from established production infrastructure and close integration with polymer and rubber value chains, though it is simultaneously facing growing pressure to decarbonize and improve process efficiency.

Across regions, trade patterns and logistics resilience are critical considerations. Firms must weigh regional policy developments, feedstock accessibility, and local customer expectations when configuring supply footprints to remain responsive and competitive in a geographically differentiated market.

Competitive landscape insights revealing how scale, technical differentiation, and sustainability initiatives determine market leadership and long-term commercial resilience

Competitive dynamics in the carbon black industry reflect a balance between legacy producers with scale advantages and specialized manufacturers that capture premium segments through technical differentiation. Leading companies typically integrate production know-how with technical service capabilities, enabling them to co-develop formulations that meet stringent performance requirements for batteries, electronics, and high-performance elastomers. These firms also invest in process control and quality management systems to ensure consistent particle morphology and surface properties critical to specialty applications.

At the same time, a cohort of smaller, more agile players focuses on niche markets such as specialty acetylene blacks or custom surface-treated products, leveraging close relationships with downstream customers to iterate rapidly on product specifications. Strategic partnerships, joint ventures, and localized production agreements have become common as firms seek to de-risk supply and access regional demand centers. Additionally, leading organizations are increasing their emphasis on sustainability credentials, publishing lifecycle data and pursuing energy efficiency and alternative feedstock pilots to respond to customer and regulatory pressure.

Operational excellence, combined with targeted R&D investments and customer-centric service models, separates market leaders from followers. Companies that can simultaneously scale production efficiency and deliver tailored technical solutions will be in the strongest position to capture long-term value across diverse end-use segments.

Actionable strategic imperatives for manufacturers to align product innovation, supply resilience, and sustainability investments with evolving end-use and regulatory demands

Industry leaders should adopt a set of pragmatic, forward-looking actions that align commercial strategy with evolving technical and regulatory demands. First, prioritize investments in process optimization and emissions reduction to meet increasing sustainability expectations while improving cost competitiveness. Upgrading energy efficiency and exploring alternative feedstocks will reduce exposure to carbon intensity scrutiny and can open opportunities to serve customers with tight lifecycle requirements. Second, accelerate product development focused on specialty grades and functional additives that support conductivity enhancement, reinforcement, and UV protection, thereby migrating value away from commoditized pigmentation.

Third, develop more resilient and tariff-aware sourcing strategies by expanding supplier networks, qualifying regional partners, and building flexible logistics that can respond to policy shifts. Embedding tariff sensitivity and scenario planning into procurement models will reduce volatility and preserve customer service levels. Fourth, strengthen collaboration with downstream customers through co-development initiatives and technical service offerings that shorten product adoption cycles and lock in longer-term agreements. Fifth, pursue targeted regional investments that align production footprints with major end-use clusters, balancing cost efficiency with proximity to key customers. Finally, enhance commercial channels by marrying traditional distributor relationships with digital procurement capabilities to improve market reach and responsiveness. Implementing these recommendations will enable companies to capture higher-margin opportunities while enhancing operational resiliency against policy and market shocks.

Transparent and reproducible research approach combining primary interviews, secondary technical review, and scenario analysis to validate insights and recommendations

The research methodology integrates qualitative and quantitative approaches to ensure robustness of insights while maintaining transparency in assumptions and analytical frameworks. Primary research included structured interviews with senior executives across production, procurement, and R&D functions within both materials suppliers and downstream manufacturers, enabling a grounded view of technology adoption rates, specification trends, and commercial considerations. In parallel, secondary research encompassed technical literature, regulatory filings, and publicly available corporate disclosures to triangulate product innovations, process descriptions, and sustainability initiatives.

Analytical techniques involved segmentation mapping to connect product characteristics with application requirements, scenario analysis to assess tariff impacts and supply risk, and comparative process assessment to evaluate production flexibility across channel, furnace, and thermal methods. Wherever possible, cross-validation was used to reconcile differing perspectives and ensure consistency between qualitative observations and documented engineering characteristics. The methodology also incorporated regional supply-chain diagnostics to capture logistics constraints, trade flows, and policy differentials. Together, these methods provide a comprehensive and reproducible basis for the conclusions and recommendations presented in this report.

Concluding synthesis emphasizing the imperative for integrated product, sustainability, and regional strategies to secure durable competitive advantages in carbon black markets

In conclusion, the carbon black industry stands at a pivotal juncture where technological evolution, regulatory pressure, and shifting end-use demands are converging to reshape competitive dynamics. Companies that proactively invest in specialty product capabilities, process efficiency, and sustainability will be better positioned to capture growing demand from electrification and advanced polymer applications. Regional strategies that factor in logistics resilience and tariff exposure are essential for maintaining supply continuity and protecting margins in a period of policy uncertainty.

