시장보고서
상품코드
1806332

폐기물 에너지 시장 : 기술 유형, 원료 유형, 플랜트 용량, 용도, 최종사용자별 - 세계 예측(2025-2030년)

Waste-to-Energy Market by Technology Type, Feedstock Type, Plant Capacity, Application, End User - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 192 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

폐기물 에너지 시장은 2024년에는 547억 달러에 달하며, 2025년에는 CAGR 12.15%로 614억 7,000만 달러로 성장하며, 2030년에는 1,088억 7,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 547억 달러
추정연도 2025 614억 7,000만 달러
예측연도 2030 1,088억 7,000만 달러
CAGR(%) 12.15%

세계 에너지 전환 속에서 폐기물 에너지 부문을 형성하는 역동적인 촉진요인, 핵심 과제, 새로운 기회를 소개

폐기물 에너지 부문은 종합적인 폐기물 관리 및 재생에너지 포트폴리오의 중요한 구성 요소로 부상하고 있습니다. 매립지 의존도를 줄이기 위한 규제 압력이 증가하고, 배출량 제로에 대한 약속이 강화됨에 따라 유틸리티, 산업 운영 및 지방 당국의 이해관계자들은 지속가능한 전환 경로에 더 많은 관심을 기울이고 있습니다. 이 Executive Summary는 성장을 주도하는 힘, 프로젝트의 경제성을 재정의하는 기술 혁신, 장기적인 실행 가능성을 형성하는 정책적 상황에 대한 개요를 제시합니다.

폐기물 에너지 전환의 다음 물결을 주도하는 정책 개혁, 기술 발전, 혁신적인 비즈니스 모델 탐색

최근 수년간 폐기물 에너지를 둘러싼 환경은 정책 개혁, 기술 발전, 투자자의 우선 순위가 합쳐져 일련의 혁신적인 변화를 겪고 있습니다. 독립형 소각 플랜트에서 생화학 공정과 열가스화를 모두 이용하는 통합형 시설로 전환함으로써 성능 지표가 향상되고 가치 흐름이 확대되었습니다. 재생 열 크레딧과 탄소 포집 통합에 대한 새로운 규제 인센티브는 사업자들이 기존 자산을 개조하도록 장려하고, 혁신적인 민관 파트너십은 진화하는 폐기물 관리 의무에 따라 분산형 배치 모델을 가능하게 하고 있습니다.

2025년 미국 관세 조치가 폐기물 에너지 프로젝트 비용, 공급망, 경쟁 역학에 미치는 종합적인 영향 평가

2025년부터 시행되는 미국의 새로운 관세는 폐기물 에너지 공급망에 누적 영향을 미칠 것이며, 자본 지출 프로파일과 운영 비용 구조 모두에 영향을 미칠 것입니다. 수입되는 특수 부품, 촉매, 고성능 합금에 세금을 부과함으로써 관세 체계는 개발자와 장비 제조업체의 조달 비용을 상승시킵니다. 그 결과, 프로젝트 예산은 상승 압력을 받고 있으며, 이해 관계자들은 조달 전략을 재검토하고, 국내 제조 파트너십을 추구하고, 가능한 경우 대체 재료 사양을 검토하도록 요구받고 있습니다.

종합적인 기술, 원료, 규모, 용도, 최종사용자 세분화 분석을 통해 핵심 가치 동인과 특징적인 프로젝트 프로파일을 파악

시장 세분화를 자세히 살펴보면 기술 유형, 원료 공급원, 플랜트 규모, 최종 용도, 고객 프로파일에 걸쳐 명확한 가치 창출 요인을 확인할 수 있습니다. 변환 기술 영역에서는 혐기성 소화 및 발효와 같은 생화학 플랫폼이 소각 및 열가스화와 같은 열화학 옵션과 공존하고 있으며, 각 경로는 에너지 수율, 제품별 품질, 원료의 유연성 측면에서 고유한 트레이드오프를 제공합니다. 원료 카테고리를 평가할 때, 농업 잔류물 및 산업 폐기물 흐름은 예측 가능한 구성과 상대적 비용의 안정성으로 인해 점점 더 우선순위가 높아지고 있습니다. 한편, 도시 고형폐기물 및 하수 슬러지 프로젝트는 폐기물 수거 네트워크와 지역사회의 참여에 따라 달라집니다.

