시장보고서
상품코드
1806285

생체흡수성 스텐트 시장 : 재료별, 제품 유형별, 분해 시간별, 용도별, 최종사용자별, 유통 채널별 - 세계 예측(2025-2030년)

Bioabsorbable Stents Market by Material, Product Type, Degradation Time, Application, End User, Distribution Channel - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 186 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

생체흡수성 스텐트 시장의 2024년 시장 규모는 5억 7,241만 달러로, 2025년에는 6억 756만 달러로 성장하며, CAGR은 6.41%, 2030년에는 8억 3,108만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
예측연도(2024년) 5억 7,241만 달러
기준연도(2025년) 6억 756만 달러
예측연도(2030년) 8억 3,108만 달러
CAGR(%) 6.41%

차세대 환자 치료를 위한 심혈관 중재시술을 촉진하는 생체흡수성 스텐트 혁신의 가능성과 잠재력을 밝힙니다.

생체흡수성 스텐트 분야는 심혈관 중재시술의 혁신의 최전선에 등장하여 영구적인 금속 임플란트의 오랜 한계를 해결할 수 있을 것으로 기대되고 있습니다. 동맥벽에 고정되어 있는 기존 스텐트와는 달리, 생체흡수성 스텐트는 서서히 분해되므로 장기적으로 이물질 없이 혈관 기능을 회복할 수 있는 가능성을 환자에게 제공합니다. 이러한 전환은 중재적 심혈관 치료의 패러다임 전환을 의미하며, 성공의 지표를 단순한 개존율에서 자연적 혈관 운동 회복과 후기 합병증 최소화로 재정의하는 것을 의미합니다.

생체흡수성 스텐트 개발 및 임상 도입 상황을 재정의하는 혁신적인 진보와 파괴적 기술들

재료 과학의 발전은 생체흡수성 스텐트를 개념적 프로토타입에서 상업적으로 실행 가능한 옵션으로 발전시켰습니다. 초기 폴리머 매트릭스에서 차세대 금속 합금으로의 전환은 반경 방향의 힘을 강화하고 흡수 동역학을 제어했습니다. 동시에 새로운 표면 처리와 약제용출성 코팅은 신생 내막 과형성이라는 오랜 난제를 해결하고 일시적인 기계적 지지와 국소 약물 치료의 장점을 결합합니다.

생체흡수성 스텐트 공급망에 대한 미국의 새로운 관세 부과로 인한 먼 영향과 2025년 시장 역학 분석

2025년 초, 마그네슘과 특수 폴리머를 포함한 주요 원자재에 대한 미국의 새로운 관세 도입은 전 세계 공급망에 파문을 일으켰습니다. 수입 관세로 인해 중요한 합금과 단조품의 단가가 상승하여 제조업체는 즉각적인 비용 압박에 직면했습니다. 이러한 과세는 국내 생산을 보호하기 위한 것이었지만, 자칫 잘못하면 조달 전략과 자재 조달 모델의 신속한 재검토를 촉진하는 결과를 초래할 수 있습니다.

생체흡수성 스텐트를 제품 유형별, 분해 시간별, 임상 용도별, 최종사용자별로 세분화하여 중요 인사이트를 얻을 수 있습니다.

금속 기반과 폴리머 기반 카테고리가 제품 포트폴리오를 형성하고 있습니다. 금속 기반에서 엔지니어들은 철 기반 합금을 활용하여 제어된 반경 방향 강도와 예측 가능한 부식 프로파일을 달성하는 반면, 마그네슘 기반 시스템은 흡수를 촉진하고 염증을 최소화합니다. 아연 기반 혼합물은 중간 균형을 유지하고, 제어된 서비스 수명과 기계적 유연성을 제공합니다. 폴리머를 기반으로 한 설계에서 폴리-L-락트산 비계는 확립된 표준이 되었습니다. 폴리카프로락톤, 폴리디옥사논, 폴리글리콜산의 기술 혁신도 동시에 진행되고 있으며, 특수한 병변 형태에 대응하기 위해 다양한 분해 창과 조정된 생역학적 특성이 제공됩니다.