Moreover, the increasing importance of technical collaboration with downstream customers underscores the need for integrated service models that combine formulation support, performance testing, and lifecycle transparency. By aligning R&D priorities with clear commercial use cases and embedding tariff-aware procurement practices, organizations can both mitigate short-term disruption and build a foundation for long-term differentiation. The actionable insights and methodological rigor underlying this analysis are intended to support executive decision-making and enable practical steps toward sustainable growth and resilient operations within the sector.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Accelerated investments in bio-based carbon black production to align with emerging EU decarbonization targets
  • 5.2. Expansion of conductive carbon black applications in lithium-ion battery electrodes for electric vehicle growth
  • 5.3. Strategic joint ventures between Asian rubber manufacturers and specialty carbon black producers to localize supply chains
  • 5.4. Integration of digital process monitoring and AI analytics in carbon black manufacturing for quality optimization
  • 5.5. Shift towards ultrafine specialty carbon blacks to enhance performance in high-end automotive and industrial coatings
  • 5.6. Pressure from tighter environmental regulations driving adoption of low-emission furnace black technologies worldwide

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Carbon Black Market, by Type

  • 8.1. Introduction
  • 8.2. Acetylene Black
  • 8.3. Channel Black
  • 8.4. Furnace Black
  • 8.5. Lamp Black

9. Carbon Black Market, by Grade

  • 9.1. Introduction
  • 9.2. Specialty Grade
  • 9.3. Standard Grade

10. Carbon Black Market, by Physical Form

  • 10.1. Introduction
  • 10.2. Granules
  • 10.3. Powder

11. Carbon Black Market, by Production Process

  • 11.1. Introduction
  • 11.2. Channel Process
  • 11.3. Furnace Process
  • 11.4. Thermal Process

12. Carbon Black Market, by Function

  • 12.1. Introduction
  • 12.2. Coloring & Tinting
  • 12.3. Conductivity Enhancement
  • 12.4. Reinforcement
  • 12.5. UV Protection

13. Carbon Black Market, by Application

  • 13.1. Introduction
  • 13.2. Batteries & Electronics
  • 13.3. Coatings
  • 13.4. Inks & Printing Toners
  • 13.5. Non-Tire Rubber Products
    • 13.5.1. Belts
    • 13.5.2. Hoses
    • 13.5.3. Seals
  • 13.6. Plastics
  • 13.7. Tires

14. Carbon Black Market, by End-Use Industry

  • 14.1. Introduction
  • 14.2. Automotive
  • 14.3. Construction
  • 14.4. Consumer Goods
  • 14.5. Electronics
  • 14.6. Packaging

15. Carbon Black Market, by Distribution Channel

  • 15.1. Introduction
  • 15.2. Offline
  • 15.3. Online

16. Americas Carbon Black Market

  • 16.1. Introduction
  • 16.2. United States
  • 16.3. Canada
  • 16.4. Mexico
  • 16.5. Brazil
  • 16.6. Argentina

17. Europe, Middle East & Africa Carbon Black Market

  • 17.1. Introduction
  • 17.2. United Kingdom
  • 17.3. Germany
  • 17.4. France
  • 17.5. Russia
  • 17.6. Italy
  • 17.7. Spain
  • 17.8. United Arab Emirates
  • 17.9. Saudi Arabia
  • 17.10. South Africa
  • 17.11. Denmark
  • 17.12. Netherlands
  • 17.13. Qatar
  • 17.14. Finland
  • 17.15. Sweden
  • 17.16. Nigeria
  • 17.17. Egypt
  • 17.18. Turkey
  • 17.19. Israel
  • 17.20. Norway
  • 17.21. Poland
  • 17.22. Switzerland

18. Asia-Pacific Carbon Black Market

  • 18.1. Introduction
  • 18.2. China
  • 18.3. India
  • 18.4. Japan
  • 18.5. Australia
  • 18.6. South Korea
  • 18.7. Indonesia
  • 18.8. Thailand
  • 18.9. Philippines
  • 18.10. Malaysia
  • 18.11. Singapore
  • 18.12. Vietnam
  • 18.13. Taiwan

19. Competitive Landscape

  • 19.1. Market Share Analysis, 2024
  • 19.2. FPNV Positioning Matrix, 2024
  • 19.3. Competitive Analysis
    • 19.3.1. Asahi Carbon Co., Ltd.
    • 19.3.2. Atlas Organics Private Limited
    • 19.3.3. Birla Carbon
    • 19.3.4. Black Bear Carbon B.V.
    • 19.3.5. Cabot Corporation
    • 19.3.6. CANCARB LIMITED
    • 19.3.7. CONTEC S.A.
    • 19.3.8. Continental Carbon Company
    • 19.3.9. Epsilon Carbon Private Limited
    • 19.3.10. Evonik Industries AG
    • 19.3.11. Finster Black Pvt Ltd.
    • 19.3.12. Himadri Speciality Chemical
    • 19.3.13. Imerys S.A.
    • 19.3.14. Jiangxi Black Cat Carbon balck Inc.,Ltd
    • 19.3.15. Klean Industries Inc.
    • 19.3.16. Mitsubishi Chemical Group Corporation
    • 19.3.17. NIPPON STEEL Chemical & Material Co., Ltd.
    • 19.3.18. OCI Ltd.
    • 19.3.19. Omsk Carbon Group
    • 19.3.20. Orion S.A.
    • 19.3.21. PCBL Chemical Limited
    • 19.3.22. Pyrum Innovations
    • 19.3.23. Ralson
    • 19.3.24. RCB Nanotechnologies GmbH
    • 19.3.25. Tokai Carbon Co., Ltd.

20. ResearchAI

21. ResearchStatistics

22. ResearchContacts

23. ResearchArticles

24. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제