미주, 중동 및 아프리카, 아시아태평양의 폐기물 에너지에 대한 성장 패턴과 규제 환경 분석

지역별 역학을 분석해보면, 아메리카, 유럽-중동 및 아프리카, 아시아태평양이 각기 다른 성장 궤적을 보이고 있음을 알 수 있습니다. 북미와 남미에서는 매립지 전환과 재생에너지 포트폴리오 기준에 초점을 맞춘 정책 프레임워크가 북미의 성숙한 시장을 자극하고, 라틴아메리카에서는 도시 폐기물 문제를 해결하기 위한 민관 협력 증가가 이를 보완하고 있습니다. 반면, 유럽-중동 및 아프리카은 서유럽의 엄격한 배출 규제와 첨단인 탄소 시장이 특징이며, 중동 및 아프리카 일부 지역에서는 인프라가 미비하여 용량 확대 기회가 있습니다.

폐기물 에너지 시장 진출기업의 경쟁 역학, 전략적 제휴, 기술 리더십 평가

업계 선도적인 참여 기업을 조사한 결과, 전략적 제휴, 기술 라이선스 계약, 사이트별 프로젝트 경험에 의해 정의되는 경쟁 구도를 확인할 수 있었습니다. 주요 혁신가들은 엔드 투 엔드 솔루션을 제공하기 위해 원료 공급 회사 및 엔지니어링 회사와 파트너십을 맺고 있습니다. 한편, 세계 사업 기반을 구축한 인티그레이터는 개발 파이프라인을 간소화하기 위해 여러 분야의 전문성을 활용하고 있습니다. 신기술 프로바이더들은 독자적인 촉매, 디지털 공정 제어, 성능 및 규정 준수를 강화하는 첨단 배출가스 관리 시스템을 통해 차별화를 꾀하고 있습니다.

전략적 기술 투자, 공급망 파트너십, 이해관계자 참여를 통해 폐기물 에너지 전환 부문의 지속가능한 리더십을 추진

폐기물 에너지 분야에서 확고한 입지를 구축하고자 하는 업계 리더들은 기술 혁신, 운영 탄력성, 이해관계자 협력의 균형 잡힌 조합을 통한 다각적 접근을 우선시해야 합니다. 첫째, 모듈식 및 확장 가능한 프로세스 아키텍처에 투자함으로써 자본 위험을 줄이고 시장 진입을 가속화할 수 있는 생산 능력을 점진적으로 증가시킬 수 있습니다. 둘째, 원료 수집업체, 지방정부, 오프테커와의 견고한 관계를 구축하여 공급망의 연속성과 유리한 계약 조건을 확보합니다.

전문가 인터뷰, 2차 정보 통합, 폐기물 에너지에 대한 인사이트를 위한 데이터 삼각측량 등을 통합한 견고한 혼합 방법론별 조사 프레임워크 개요

본 분석은 1차 정보와 2차 정보를 결합한 엄격한 조사 기법을 통해 구축되어 깊이와 정확성을 모두 확보했습니다. 엔지니어링 회사, 기술 프로바이더, 프로젝트 개발자, 정책 자문가와의 전문가 인터뷰를 통해 새로운 동향, 운영상 과제, 전략적 요구사항에 대한 질적 인사이트를 확보했습니다. 동시에, 공식 제출 서류, 규제 문서, 특허 데이터베이스, 학술 간행물 등을 종합적으로 검토하여 정량적 프레임워크를 지원하고 주제별 발견을 검증했습니다.