아시아태평양의 생체흡수성 스텐트 보급을 형성하는 지역적 역학 및 촉진요인에 대한 탐색

북미와 남미에서는 탄탄한 임상 인프라와 유리한 상환 제도 프레임워크가 생체흡수성 스캐폴드 기술의 조기 도입을 촉진했습니다. 미국은 여전히 기술 혁신과 임상시험의 중심지이지만, 심혈관 질환 유병률 증가와 의료 접근성 향상에 힘입어 라틴아메리카의 일부 시장에서는 관심이 높아지고 있습니다. 최첨단 연구와 환자 진료 확대라는 두 가지 역동성이 이 지역의 전략적 중요성을 높이고 있습니다.

주요 경쟁 전략을 밝히는 R&D 협력과 혁신적인 제품 파이프라인으로 생체흡수성 스텐트 제조업체를 발전시킬 수 있습니다.

주요 스텐트 개발 기업은 특수 합금 연구와 차세대 폴리머 엔지니어링에 대한 투자를 강화하고 있습니다. 다국적 스텐트 제조업체와 첨단 소재 기업과의 제휴를 통해 분해 속도를 줄이면서 반경 방향 지지력을 최적화하는 독자적인 배합을 만들어 냈습니다. 동시에 새로운 비계 플랫폼을 벤치 모델이나 동물 모델에서 검증하기 위해 학술기관과 공동 계약을 맺는 기업도 늘고 있습니다.

전략적 혁신을 통해 생체흡수성 스텐트의 상업적 성공과 임상적 채택을 가속화할 수 있는 실행 가능한 로드맵을 업계 리더들에게 제공

진화하는 임상 및 규제 환경에 대응하기 위해 업계 관계자들은 기계적 무결성과 예측 가능한 생체흡수성의 균형을 맞추는 첨단 소재 개발 프로그램을 우선순위에 두어야 합니다. 차세대 합금과 폴리머 링커에 전략적으로 집중함으로써 제품을 차별화하고 지속적인 성능 트레이드오프에 대응할 수 있습니다.

전문가 인터뷰 2차 데이터와 정성적 정량적 분석을 결합한 조사 방법론에 대한 자세한 내용은 인사이트의 신뢰성을 제공

당사의 분석은 중재적 심장학자, 재료 과학자 및 공급망 경영진과의 심층 인터뷰를 통해 생체흡수성 스텐트에 대한 현실적인 관점을 포착하고 있습니다. 이러한 주요 대화는 규제 문서, 임상시험 등록, 특허 출원 및 피어 리뷰 문헌에 대한 심층적인 검토를 통해 보완되었습니다.

생체흡수성 스텐트 혁신의 임상적 도입과 시장 성숙을 위한 길을 밝히기 위한 주요 연구 결과와 전략적 중요 사항들을 통합했습니다.

생체흡수성 스텐트의 진화는 재료의 기술 혁신, 혈관 복구 치료에 대한 임상 수요 및 전략적 산업 협력의 수렴을 반영합니다. 금속 및 고분자 과학의 발전은 비계의 성능을 향상시켰고, 제조 공정의 개선으로 정밀한 형상과 맞춤형 약제용출 기능이 가능해졌습니다.

목차

제1장 서론

제2장 분석 방법

제3장 개요

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 생체흡수성 스텐트 시장 : 재료별

  • 금속계 생체흡수성 스텐트
    • 철 기반
    • 마그네슘 기반
    • 아연 기반 합금
  • 폴리머 기반 생체흡수성 스텐트
    • 폴리 L 젖산(PLLA)
    • 폴리카프로락톤(PCL)
    • 폴리디옥사논(PDO)
    • 폴리글리콜산(PGA)

제9장 생체흡수성 스텐트 시장 : 제품 유형별

  • 약제용출형
  • 비약제용출형

제10장 생체흡수성 스텐트 시장 : 분해 시간별

  • 12-24개월
  • 12개월 미만
  • 24개월 이상

제11장 생체흡수성 스텐트 시장 : 용도별

  • 관상동맥 질환(CAD)
  • 신경혈관 질환
  • 소아과 적용
  • 말초동맥 질환(PAD)

제12장 생체흡수성 스텐트 시장 : 최종사용자별

  • 학술·연구기관
  • 외래 수술 센터
  • 심장 센터
  • 병원

제13장 생체흡수성 스텐트 시장 : 유통 채널별

  • 오프라인
  • 온라인

제14장 아메리카의 생체흡수성 스텐트 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제15장 유럽, 중동 및 아프리카의 생체흡수성 스텐트 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제16장 아시아태평양의 생체흡수성 스텐트 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제17장 경쟁 구도

