시장보고서
상품코드
1806524

금속복합재료(MMC) 시장 : 금속 기재 유형별, 강화재 유형별, 가공 방법별, 용도별, 최종 이용 산업별 - 세계 예측(2025-2030년)

Metal Matrix Composites Market by Matrix Metal Type, Reinforcement Type, Processing Method, Application, End-Use Industry - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 190 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

금속복합재료(MMC) 시장은 2024년에는 5억 8,269만 달러로 평가되었습니다. 2025년에는 6억 4,178만 달러에 이르고, CAGR 10.40%로 성장하여 2030년에는 10억 5,519만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 5억 8,269만 달러
추정 연도 : 2025년 6억 4,178만 달러
예측 연도 : 2030년 10억 5,519만 달러
CAGR(%) 10.40%

현대 엔지니어링 응용 분야에서 MMC의 전략적 중요성과 진화 궤적에 대해 알아봅니다.

MMC는 고강도, 경량화, 우수한 열 안정성을 필요로 하는 산업계의 핵심 소재로 부상하고 있습니다. 역사적으로 기존 합금의 한계를 극복하기 위해 개발된 이 복합재료는 금속 매트릭스 내에 강화상을 통합하여 엔지니어링의 가능성을 재정의하는 성능 특성을 실현하고 있습니다. 자동차 산업이 연비 효율을 추구하고 항공우주 산업이 더 높은 부하 용량을 추구하는 가운데, 금속 매트릭스 복합재료는 재료 혁신과 실제 응용의 격차를 해소하는 가교 역할을 하고 있습니다.

세계 MMC 개발의 궤적을 재정의하는 혁신적인 기술과 시장 변화를 살펴봅니다.

재료 과학의 급속한 발전과 산업 수요의 진화에 힘입어 MMC의 상황은 변혁적인 변화를 겪고 있습니다. 세라믹 상으로 강화된 고엔트로피 매트릭스와 같은 새로운 합금 시스템은 강도, 강성, 내열성이라는 전례 없는 조합을 제공함으로써 기존의 설계 패러다임에 도전하고 있습니다. 이러한 기술 혁신과 함께 새로운 표면 처리 및 계면 공학 기술을 통해 섬유와 매트릭스의 결합을 보다 정밀하게 제어할 수 있게 되어 하중 전달과 피로 수명을 최적화할 수 있게 되었습니다.

2025년 시행되는 미국 관세가 MMC 분야 공급망 및 무역 흐름에 미치는 누적 영향 평가

미국의 2025년 관세 도입은 MMC의 세계 공급망에 새로운 복잡성을 가져왔습니다. 주요 전구체 재료와 완성된 복합재 부품에 추가 관세를 부과함으로써, 이러한 정책 조정은 제조업체의 비용 구조를 변화시키고 전략적 조달 결정의 기반을 이동시켰습니다. 국내 제조업체들은 수입 비용 상승을 흡수하는 것보다 전구체 제조를 국산화하는 것이 더 유리하다고 판단하고 있으며, 해외 공급업체들은 미국 시장 접근성을 유지하기 위해 가격 전략을 재조정하고 있습니다.

금속 기반 유형, 강화재 유형, 가공 방법, 용도, 최종 이용 산업의 다양한 시장 세분화에서 중요한 통찰력 도출

시장 세분화에 대한 통찰력을 통해 MMC의 다면적인 특성과 다양한 산업 과제에 대한 적용 가능성을 확인할 수 있습니다. 모재 금속유형별로 시장을 살펴보면, 알루미늄 기반 MMC는 경량 구조의 요구를 지배하고, 구리 기반은 열 전도성 응용 분야에 탁월하며, 마그네슘 기반 복합재료는 저밀도 요구 사항을 우선시하고, 니켈 기반 시스템은 고온 환경에 적합하며, 티타늄 기반 배합은 뛰어난 강도 대 중량 비율을 달성합니다. 을 실현합니다. 각 베이스 메탈은 특정 엔지니어링 요구에 부합하는 고유한 성능 범위를 제시합니다.

MMC 분야의 미주, 유럽, 중동/아프리카, 아시아태평양의 역학 및 전략적 기회 분석

MMC 시장의 지역별 분석은 북미, 남미, 유럽, 중동 및 아프리카, 아시아태평양의 명확한 시장 성장 촉진요인과 시장 기회를 밝혀냈습니다. 북미와 남미에서는 엄격한 자동차 연비 규제와 항공우주 개조 프로그램의 확대로 수요가 증가하면서 기존 합금에서 복합재료로 대체되고 있습니다. 북미의 연구 거점은 산업 실증 프로젝트를 가속화하고 있으며, 라틴아메리카 국가들은 지역 밀착형 복합재 제조를 지원하는 공급망 노드를 점차적으로 구축하고 있습니다.