정책, 기술, 세분화, 지역적 관점을 통합하여 폐기물 에너지 발전을 위한 통합된 전략적 전망을 수립

결론적으로 폐기물 에너지 산업은 진화하는 정책 프레임워크, 기술 혁신, 관세 환경이 미래의 성장 궤도를 형성하는 중요한 교차로에 서 있습니다. 이해관계자들은 2025년 관세 제도로 인해 변화하는 비용 구조에 적응하는 한편, 첨단 생화학 및 열화학 변환 경로가 가져다주는 기회를 활용해야 합니다. 기술, 원료, 규모, 용도, 최종사용자에 대한 전략적 세분화는 프로젝트의 성공을 좌우하는 미묘한 수요 프로파일과 운영상의 고려사항을 강조합니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 폐기물 에너지 시장 : 기술 유형별

  • 생화학적
    • 혐기성 소화
    • 발효
    • 매립
  • 화학
  • 열화학
    • 소각
    • 열분해
    • 열 가스화

제9장 폐기물 에너지 시장 : 원료 유형별

  • 농업 폐기물
    • 동물 비료
    • 작물 잔사
  • 산업 폐기물
  • 의료 폐기물
  • 도시 고형 폐기물
    • 상업 폐기물
    • 가정 쓰레기
  • 하수 슬러지

제10장 폐기물 에너지 시장 : 플랜트 용량별

  • 대규모
  • 중규모
  • 소규모

제11장 폐기물 에너지 시장 : 용도별

  • 열병합발전
  • 지역 난방
  • 발전
  • 수소 제조

제12장 폐기물 에너지 시장 : 최종사용자별

  • 상업용
  • 산업시설
  • 자치체 및 지방 정부

제13장 아메리카의 폐기물 에너지 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제14장 유럽, 중동 및 아프리카의 폐기물 에너지 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제15장 아시아태평양의 폐기물 에너지 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • ANDRITZ AG
    • Axpo Holding AG
    • Arrow Ecology & Engineering Overseas Ltd.
    • Babcock & Wilcox Enterprises, Inc.
    • China Everbright Limited
    • EQT Group
    • Emery Energy Company
    • Evoqua Water Technologies LLC
    • Flex Energy Solutions
    • Hitachi Zosen Corporation
    • WSP
    • Keppel Corporation Limited
    • Veolia Environnement SA
    • Wheelabrator Technologies Inc.
    • Energos AS
    • Sutco UK Ltd.
    • Fortum Corporation
    • Ramboll Group A/S
    • MAN Energy Solutions SE
    • Tana Oy
    • EEW Energy from Waste GmbH
    • Mitsubishi Heavy Industries, Ltd.
    • JFE Engineering Corporation
    • Doosan Lentjes GmbH
    • Kawasaki Heavy Industries, Ltd.
    • AVR Afvalverwerking BV
    • Intouch Monitoring Ltd.
    • Zheneng Jinjiang Environment Holding Co Ltd
    • Ardian
    • Viridor Limited

제17장 리서치 AI

제18장 리서치 통계

제19장 리서치 컨택

제20장 리서치 기사

제21장 부록

KSA 25.09.17

The Waste-to-Energy Market was valued at USD 54.70 billion in 2024 and is projected to grow to USD 61.47 billion in 2025, with a CAGR of 12.15%, reaching USD 108.87 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 54.70 billion
Estimated Year [2025] USD 61.47 billion
Forecast Year [2030] USD 108.87 billion
CAGR (%) 12.15%

Introducing the Dynamic Drivers, Core Challenges, and Emerging Opportunities Shaping the Waste-to-Energy Sector Within the Global Energy Transition

The waste-to-energy sector has emerged as a critical component of integrated waste management and renewable energy portfolios. Driven by mounting regulatory pressure to curtail landfill dependence and escalating commitments to net-zero emissions, stakeholders across public utilities, industrial operations, and municipal authorities are intensifying their focus on sustainable conversion pathways. This executive summary presents an overview of the forces propelling growth, the technical innovations redefining project economics, and the policy landscapes that are shaping long-term viability.