  • 시장 점유율 분석(2024년)
  • FPNV 포지셔닝 매트릭스(2024년)
  • 경쟁 분석
    • Abbott Laboratories
    • Arterius Ltd
    • B. Braun SE
    • BIOTRONIK SE & Co. KG
    • Boston Scientific Corporation
    • Elixir Medical Corporation
    • JW Medical Systems Ltd. Biosensors International Group, Ltd.
    • Kaneka Corporation
    • Kyoto Medical Planning Co. Ltd.
    • Meril Life Sciences
    • Microport Scientific Corporation
    • OrbusNeich Medical Group Holdings Limited
    • Q3 Medical Group
    • Reva Medical
    • SafeGuard Surgical, Inc.
    • Terumo Corporation
    • Svelte Medical Systems Inc
    • Lepu Medical Technology Co. Ltd.
    • WEGO HEALTHCARE(SHENZHEN) CO., LTD
    • Shandong Hua'an Biotechnology
    • ELLA-CS, s.r.o.
    • Cardionovum GmbH
    • Zorion Medical Inc.
    • Sino Medical Sciences Technology Inc.

제18장 리서치 AI

제19장 리서치 통계

제20장 리서치 컨택

제21장 리서치 기사

제22장 부록

KSA 25.09.17

The Bioabsorbable Stents Market was valued at USD 572.41 million in 2024 and is projected to grow to USD 607.56 million in 2025, with a CAGR of 6.41%, reaching USD 831.08 million by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 572.41 million
Estimated Year [2025] USD 607.56 million
Forecast Year [2030] USD 831.08 million
CAGR (%) 6.41%

Uncovering the Promise and Potential of Bioabsorbable Stent Innovations Driving Cardiovascular Intervention Toward Next-Generation Patient Care

The field of bioabsorbable stents has emerged as a transformative frontier within cardiovascular intervention, promising to resolve long-standing limitations of permanent metallic implants. Unlike traditional stents that remain lodged within the arterial wall, bioabsorbable designs enable gradual degradation, offering patients the prospect of restored vessel function without long-term foreign body presence. This transition represents a paradigm shift in interventional cardiology, redefining success metrics from mere patency rates to the restoration of natural vasomotion and minimized late-stage complications.

Historically, the adoption of bioabsorbable scaffold technology has been tempered by material challenges, including mechanical strength, controlled degradation, and biocompatibility. However, continuous improvements in alloy processing, polymer chemistry, and analytical imaging have unlocked renewed confidence among clinicians and device makers. Today's research landscape is characterized by interdisciplinary collaborations that refine scaffold architecture down to the microscopic level, ensuring reliable radial support through the critical healing window before resorption commences.

This executive summary distills key observations from recent clinical outcomes, supply chain analyses, and competitive positioning. By tracing the evolution of scaffold design, evaluating emerging regulatory dynamics, and highlighting pivotal industry maneuvers, this introduction sets the stage for an in-depth exploration of the factors shaping the next generation of bioabsorbable stents.

Revolutionary Advances and Disruptive Technologies Redefining the Landscape of Bioabsorbable Stent Development and Clinical Implementation

Advances in material science have propelled bioabsorbable stents from conceptual prototypes to commercially viable options. The transition from early polymer matrices to next-generation metal alloys has enhanced radial force and controlled resorption kinetics. At the same time, novel surface treatments and drug-eluting coatings have addressed the perennial challenge of neointimal hyperplasia, marrying the benefits of transient mechanical support with localized pharmacotherapy.

Manufacturing innovations have also played a critical role in redefining the landscape. Precision laser cutting and additive manufacturing techniques enable intricate scaffold geometries that optimize fluid dynamics and endothelialization. Concurrently, bioresorbable polymer blends now incorporate specialized linkers that modulate degradation rates, ensuring structural integrity throughout the vascular remodeling phase.

Clinically, these technological advances have intersected with enhanced procedural guidance systems. High-definition intravascular imaging and computational fluid modeling facilitate personalized stent selection and deployment, reducing the incidence of malapposition and scaffold recoil. Collectively, these transformative shifts mark a new era in which bioabsorbable stents no longer represent an aspirational concept but a practical therapeutic option under broader clinical consideration.

Analyzing the Far-Reaching Consequences of Newly Imposed United States Tariffs on Bioabsorbable Stent Supply Chains and Market Dynamics in 2025

Early in 2025 the introduction of new United States tariffs on key raw materials including magnesium and specialty polymers reverberated across global supply chains. Manufacturers faced immediate cost pressures as import duties raised the unit cost of critical alloys and monomers. Although these levies aimed to protect domestic production, they inadvertently fueled a rapid reassessment of sourcing strategies and material procurement models.