2025년 이후 MMC 산업 생태계를 형성할 주요 기업의 경쟁 전략과 혁신 분석

MMC 분야의 주요 기업들은 경쟁 우위를 유지하기 위해 내부 R&D 투자, 전략적 파트너십, 포트폴리오 다각화를 조합하여 활용하고 있습니다. 주요 재료 공급업체들은 계산 열역학 및 고처리량 실험을 통해 합금 설계를 진행하고 특정 강화재 조합에 최적화된 매트릭스 배합을 제조하고 있습니다. 이와 함께, 전문 제조업체는 실시간 공정 모니터링과 디지털 트윈 아키텍처를 생산 라인에 통합하여 미세 구조적 특성의 적응 제어와 일관된 품질 결과를 가능하게 합니다.

업계 리더들이 MMC 시장에서 채택을 가속화하고 우위를 점할 수 있는 실행 가능한 전략과 전술적 로드맵 제시

업계 리더들은 적극적인 태도를 취하고, 전략적 인사이트를 시장 침투를 가속화할 수 있는 비즈니스 이니셔티브로 전환해야 합니다. 첫째, 기능 간 혁신 협의회를 설립하여 재료과학, 공정공학, 애플리케이션 개발 팀 간의 사일로를 깨고 신속한 아이디어 발상 주기와 개념검증 검증을 촉진할 수 있습니다. 개발 초기 단계에서 고객 피드백 루프를 통합함으로써 리더는 시장 출시 시간을 최소화하면서 엄격한 성능 사양을 충족하는 복합재 배합을 개선할 수 있습니다.

MMC 조사에서 종합적인 통찰력을 밝히기 위해 채택된 엄격한 조사 방법론과 분석 프레임워크 개요

이 종합적인 분석은 2차 데이터 수집, 1차 이해관계자 인터뷰, 고급 분석 프레임워크를 결합한 엄격한 다단계 조사 방법을 통해 이루어졌습니다. 초기 단계에서는 과학 출판물, 특허 출원, 기술 회의록을 철저히 검토하여 새로운 재료 혁신과 가공 혁신 기술을 확인했습니다. 동시에 업계 보고서와 규제 문서에서 무역 정책, 인증 요건, 시장 성장 촉진요인에 대한 정보를 얻었습니다.

MMC 기술의 진화를 탐색하는 이해관계자를 위한 핵심 사항과 향후 전망 전망

MMC의 진화는 첨단 합금 개발, 강화 엔지니어링, 적응형 제조 전략의 결합으로 특징지어집니다. 주요 요점은 이해관계자들이 R&D 로드맵을 혁신적인 가공 기술, 관세에 민감한 조달 네트워크, 지속가능성 요구와 일치시켜야 한다는 점을 강조하고 있습니다. 업계 경쟁 구도는 센싱과 자가 치유 기능을 통합한 다기능 복합재료를 개척하는 소수의 재료 혁신가와 제조 전문가에 의해 정의됩니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 MMC 시장 : 금속 기재 유형별

  • 알루미늄 기반 MMC
  • 구리 기반 MMC
  • 마그네슘 기반 MMC
  • 니켈 기반 MMC
  • 티타늄 기반 MMC

제9장 MMC 시장 : 강화재 유형별

  • 섬유 강화
    • 장섬유 강화
    • 단섬유 강화
  • 하이브리드
  • 입자
    • 탄화붕소
    • 탄화규소

제10장 MMC 시장 : 가공 방법별

  • 액상법
    • 전기도금 및 전기주조
    • 가압 침투법
    • 반응성 처리법
    • 스프레이 디포지션법
    • 스퀴즈 캐스팅법
    • 스타 캐스팅법
  • 반고상법
  • 고상법
    • 박확산 접합법
    • 분말 혼합 및 고체화법
  • 증착법