As urbanization accelerates and waste generation per capita continues to rise, the need for resilient energy systems has never been more pronounced. Simultaneously, investor appetite for circular economy initiatives and low-carbon solutions is fueling capital deployment into advanced conversion facilities. Transitioning from traditional combustion methods to hybrid approaches that integrate biochemical processes alongside thermal gasification is fostering a new generation of waste-to-energy installations capable of delivering reliable baseload power, heat integration, and valuable byproducts.

With industry imperatives increasingly aligned around decarbonization, resource recovery, and community engagement, the introduction of innovative feedstock pre-treatment, digital monitoring, and adaptive policy frameworks will define the competitive landscape. This introduction sets the stage for a deep dive into the transformative shifts, tariff impacts, segmentation dynamics, regional nuances, and strategic recommendations necessary to navigate the evolving waste-to-energy market.

Exploring the Policy Reforms, Technological Advancements, and Innovative Business Models Driving the Next Wave of Waste-to-Energy Transformation

In recent years, the waste-to-energy landscape has undergone a series of transformative shifts driven by a confluence of policy reform, technological advancement, and investor priorities. Transitioning from standalone incineration plants to integrated facilities that harness both biochemical processes and thermal gasification has elevated performance metrics and broadened value streams. New regulatory incentives for renewable heat credits and carbon capture integration have prompted operators to retrofit existing assets, while innovative public-private partnerships are enabling decentralized deployment models that align with evolving waste management mandates.

Furthermore, advances in feedstock sorting, AI-driven process optimization, and modular plant design are enabling shorter project lead times and improved returns on investment. As stakeholders navigate tightening emissions limits alongside ambitious renewable energy targets, the sector is witnessing a shift from volume-based processing toward value-oriented resource recovery. This evolution places a premium on the ability to convert diverse agricultural residues, municipal solid waste, and industrial byproducts into high-quality syngas, combined heat and power, or hydrogen streams.

Looking ahead, the intersection of digital twins, predictive maintenance, and asset performance analytics will continue to reconfigure operational frameworks. This paradigm shift reinforces the importance of adaptive business models capable of responding to dynamic regulatory regimes and market-based carbon pricing mechanisms, ensuring the waste-to-energy industry remains at the forefront of the broader energy transition.

Assessing the Comprehensive Effects of 2025 United States Tariff Measures on Project Costs, Supply Chains, and Competitive Dynamics in Waste-to-Energy

The implementation of new United States tariffs effective in 2025 is set to exert a cumulative impact on the waste-to-energy supply chain, influencing both capital expenditure profiles and operational cost structures. By imposing levies on imported specialized components, catalysts, and high-performance alloys, the tariff framework elevates procurement costs for developers and equipment manufacturers alike. As a consequence, project budgets are experiencing upward pressure, prompting stakeholders to reassess sourcing strategies, pursue domestic manufacturing partnerships, and explore alternative material specifications where feasible.

In response, industry participants are accelerating efforts to localize supply chains and co-develop critical technologies with domestic suppliers. This approach not only mitigates exposure to import duties but also aligns with broader national objectives around onshore industrial revitalization. However, smaller developers and emerging technology providers may face tighter margins, leading to increased consolidation activity as firms seek scale efficiencies to offset tariff-related headwinds.

Moreover, the cumulative tariff burden is reshaping the competitive landscape by creating differentiated cost structures across project geographies. States with aggressive incentives for renewable energy and resource recovery are better positioned to absorb incremental costs, while regions with less supportive frameworks may encounter delays in project permitting or financing. Navigating this evolving environment requires a proactive stance toward supply chain diversification, strategic partnerships, and engagement with policymaking processes to ensure continued sectoral momentum.