As tariffs took effect, device developers evaluated the cumulative impact on production economics and pricing models. The heightened input costs necessitated a shift toward localized alloy fabrication and intensified collaboration with domestic polymer suppliers. In some cases, organizations accelerated long-term commitments with regional foundries to secure favorable pricing and reduce exposure to import duty fluctuations.

Moreover, these policy changes spurred a wave of strategic integration. Several stent providers began exploring in-house polymer synthesis capabilities and joint ventures with alloy foundries. Such vertical alignment not only offset regulatory cost burdens but also enabled tighter control over material specifications and quality assurance. Ultimately the evolving tariff environment affirmed the critical importance of supply chain resilience in sustaining bioabsorbable stent innovation.

Illuminating Critical Insights from Segmenting Bioabsorbable Stents by Material Composition Product Type Degradation Time Clinical Application and End User

Distinct material compositions have emerged as defining factors in scaffold performance, with metal-based and polymer-based categories shaping product portfolios. In the metal-based cohort engineers leverage iron-based alloys for managed radial strength and predictable corrosion profiles while magnesium-based systems deliver accelerated resorption and minimal inflammation. Zinc-based blends strike an intermediate balance, offering controlled service life and mechanical flexibility. For polymer-based designs, poly-L-lactic acid scaffolds represent the established benchmark. Concurrent innovations in polycaprolactone, polydioxanone, and polyglycolic acid provide varied degradation windows and tailored biomechanical properties for specialized lesion morphologies.

Beyond material differentiation, the distinction between drug-eluting and non-drug-eluting stents continues to influence clinical utility. Drug-eluting variants incorporate antiproliferative agents that mitigate neointimal hyperplasia, improving long-term vessel patency. Non-drug-eluting scaffolds offer simplicity and cost advantages in low-risk patients or small-vessel applications where minimal pharmacotherapy suffices.

Degradation kinetics also inform product positioning. Scaffolds engineered to dissolve within less than twelve months accommodate rapid vessel healing, while options designed for twelve to twenty-four months support more complex lesions requiring extended scaffolding. Systems with resorption profiles exceeding two years maintain mechanical integrity for protracted intervals, addressing chronic occlusions and high-stress vascular segments.

Clinical applications span from coronary artery disease management to neurovascular interventions, pediatric congenital anomalies, and peripheral arterial disease treatments. This breadth underscores the technology's versatility but also demands tailored scaffold characteristics for each anatomical context.

Diverse end-user settings further shape adoption patterns. Academic and research institutions drive early-phase evaluations and protocol development, ambulatory surgical centers optimize procedural efficiency, high-volume cardiac centers focus on outcome standardization, and hospitals integrate bioabsorbable scaffolds into multidisciplinary care pathways.

Finally the distribution landscape continues to evolve, with traditional hospital procurement complemented by emerging digital platforms that streamline access and support remote training. This dual-channel model enhances reach while preserving critical in-person service and education components.

Exploring Distinct Regional Dynamics and Growth Drivers Shaping Adoption of Bioabsorbable Stents Across Americas Europe Middle East Africa and Asia Pacific

In the Americas, robust clinical infrastructure and favorable reimbursement frameworks have fostered early uptake of bioabsorbable scaffold technology. The United States remains the primary innovation and trial hub, while select Latin American markets demonstrate growing interest fueled by rising cardiovascular disease prevalence and improving healthcare access. This dual dynamic of high-end research and expanding patient outreach reinforces the region's strategic importance.

Europe, the Middle East, and Africa exhibit considerable heterogeneity shaped by diverse regulatory regimes and health technology assessment processes. Western European nations combine rigorous clinical evidence requirements with streamlined European Union pathways, creating a balanced environment for scaffold introduction. Conversely, markets in the Gulf Cooperation Council and sub-Saharan Africa reflect uneven adoption driven by infrastructure variability and prioritization of acute care spending. Nevertheless, regional initiatives to bolster cardiovascular services and collaborative procurement consortia are gradually nurturing a more receptive ecosystem.