제11장 MMC 시장 : 용도별

  • 브레이크 시스템
  • 엔진 부품
  • 우주 시스템
  • 구조 부품
  • 열관리 시스템

제12장 MMC 시장 : 최종 이용 산업별

  • 항공우주 및 방위
  • 자동차
  • 일렉트로닉스
  • 에너지 및 전력
  • 산업기계
  • 의료 및 헬스케어

제13장 아메리카의 MMC 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제14장 유럽, 중동 및 아프리카의 MMC 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제15장 아시아태평양의 MMC 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • CPS Technologies Corporation
    • CeramTec GmbH
    • 3M Company
    • 3A Composites
    • APR Composites
    • Coherent Corp.
    • DWA Aluminum Composites USA, Inc.
    • GKN Powder Metallurgy Holding GmbH
    • Goodfellow Cambridge Ltd.
    • H.C. Starck GmbH
    • Hitachi Metals, Ltd.
    • KTW Technology GmbH
    • Kyocera Corporation
    • Materion Corporation
    • Mitsubishi Materials Corporation
    • OC Oerlikon Management AG
    • Plansee SE
    • Sandvik AB
    • Sitek Insulation Sasu
    • Thermo Fisher Scientific Inc.

제17장 리서치 AI

제18장 리서치 통계

제19장 리서치 컨택트

제20장 리서치 기사

제21장 부록

LSH 25.09.17

The Metal Matrix Composites Market was valued at USD 582.69 million in 2024 and is projected to grow to USD 641.78 million in 2025, with a CAGR of 10.40%, reaching USD 1,055.19 million by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 582.69 million
Estimated Year [2025] USD 641.78 million
Forecast Year [2030] USD 1,055.19 million
CAGR (%) 10.40%

Unveiling the Strategic Importance and Evolutionary Trajectory of Metal Matrix Composites in Modern Engineering Applications

Metal matrix composites have emerged as cornerstone materials in industries demanding enhanced strength, reduced weight, and superior thermal stability. Historically developed to address limitations of conventional alloys, these composites integrate reinforcing phases within metallic matrices to achieve performance characteristics that redefine engineering possibilities. As the automotive sector strives for fuel efficiency and the aerospace industry pursues higher load capacities, metal matrix composites bridge the gap between material innovation and real-world applications.

In recent years, the maturation of processing techniques and the diversification of reinforcement options have propelled these composites from niche research domains into mainstream manufacturing pipelines. Advanced literature reviews and patent analyses reveal a growing emphasis on hybrid composite architectures, whereby combinations of fibers and particles are engineered to tailor mechanical and thermal behaviors. Such interdisciplinary progress is underpinned by collaborations between materials scientists, metallurgists, and design engineers, fostering a dynamic ecosystem of innovation.

Looking ahead, stakeholders must recognize how ongoing technological breakthroughs, evolving regulatory frameworks, and shifting supply chains will shape future material choices. This introduction establishes a foundational understanding of metal matrix composites' strategic importance, setting the stage for deeper exploration of transformative market forces, tariff impacts, segmentation insights, regional dynamics, and competitive strategies that collectively define the present and future of this rapidly evolving field.

Exploring Transformative Technological and Market Shifts That Are Redefining the Trajectory of Metal Matrix Composite Development Worldwide

The landscape of metal matrix composites is undergoing transformative shifts driven by rapid advancements in material science and evolving industrial demands. Emerging alloy systems, such as high-entropy matrices reinforced with ceramic phases, are challenging traditional design paradigms by delivering unprecedented combinations of strength, stiffness, and temperature resilience. Parallel to these innovations, new surface treatment and interfacial engineering methods are enabling more precise control over fiber-matrix bonding, thereby optimizing load transfer and fatigue life.

In addition to technological breakthroughs, market dynamics are being reshaped by the convergence of digitalization and additive manufacturing. The integration of computational modeling tools accelerates the design cycle, allowing researchers to predict composite behavior under complex loading conditions before committing to costly prototyping. Meanwhile, additive manufacturing platforms are beginning to facilitate the fabrication of near-net-shape composite components, which significantly reduces material waste and machining time.

Moreover, sustainability considerations are fostering a shift towards recyclable and bio-based reinforcements, as end users prioritize circular economy principles. The cumulative effect of these trends is a material ecosystem in flux, where interdisciplinary collaboration and agile innovation strategies become critical success factors. As industries embrace these paradigm shifts, stakeholders must adapt their R&D roadmaps and supply chain models to harness the full potential of next-generation metal matrix composites.

Assessing the Cumulative Impact of United States Tariffs Implemented in 2025 on Supply Chains and Trade Flows in the Metal Matrix Composites Sector

The introduction of tariffs by the United States in 2025 has introduced new complexities into global supply chains for metal matrix composites. By imposing additional duties on key precursor materials and finished composite components, the policy adjustments have altered cost structures for manufacturers and shifted the locus of strategic sourcing decisions. Domestic producers are evaluating the merits of localizing precursor fabrication versus absorbing higher import costs, while international suppliers are recalibrating pricing strategies to maintain access to U.S. markets.

