시장보고서
상품코드
1806568

일회용 바이오프로세싱 센서 및 프로브 시장 : 제품 유형, 센서 기술, 재료 유형, 측정 유형, 용도, 최종 용도별 - 세계 전망(2025-2030년)

Single-use Bioprocessing Sensors & Probes Market by Product Type, Sensor Technology, Material Type, Measurement Type, Application, End User - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 192 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

일회용 바이오프로세싱 센서 및 프로브 시장은 2024년에 10억 9,000만 달러로 평가되었습니다. 2025년에는 12억 3,000만 달러에 이르고, CAGR 12.78%로 성장하여 2030년에는 22억 5,000만 달러에 달할 전망입니다.

주요 시장 통계
기준 연도 : 2024년 10억 9,000만 달러
추정 연도 : 2025년 12억 3,000만 달러
예측 연도 : 2030년 22억 5,000만 달러
CAGR(%) 12.78%

차세대 바이오의약품 생산에 있어 일회용 바이오프로세싱 센서 및 프로브의 부상과 그 변화의 힘에 대해 알아봅니다.

지난 10년간 바이오의약품 제조는 타임라인 단축, 공정 안전성 강화, 운영 유연성 강화라는 요구로 인해 패러다임의 전환을 겪어왔습니다. 일회용 바이오프로세싱용 센서와 프로브는 일회용 바이오리액터, 플렉서블 튜빙 어셈블리, 모듈식 다운스트림 유닛 등과 원활하게 통합되어 이러한 변화의 토대가 되었습니다. 실시간 분석 기능을 일회용 소모품에 직접 통합하여 교차 오염의 위험을 최소화하고, 엄격한 규제 기대에 부합하는 데이터 품질을 보장하는 센서입니다.

기술적 혁신과 지속가능성에 대한 요구가 일회용 바이오프로세싱의 센서 및 프로브 채택 환경을 어떻게 재정의하고 있는가?

기술적 혁신은 일회용 센서와 프로브의 상황을 극적으로 재정의하고 있습니다. 전자 부품의 소형화, in situ 광학 및 광섬유 측정 기술의 출현과 함께 멸균된 어셈블리에 고급 분석을 원활하게 통합할 수 있게 되었습니다. 동시에 데이터 연결 표준과 클라우드 기반 플랫폼의 보급으로 제조업체는 예측 분석과 디지털 트윈 모델을 활용하여 사전 예방적 공정 제어를 할 수 있게 되었습니다.

2025년 미국 관세가 일회용 바이오프로세싱 센서 및 프로브공급망과 비용에 미치는 다각적인 영향 평가

주요 원자재 및 수입 센서 부품에 대한 2025년 미국의 새로운 관세 도입은 세계 공급망에 새로운 도전을 불러일으켰습니다. 전기화학 및 분광학 센서 소자의 부품 비용이 상승함에 따라 제조업체는 공급업체를 다변화하고 재고 관리 전략을 재검토해야 합니다. 리드 타임이 길어짐에 따라 기업들은 멸균된 일회용 어셈블리의 완충 재고를 늘리는 한편, 가격 안정을 위해 장기 계약을 협상하고 있습니다.

다양한 카테고리의 일회용 바이오프로세싱 센서 및 프로브에 대한 세부적인 부문 수준 분석을 통해 시장 역학 파악하기

제품 유형별 상세 분석 결과, 일회용 바이오프로세싱 플랫폼은 바이오매스 센서, 전도도 센서, 유량 센서, 산소 센서, pH 센서, 압력 센서, 온도 센서에 이르는 종합적인 센서 구성 요소에 의해 뒷받침되고 있는 것으로 나타났습니다. 각 제품 카테고리는 실시간 세포 밀도 모니터링부터 발효 및 정제 시퀀싱 중 정확한 환경 조건 보장에 이르기까지 고유한 공정 제어 요구 사항을 충족합니다.

일회용 바이오프로세싱 센서 분야의 북미, 중남미, 중동 및 아프리카, 아시아태평양 동향 및 촉진요인 매핑

북미와 남미에서는 바이오프로세스의 선두주자들이 복잡한 생물학적 제제 및 세포 기반 치료를 지원하기 위해 통합형 일회용 센서 플랫폼을 선도적으로 도입하고 있습니다. 규제 당국의 승인과 간소화된 검증 경로가 일회용 센서의 배포를 가속화하고, 제조 위탁 기관의 탄탄한 네트워크가 벤치에서 상업적 규모로 빠르게 기술을 이전할 수 있도록 돕습니다. 또한, 북미 기업들의 지속가능성에 대한 노력은 재활용 가능한 센서 부품과 플라스틱 사용량 감소에 대한 수요를 촉진하고 있습니다.