Asia-Pacific stands out for its unparalleled patient volumes and rapid hospital modernization efforts. In China and India, government incentives for indigenously developed medical technologies have accelerated local polymer and alloy development. Japan and South Korea complement this momentum with strong clinical trial infrastructure and regulatory alignment to global standards. Across Southeast Asia and Oceania, growing disease burden and expanding cardiac intervention programs signal an expanding addressable base for bioabsorbable stent solutions.

Unveiling the Leading Competitive Strategies R&D Collaborations and Innovative Product Pipelines Driving Bioabsorbable Stent Manufacturers Forward

Leading device developers are intensifying investments in specialized alloy research and next-generation polymer engineering. Partnerships between multinational stent manufacturers and advanced materials firms have yielded proprietary formulations that optimize radial support while controlling degradation rates. Concurrently, a growing number of companies are inking collaborative agreements with academic institutions to validate new scaffold platforms in bench and animal models.

Recent consortiums and research alliances have also accelerated the integration of drug-release technologies. By combining expertise in pharmacology, polymer science, and surface fabrication, these partnerships aim to extend the therapeutic window of antiproliferative medications and enhance endothelial recovery. Such collective endeavors reflect a trend toward shared innovation ecosystems rather than isolated R&D silos.

Beyond laboratory alliances, a series of mergers and acquisitions have reshaped competitive trajectories. Established cardiovascular device firms have acquired startups with differentiated bioresorbable offerings to augment their product suites and accelerate clinical market entry. These consolidation moves underscore the sector's emphasis on scale, regulatory expertise, and comprehensive distribution capabilities.

Additionally, several leading stent providers have inaugurated innovation funds and incubators dedicated to early-stage scaffold concepts. By nurturing startup ecosystems and providing co-development resources, they aim to replenish their pipelines with disruptive ideas and retain first-mover advantages.

Empowering Industry Leaders with Actionable Roadmaps to Accelerate Commercial Success and Clinical Adoption of Bioabsorbable Stents Through Strategic Innovation

To capitalize on evolving clinical and regulatory landscapes, industry participants should prioritize advanced material development programs that balance mechanical integrity with predictable bioresorption. Strategic focus on next-generation alloys and polymer linkers will differentiate offerings and address persistent performance trade-offs.

Stakeholders must also bolster supply chain resilience by diversifying vendor relationships and exploring regional manufacturing hubs for critical feedstocks. Vertical integration models and long-term offtake agreements can mitigate the impact of tariff fluctuations and ensure uninterrupted production capacity.

Engaging closely with key opinion leaders and trial institutions will be essential for building compelling clinical evidence. Early demonstration of favorable safety and efficacy profiles through investigator-initiated studies can streamline regulatory interactions and strengthen reimbursement dossiers.

Finally, expanding digital distribution channels alongside traditional hospital networks will enhance reach and facilitate remote training programs. Innovative e-platforms that combine product ordering with interactive physician education will support adoption in both mature and emerging markets.

Detailing a Research Methodology That Combines Expert Interviews Secondary Data and Qualitative Quantitative Analysis to Deliver Insight Credibility

Our analysis draws on in-depth interviews with interventional cardiologists, materials scientists, and supply chain executives to capture real-world perspectives on bioabsorbable stents. These primary conversations were complemented by detailed reviews of regulatory documents, clinical trial registries, patent filings, and peer-reviewed literature.

Secondary research encompassed government healthcare reports, industry white papers, and conference proceedings to ensure an extensive contextual foundation. Data from cardiology societies and professional associations provided additional validation of procedural volumes and clinical preferences.

Qualitative insights were systematically translated into quantitative metrics through structured expert panels and weighted scoring models. This combined approach enabled robust cross-validation of findings and identification of high-impact trends.

Throughout the research process, methodological rigor was maintained via peer review and iterative feedback loops with domain specialists. Quality assurance protocols ensured that all data sources met predefined reliability and relevance criteria.

Synthesizing Key Findings and Strategic Imperatives to Illuminate the Path Forward for Bioabsorbable Stent Innovation Clinical Adoption and Market Maturation

The evolution of bioabsorbable stents reflects a convergence of material innovations, clinical demand for restorative vessel therapies, and strategic industry collaboration. Advances in metal and polymer science have enhanced scaffold performance, while refinements in manufacturing enable precise geometries and tailored drug-eluting capabilities.

Segment-specific insights reveal that performance profiles vary widely across material types, degradation windows, clinical indications, end-user settings, and distribution pathways. Regional analyses highlight distinct adoption patterns in the Americas, Europe Middle East & Africa, and Asia-Pacific, each driven by local healthcare infrastructure, regulatory priorities, and reimbursement models.