Uncovering Core Value Drivers and Distinct Project Profiles Through Comprehensive Technology, Feedstock, Scale, Application, and End User Segmentation Analysis

A detailed examination of market segmentation reveals distinct value drivers across technology types, feedstock origination, plant scale, end uses, and customer profiles. Within the domain of conversion technologies, biochemical platforms such as anaerobic digestion and fermentation coexist alongside thermochemical options including incineration and thermal gasification, with each pathway offering unique trade-offs in terms of energy yield, byproduct quality, and feedstock flexibility. When evaluating feedstock categories, agricultural residues and industrial waste streams are increasingly prioritized for their predictable composition and relative cost stability, whereas municipal solid waste and sewage sludge projects hinge on waste collection networks and community engagement.

Plant scale also exerts a profound influence on project viability. Large-scale facilities benefit from economies of scale and integrated heat markets, while medium- and small-scale units deliver modular deployment advantages and lower capital thresholds, catering to distributed energy demands. Across application segments, combined heat and power installations remain the backbone of industrial and district heating partnerships, while electricity generation units are diversifying into hydrogen production through emerging gasification and reforming hybrids.

Finally, end user segmentation underscores the multifaceted nature of demand. Commercial entities, industrial facilities, and municipalities each require tailored engagement strategies that reflect differing contract structures, financing models, and sustainability objectives. A nuanced understanding of these segmentation parameters is essential for stakeholders seeking to align technological solutions with market-specific requirements and achieve optimal commercial outcomes.

Analyzing Divergent Waste-to-Energy Growth Patterns and Regulatory Environments Across Americas, Europe Middle East & Africa, and Asia-Pacific Regions

An exploration of regional dynamics highlights divergent growth trajectories across the Americas, Europe Middle East and Africa, and Asia-Pacific zones. In the Americas, policy frameworks focused on landfill diversion and renewable portfolio standards have stimulated mature markets in North America, complemented by rising public-private collaboration in Latin America to address urban waste challenges. Meanwhile, the Europe Middle East and Africa region is characterized by stringent emissions regulations and advanced carbon markets in Western Europe, juxtaposed with nascent infrastructure and opportunity for capacity expansion across the Middle East and parts of Africa.

Conversely, Asia-Pacific markets are witnessing robust investment in waste-to-energy technologies driven by rapid urbanization, energy security goals, and escalating resource constraints. China, Japan, and South Korea lead in thermal gasification and advanced incineration deployments, while Southeast Asian nations are prioritizing tailored biogas solutions for agricultural waste management. Regional financing instruments, cross-border trade agreements, and multilateral development bank initiatives further shape the investment climate and project delivery timelines.

Understanding the interplay of regulatory incentives, technology adoption rates, and funding mechanisms across these three macro regions is vital for mapping market entry strategies and cultivating effective partnerships that align with diverse policy and economic contexts.

Evaluating Competitive Dynamics, Strategic Collaborations, and Technology Leadership Among Prominent Waste-to-Energy Market Participants

A review of leading industry participants reveals a competitive landscape defined by strategic alliances, technology licensing agreements, and site-specific project experience. Key innovators are forging partnerships with feedstock suppliers and engineering firms to deliver end-to-end solutions, while integrators with established global footprints are leveraging multi-disciplinary expertise to streamline development pipelines. Emerging technology providers are differentiating through proprietary catalysts, digital process controls, and advanced emissions management systems that enhance performance and compliance.

Equity investors and infrastructure funds are increasingly active, supporting project developers with capital allocations structured around long-term power purchase agreements and green credit frameworks. Strategic joint ventures between utility companies and specialized technology firms are also on the rise, enabling access to local distribution networks and regulatory approvals. Meanwhile, collaboration between equipment manufacturers and research institutes is accelerating the commercialization of novel gasification reactors and hybrid biochemical-thermal processes.

These company-focused dynamics underscore the importance of technology differentiation, operational track records, and the ability to navigate complex permitting environments. Organizations that excel at integrating value chain capabilities while maintaining agile project execution will be best positioned to capture emerging opportunities across the global waste-to-energy market.