This policy environment has also catalyzed the exploration of alternative raw material suppliers in regions like Eastern Europe and Southeast Asia, where trade agreements offer more favorable terms. Simultaneously, investing in vertical integration-spanning powder production, reinforcement synthesis, and composite fabrication-has become a priority for companies seeking to shield themselves from future tariff fluctuations. On the R&D front, collaborative consortia between public institutions and private enterprises are pooling resources to streamline proof-of-concept initiatives aimed at reducing reliance on tariffed imports.

While these measures mitigate some immediate risks, they also underscore the importance of flexible manufacturing and dynamic sourcing networks. Stakeholders must continuously monitor regulatory updates and adapt their inventory strategies to minimize exposure to duty-induced price volatility. The net result is a more resilient and diversified supply chain architecture, poised to support sustainable growth in metal matrix composites despite evolving trade policies.

Uncovering Key Insights from Diverse Market Segmentation by Metal Matrix Type, Reinforcement Types, Processing Methods, End-Use Industries, and Applications

Insight into market segmentation reveals the multifaceted nature of metal matrix composites and their tailored applications across diverse industry challenges. When the market is studied by matrix metal type, aluminum-based MMCs dominate lightweight structural needs, copper-based variants excel in thermal conductivity applications, magnesium-based composites prioritize low-density requirements, nickel-based systems address high-temperature environments, and titanium-based formulations deliver exceptional strength-to-weight ratios. Each base metal presents a unique performance envelope that aligns with specific engineering imperatives.

Examining reinforcement typologies underscores the critical role of fiber-reinforced architectures-both long and short fiber variants-in achieving high tensile strength and directional stiffness, while particle-reinforced composites leverage boron carbide or silicon carbide inclusions to enhance wear resistance and surface durability. Hybrid configurations, blending fiber and particle phases, are gaining traction for their balanced mechanical profiles and cost efficiencies. Meanwhile, processing methods cast a wide net, spanning liquid state approaches such as electroplating, pressure infiltration, reactive processing, spray deposition, squeeze casting, and stir casting; semi-solid state techniques that refine microstructures; solid state pathways like foil diffusion bonding and powder blending; and advanced vapor deposition strategies that unlock ultrafine interfacial control.

End-use industry perspectives further differentiate market dynamics. Aerospace applications demand fatigue-resistant and temperature-stable composites for critical airframe components, automotive platforms pursue brake system and engine component optimizations, defense sectors require armor-grade materials, electronics manufacturers integrate thermal management systems, and industrial machinery producers deploy wear-resistant composites for high-abrasion environments. Application-driven segmentation-from structural components to thermal management and wear-resistant systems-highlights how each composite design is fine-tuned to performance criteria, thereby shaping the broader innovation and investment landscape.

Analyzing Regional Dynamics and Strategic Opportunities across Americas, Europe Middle East Africa and Asia Pacific in the Metal Matrix Composites Arena

Regional analysis of metal matrix composites markets reveals distinct drivers and opportunities within the Americas, Europe Middle East & Africa, and Asia-Pacific. In the Americas, demand is fueled by stringent automotive fuel efficiency regulations and expanding aerospace refurbishment programs, which incentivize composite substitution for traditional alloys. Research hubs in North America are accelerating industrial demonstration projects, while Latin American nations are gradually establishing supply chain nodes to support localized composite fabrication.

Across Europe Middle East & Africa, government-backed initiatives in advanced manufacturing and defense modernization are steering investments towards high-performance composites. This region benefits from collaborative frameworks that align materials research institutes with end-use OEMs, fostering integrated value chains. However, geopolitical uncertainties in certain countries necessitate robust risk management practices and contingency planning for raw material logistics.

Asia-Pacific stands out as a rapidly expanding market, driven by automotive electrification trends in China, Japan, and South Korea, coupled with growing defense procurements and electronics manufacturing in Southeast Asia. Infrastructure development projects in this region are catalyzing adoption of composites in industrial machinery, while regional trade agreements are reducing barriers to cross-border component flows. Collectively, these regional dynamics underscore the importance of tailored market entry strategies that harmonize regulatory compliance, collaborative partnerships, and supply chain localization.