Competitive dynamics center on strategic partnerships, R&D alliances, and targeted acquisitions that expand pipelines and accelerate time-to-market. To sustain momentum, industry leaders must invest in resilient supply chains, cultivate clinical evidence, and embrace digital engagement strategies.

Taken together these findings illuminate a clear strategic path for organizations seeking to lead in the bioabsorbable stent arena. Executing on these imperatives will drive both near-term impact and long-term growth as the field advances toward standard of care adoption and broader patient benefit.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Emerging polymer compositions enhancing controlled degradation rates in next generation bioabsorbable stents
  • 5.2. Clinical adoption accelerated by real world evidence on long term vascular remodeling performance of absorbable scaffolds
  • 5.3. Advancements in drug elution technology incorporating anti inflammatory agents within bioabsorbable stent frameworks
  • 5.4. Regulatory milestones in Asia-Pacific market driving localized manufacturing investments for bioresorbable implants
  • 5.5. Collaborative innovation between device manufacturers and academic centers on magnesium based stent alloys with improved strength
  • 5.6. Integration of patient specific 3D printed stent designs optimizing fit and reducing restenosis risk in complex lesions

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Bioabsorbable Stents Market, by Material

  • 8.1. Introduction
  • 8.2. Metal-based Bioabsorbable Stents
    • 8.2.1. Iron-based
    • 8.2.2. Magnesium-based
    • 8.2.3. Zinc-based Alloys
  • 8.3. Polymer-based Bioabsorbable Stents
    • 8.3.1. Poly-L-lactic acid (PLLA)
    • 8.3.2. Polycaprolactone (PCL)
    • 8.3.3. Polydioxanone (PDO)
    • 8.3.4. Polyglycolic acid (PGA)

9. Bioabsorbable Stents Market, by Product Type

  • 9.1. Introduction
  • 9.2. Drug-Eluting
  • 9.3. Non-Drug-Eluting

10. Bioabsorbable Stents Market, by Degradation Time

  • 10.1. Introduction
  • 10.2. 12-24 months
  • 10.3. Less than 12 months
  • 10.4. More 24 months

11. Bioabsorbable Stents Market, by Application

  • 11.1. Introduction
  • 11.2. Coronary Artery Disease (CAD)
  • 11.3. Neurovascular Disease
  • 11.4. Pediatric Applications
  • 11.5. Peripheral Artery Disease (PAD)

12. Bioabsorbable Stents Market, by End User

  • 12.1. Introduction
  • 12.2. Academic & Research Institutions
  • 12.3. Ambulatory Surgical Centers
  • 12.4. Cardiac Centers
  • 12.5. Hospitals

13. Bioabsorbable Stents Market, by Distribution Channel

  • 13.1. Introduction
  • 13.2. Offline
  • 13.3. Online

14. Americas Bioabsorbable Stents Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Bioabsorbable Stents Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Bioabsorbable Stents Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Abbott Laboratories
    • 17.3.2. Arterius Ltd
    • 17.3.3. B. Braun SE
    • 17.3.4. BIOTRONIK SE & Co. KG
    • 17.3.5. Boston Scientific Corporation
    • 17.3.6. Elixir Medical Corporation
    • 17.3.7. JW Medical Systems Ltd. Biosensors International Group, Ltd.
    • 17.3.8. Kaneka Corporation
    • 17.3.9. Kyoto Medical Planning Co. Ltd.
    • 17.3.10. Meril Life Sciences
    • 17.3.11. Microport Scientific Corporation
    • 17.3.12. OrbusNeich Medical Group Holdings Limited
    • 17.3.13. Q3 Medical Group
    • 17.3.14. Reva Medical
    • 17.3.15. SafeGuard Surgical, Inc.
    • 17.3.16. Terumo Corporation
    • 17.3.17. Svelte Medical Systems Inc
    • 17.3.18. Lepu Medical Technology Co. Ltd.
    • 17.3.19. WEGO HEALTHCARE (SHENZHEN) CO., LTD
    • 17.3.20. Shandong Hua'an Biotechnology
    • 17.3.21. ELLA - CS, s.r.o.
    • 17.3.22. Cardionovum GmbH
    • 17.3.23. Zorion Medical Inc.
    • 17.3.24. Sino Medical Sciences Technology Inc.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제