Implementing Strategic Technology Investments, Supply Chain Partnerships, and Stakeholder Engagement to Drive Sustained Waste-to-Energy Sector Leadership

Industry leaders seeking to solidify their positioning in the waste-to-energy arena should prioritize a multifaceted approach that balances technological innovation, operational resilience, and stakeholder alignment. First, investing in modular and scalable process architectures allows for incremental capacity additions that mitigate capital risk and accelerate market entry. Second, cultivating robust relationships with feedstock aggregators, local authorities, and off-takers ensures supply chain continuity and favorable contract terms.

Furthermore, integrating digital monitoring and predictive analytics across plant operations will optimize asset performance, reduce unplanned downtime, and enable data-driven enhancement of yield and emissions profiles. Engaging proactively with policy makers and participating in tariff review proceedings can shape favorable regulatory outcomes and minimize exposure to abrupt cost shifts. Additionally, forging partnerships for co-development of next-generation catalysts or gasification technologies can unlock proprietary advantages and strengthen long-term market positioning.

Finally, aligning corporate sustainability goals with project-level community engagement initiatives enhances social license to operate, fosters local support, and contributes to holistic environmental stewardship. By executing on these interconnected priorities, organizations can build competitive moats, unlock new revenue streams, and drive the transition toward a circular, low-carbon economy.

Outlining a Robust Mixed-Methods Research Framework Incorporating Expert Interviews, Secondary Source Synthesis, and Data Triangulation for Waste-to-Energy Insights

This analysis was constructed through a rigorous research methodology combining primary and secondary data sources to ensure both depth and accuracy. Expert interviews with engineering firms, technology providers, project developers, and policy advisors provided qualitative insights into emerging trends, operational challenges, and strategic imperatives. Concurrently, a comprehensive review of public filings, regulatory documents, patent databases, and academic publications underpinned the quantitative framework and validated thematic findings.

Data triangulation techniques were applied to reconcile disparate information streams, while scenario planning exercises helped anticipate the potential impact of policy shifts, tariff changes, and technological breakthroughs. Segmentation variables across technology type, feedstock category, plant capacity, application, and end user were defined to align with industry-standard frameworks and facilitate comparative analysis. Regional market assessments incorporated macroeconomic indicators, regulatory landscapes, and incentive structures to generate contextualized insights.

All findings underwent a multi-tiered validation process involving peer review and consistency checks, ensuring that recommendations reflect credible assumptions and the latest market realities. This methodology delivers a robust foundation for decision makers to navigate the complexities of the waste-to-energy sector with confidence.

Synthesizing Policy, Technology, Segmentation, and Regional Perspectives to Formulate a Cohesive Strategic Outlook for Waste-to-Energy Advancement

In conclusion, the waste-to-energy industry stands at a pivotal juncture where evolving policy frameworks, technological innovations, and tariff landscapes converge to shape future growth trajectories. Stakeholders must adapt to shifting cost structures driven by the 2025 tariff regime, while capitalizing on opportunities presented by advanced biochemical and thermochemical conversion pathways. Strategic segmentation across technology, feedstock, scale, application, and end user highlights the nuanced demand profiles and operational considerations that define project success.

Regional variances in regulatory incentives, infrastructure maturity, and financing mechanisms underscore the importance of tailored market approaches across the Americas, Europe Middle East and Africa, and Asia-Pacific. Leading companies are forging collaborative ecosystems to integrate cutting-edge catalysts, digital controls, and localized supply chains. Meanwhile, actionable recommendations emphasize modular design, digital enablement, policy engagement, and community alignment as hallmarks of enduring competitive advantage.