Dissecting Competitive Strategies and Innovations of Major Players Shaping the Metal Matrix Composites Industry Ecosystem in 2025 and Beyond

Leading companies in the metal matrix composites arena are leveraging a blend of internal R&D investment, strategic partnerships, and portfolio diversification to maintain competitive advantage. Key material suppliers are advancing alloy design through computational thermodynamics and high-throughput experimentation, producing matrix formulations optimized for specific reinforcement combinations. In parallel, specialized manufacturers are integrating real-time process monitoring and digital twin architectures into their fabrication lines, enabling adaptive control of microstructural features and consistent quality outcomes.

Strategic alliances between reinforcement producers and aerospace OEMs are accelerating certification pathways for composite components in critical applications, while joint ventures with automotive conglomerates focus on scaling manufacturing throughput to meet rising electrification demands. Several players are exploring circular economy initiatives, reclaiming fiber and particulate reinforcements from end-of-life components to reduce raw material costs and environmental footprint. In the realm of aftermarket services, turnkey solutions providers are establishing service centers for composite repair, inspection, and refurbishment, thereby extending component lifecycles and creating recurring revenue streams.

As these initiatives unfold, patent activity and collaborative research publications indicate a clear trajectory towards multifunctional composite systems that integrate sensing, self-healing, and thermal management capabilities. The confluence of these competitive strategies signals an industry that is both consolidating around core technological platforms and branching into adjacent innovation frontiers.

Actionable Strategies and Tactical Roadmaps for Industry Leaders to Accelerate Adoption and Gain Advantage in Metal Matrix Composites Markets

Industry leaders must adopt a proactive posture, translating strategic insights into operational initiatives that accelerate market penetration. First, establishing cross-functional innovation councils can break down silos between materials science, process engineering, and application development teams, fostering rapid ideation cycles and proof-of-concept validations. By embedding customer feedback loops early in development, leaders can refine composite formulations to meet exacting performance specifications while minimizing time to market.

Second, creating modular manufacturing architectures that accommodate multiple processing methods-ranging from stir casting to powder consolidation-provides the agility needed to pivot between high-mix, low-volume aerospace orders and high-volume automotive runs. Investments in flexible toolsets and programmable automation enable seamless transitions, optimize equipment utilization, and reduce changeover times.

Third, forging collaborative partnerships with upstream raw material suppliers and downstream OEMs builds resilient supply networks. Shared innovation roadmaps and co-investment agreements can mitigate tariff exposures and align capacity expansions with anticipated demand. Finally, embedding sustainability metrics into product roadmaps-such as recycled content targets and end-of-life reclamation processes-enhances brand reputation and satisfies increasingly stringent regulatory requirements. Collectively, these actionable strategies form a tactical roadmap that empowers industry leaders to outpace competitors and shape the future trajectory of metal matrix composites adoption.

Outlining Rigorous Research Methodology and Analytical Framework Employed to Uncover Comprehensive Insights in Metal Matrix Composites Studies

This comprehensive analysis is underpinned by a rigorous multi-stage research methodology that combines secondary data collection, primary stakeholder interviews, and advanced analytical frameworks. The initial phase involved an exhaustive review of scientific publications, patent filings, and technical conference proceedings to identify emerging material innovations and processing breakthroughs. Concurrently, industry reports and regulatory documents provided context on trade policies, certification requirements, and market drivers.

In the subsequent primary research phase, in-depth interviews were conducted with materials scientists, process engineers, procurement leaders, and end-use application developers across North America, Europe Middle East & Africa, and Asia-Pacific. These dialogues offered nuanced insights into supply chain dynamics, cost pressures, and strategic priorities. Quantitative data gathered through proprietary surveys was triangulated with qualitative feedback to validate key findings.

To synthesize the intelligence, a blend of SWOT analysis, scenario modeling, and PESTEL evaluation was employed, illuminating the interplay between technological trends, policy shifts, and competitive strategies. Geospatial mapping tools charted regional deployment patterns, while patent landscape assessment quantified innovation hotspots. This integrated approach ensures that the findings are robust, actionable, and representative of the complex ecosystem shaping the future of metal matrix composites.

Concluding Key Takeaways and Future Perspectives for Stakeholders Navigating the Evolving Landscape of Metal Matrix Composites Technologies

The evolution of metal matrix composites is characterized by a confluence of advanced alloy development, reinforcement engineering, and adaptive manufacturing strategies. Key takeaways underscore the necessity for stakeholders to align R&D roadmaps with transformative processing technologies, tariff-sensitive sourcing networks, and sustainability imperatives. The industry's competitive landscape is defined by a small cohort of material innovators and manufacturing specialists who are pioneering multifunctional composites with integrated sensing and self-healing capabilities.