By applying the insights and methodologies presented in this summary, decision makers can refine their strategic roadmaps, optimize resource allocations, and accelerate deployment of sustainable waste-to-energy solutions that support broader decarbonization and circular economy objectives.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Implementation of real-time blockchain-enabled waste tracking systems to enhance feedstock transparency and compliance
  • 5.2. Deployment of digital twins and AI-driven analytics for optimizing operational efficiency in waste-to-energy plants
  • 5.3. Integration of circular economy principles into advanced waste-to-energy infrastructure development enabling resource recovery
  • 5.4. Strategic shift towards feedstock co-processing of agricultural and plastic waste in emerging waste-to-energy facilities
  • 5.5. Expansion of modular decentralized waste-to-energy microgrids to support rural electrification and reduce transmission losses
  • 5.6. Synergistic integration of waste-to-energy with green hydrogen production for decarbonizing industrial energy supply chains
  • 5.7. Adoption of carbon capture and utilization technologies in waste-to-energy operations to achieve net-zero emission targets
  • 5.8. Emergence of biochar co-production in pyrolysis-based waste-to-energy systems for soil amendment and carbon sequestration
  • 5.9. Acceleration of public-private partnership frameworks under new policy incentives for sustainable waste-to-energy investments
  • 5.10. Advancement of high-temperature gasification coupled with plasma technology for maximizing energy recovery from municipal solid waste

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Waste-to-Energy Market, by Technology Type

  • 8.1. Introduction
  • 8.2. Biochemical
    • 8.2.1. Anaerobic Digestion
    • 8.2.2. Fermentation
    • 8.2.3. Landfilling
  • 8.3. Chemical
  • 8.4. Thermochemical
    • 8.4.1. Incineration
    • 8.4.2. Pyrolysis
    • 8.4.3. Thermal Gasification

9. Waste-to-Energy Market, by Feedstock Type

  • 9.1. Introduction
  • 9.2. Agricultural Waste
    • 9.2.1. Animal Manure
    • 9.2.2. Crop Residue
  • 9.3. Industrial Waste
  • 9.4. Medical Waste
  • 9.5. Municipal Solid Waste
    • 9.5.1. Commercial Waste
    • 9.5.2. Household Waste
  • 9.6. Sewage Sludge

10. Waste-to-Energy Market, by Plant Capacity

  • 10.1. Introduction
  • 10.2. Large Scale
  • 10.3. Medium Scale
  • 10.4. Small Scale

11. Waste-to-Energy Market, by Application

  • 11.1. Introduction
  • 11.2. Combined Heat And Power
  • 11.3. District Heating
  • 11.4. Electricity Generation
  • 11.5. Hydrogen Production

12. Waste-to-Energy Market, by End User

  • 12.1. Introduction
  • 12.2. Commercial
  • 12.3. Industrial Facilities
  • 12.4. Municipalities & Local Governments

13. Americas Waste-to-Energy Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Waste-to-Energy Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Waste-to-Energy Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. ANDRITZ AG
    • 16.3.2. Axpo Holding AG
    • 16.3.3. Arrow Ecology & Engineering Overseas Ltd.
    • 16.3.4. Babcock & Wilcox Enterprises, Inc.
    • 16.3.5. China Everbright Limited
    • 16.3.6. EQT Group
    • 16.3.7. Emery Energy Company
    • 16.3.8. Evoqua Water Technologies LLC
    • 16.3.9. Flex Energy Solutions
    • 16.3.10. Hitachi Zosen Corporation
    • 16.3.11. WSP
    • 16.3.12. Keppel Corporation Limited
    • 16.3.13. Veolia Environnement SA
    • 16.3.14. Wheelabrator Technologies Inc.
    • 16.3.15. Energos AS
    • 16.3.16. Sutco UK Ltd.
    • 16.3.17. Fortum Corporation
    • 16.3.18. Ramboll Group A/S
    • 16.3.19. MAN Energy Solutions SE
    • 16.3.20. Tana Oy
    • 16.3.21. EEW Energy from Waste GmbH
    • 16.3.22. Mitsubishi Heavy Industries, Ltd.
    • 16.3.23. JFE Engineering Corporation
    • 16.3.24. Doosan Lentjes GmbH
    • 16.3.25. Kawasaki Heavy Industries, Ltd.
    • 16.3.26. AVR Afvalverwerking BV
    • 16.3.27. Intouch Monitoring Ltd.
    • 16.3.28. Zheneng Jinjiang Environment Holding Co Ltd
    • 16.3.29. Ardian
    • 16.3.30. Viridor Limited

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제