Regional dynamics reveal that agile market entrants capable of localizing production and forging strategic partnerships will outpace their peers, particularly in regions experiencing rapid electrification and defense modernization. The interplay between regulatory frameworks and technological adoption suggests that companies embedding circular economy principles into composite lifecycles will secure enduring brand equity and customer loyalty.

Looking forward, the convergence of digitalization, additive manufacturing, and materials informatics is poised to unlock a new era of customization and performance optimization. Stakeholders who invest in cross-disciplinary talent, flexible production architectures, and proactive policy monitoring will be best positioned to navigate volatility and capitalize on emerging applications. Ultimately, the continuous integration of scientific innovation with strategic foresight will define the next chapter in the metal matrix composites saga.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Adoption of graphene-reinforced aluminum composites for next-generation aerospace structural components
  • 5.2. Development of nanoparticle reinforced copper composites to enhance thermal management in electronics
  • 5.3. Implementation of additive manufacturing for complex geometry titanium matrix composites production
  • 5.4. Integration of self-sensing metal matrix composites for real-time structural health monitoring in automotive applications
  • 5.5. Scale up of cost-effective continuous fiber reinforcement processes for large-scale composite manufacturing
  • 5.6. Regulatory compliance challenges and certification pathways for high performance MMCs in medical implants

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Metal Matrix Composites Market, by Matrix Metal Type

  • 8.1. Introduction
  • 8.2. Aluminum-based MMCs
  • 8.3. Copper-based MMCs
  • 8.4. Magnesium-based MMCs
  • 8.5. Nickel-based MMCs
  • 8.6. Titanium-based MMCs

9. Metal Matrix Composites Market, by Reinforcement Type

  • 9.1. Introduction
  • 9.2. Fiber Reinforced
    • 9.2.1. Long Fiber Reinforced
    • 9.2.2. Short Fiber Reinforced
  • 9.3. Hybrid
  • 9.4. Particle
    • 9.4.1. Boron Carbide
    • 9.4.2. Silicon Carbide

10. Metal Matrix Composites Market, by Processing Method

  • 10.1. Introduction
  • 10.2. Liquid State Methods
    • 10.2.1. Electroplating & Electroforming
    • 10.2.2. Pressure Infiltration
    • 10.2.3. Reactive Processing
    • 10.2.4. Spray Deposition
    • 10.2.5. Squeeze Casting
    • 10.2.6. Stir Casting
  • 10.3. Semi-Solid State Methods
  • 10.4. Solid State Methods
    • 10.4.1. Foil Diffusion Bonding
    • 10.4.2. Powder Blending & Consolidation
  • 10.5. Vapor Deposition Methods

11. Metal Matrix Composites Market, by Application

  • 11.1. Introduction
  • 11.2. Brake Systems
  • 11.3. Engine Components
  • 11.4. Space systems
  • 11.5. Structural Components
  • 11.6. Thermal Management Systems

12. Metal Matrix Composites Market, by End-Use Industry

  • 12.1. Introduction
  • 12.2. Aerospace & Defense
  • 12.3. Automotive
  • 12.4. Electronics
  • 12.5. Energy & Power
  • 12.6. Industrial Machinery
  • 12.7. Medical & Healthcare

13. Americas Metal Matrix Composites Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Metal Matrix Composites Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Metal Matrix Composites Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. CPS Technologies Corporation
    • 16.3.2. CeramTec GmbH
    • 16.3.3. 3M Company
    • 16.3.4. 3A Composites
    • 16.3.5. APR Composites
    • 16.3.6. Coherent Corp.
    • 16.3.7. DWA Aluminum Composites USA, Inc.
    • 16.3.8. GKN Powder Metallurgy Holding GmbH
    • 16.3.9. Goodfellow Cambridge Ltd.
    • 16.3.10. H.C. Starck GmbH
    • 16.3.11. Hitachi Metals, Ltd.
    • 16.3.12. KTW Technology GmbH
    • 16.3.13. Kyocera Corporation
    • 16.3.14. Materion Corporation
    • 16.3.15. Mitsubishi Materials Corporation
    • 16.3.16. OC Oerlikon Management AG
    • 16.3.17. Plansee SE
    • 16.3.18. Sandvik AB
    • 16.3.19. Sitek Insulation Sasu
    • 16.3.20. Thermo Fisher Scientific Inc.

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제