일회용 바이오프로세싱 센서 및 프로브의 발전과 경쟁적 차별화를 주도하는 주요 혁신 기업 및 전략적 파트너십 프로파일링

업계 리더들이 전략적 제휴를 맺고 일회용 센서 설계의 혁신을 가속화하고 있습니다. 주요 장비 제조업체는 폴리머 전문가와 협력하여 멸균 처리량을 높이고 미립자 발생을 줄이는 차세대 센서 하우징을 개발하고 있습니다. 동시에, 생명공학 기업들은 소프트웨어 개발자와 협력하여 센서 데이터 스트림을 디지털 트윈 프레임워크에 통합하여 실시간 공정 최적화 및 예지보전을 가능하게 하고 있습니다.

일회용 바이오프로세싱 센서 도입의 새로운 기회를 활용하고 과제를 극복하기 위한 업계 리더의 전략적 과제

새로운 시장 기회를 활용하기 위해 업계 리더들은 다양한 바이오프로세스 용도를 위해 신속하게 맞춤화할 수 있는 모듈식 센서 아키텍처에 투자해야 합니다. 자동화 플랫폼 및 디지털 분석 도구와의 상호운용성을 우선시함으로써 조직은 통합 일정을 단축하고 확장 가능한 프로세스 강화 이니셔티브를 지원할 수 있습니다. 또한, 재료 과학자들과 협력하여 바이오 또는 재활용 가능한 폴리머를 채택함으로써 센서의 성능 저하 없이 지속가능성 목표를 달성할 수 있습니다.

일회용 바이오프로세싱 센서 및 프로브 기술 분석을 뒷받침하는 방법론적 프레임워크와 엄격한 조사 방법론 제공

이 분석의 기초가 된 조사는 광범위한 2차 데이터 수집과 표적화된 1차 조사를 결합한 엄격한 2차 조사 방식을 채택했습니다. 첫 번째 단계에서는 심사가 있는 학술지, 특허 출원, 규제 가이드라인, 업계 백서를 철저히 검토하여 센서 기술, 재료 혁신, 공정 응용에 대한 종합적인 기본 이해를 제공했습니다.

일회용 바이오프로세싱 센서 및 프로브의 진화 및 전략적 궤적에 대한 통찰력과 미래 전망에 대한 통합적 분석

바이오 제약 산업이 보다 민첩하고 지속 가능한 제조 아키텍처로 전환하고 있는 가운데, 일회용 바이오프로세싱 센서와 프로브는 혁신의 최전선에 서 있습니다. 첨단 측정 방식과 디지털 분석, 환경 친화적 인 재료의 통합은 중요한 공정 매개 변수를 모니터링하고 제어하는 방법을 재정의하고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 일회용 바이오프로세싱 센서 및 프로브 시장 : 제품 유형별

  • 바이오매스 센서
  • 전도 비율 센서
  • 플로우 센서
  • 산소 센서
  • pH 센서
  • 압력 센서
  • 온도 센서

제9장 일회용 바이오프로세싱 센서 및 프로브 시장 : 센서 기술별

  • 전기화학 센서
  • 광섬유 센서
  • 광학 센서
  • 압전 센서
  • 분광 센서

제10장 일회용 바이오프로세싱 센서 및 프로브 시장 : 소재 유형별

  • 유리
  • 금속
  • 플라스틱

제11장 일회용 바이오프로세싱 센서 및 프로브 시장 측정 유형별

  • 생물학
  • 화학제품
  • 피지컬

제12장 일회용 바이오프로세싱 센서 및 프로브 시장 : 용도별

  • Downstream 처리
    • 여과 제어
    • 정화 모니터링
  • Upstream 처리
    • 세포배양 모니터링
    • 발효 제어

제13장 일회용 바이오프로세싱 센서 및 프로브 시장 : 최종사용자별

  • 학술연구기관
  • 계약연구기관
  • 제약 기업 및 바이오테크놀러지 기업

제14장 아메리카의 일회용 바이오프로세싱 센서 및 프로브 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제15장 유럽, 중동 및 아프리카의 일회용 바이오프로세싱 센서 및 프로브 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제16장 아시아태평양의 일회용 바이오프로세싱 센서 및 프로브 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • 3M Company
    • ABEC Inc.
    • Avantor, Inc.
    • Broadley-James Corporation
    • Compagnie de Saint-Gobain S.A.
    • Cytiva by Danaher Corporation
    • Emerson Electric Co.
    • Eppendorf SE
    • ESCO BIOENGINEERING CO., LTD
    • ESI Technologies Group by Keysight Technologies
    • GE HealthCare Technologies Inc.
    • Getinge AB
    • Hamilton Bonaduz AG
    • Honeywell International, Inc.
    • Infors AG
    • Meissner Filtration Products, Inc.
    • Merck KGaA
    • Parker-Hannifin Corporation
    • PBS Biotech, Inc.
    • PendoTECH
    • Polestar Technologies, Inc.
    • Sartorius AG
    • SmarAct GmbH
    • Thermo Fisher Scientific Inc.
    • Vekamaf Services B.V.

제18장 리서치 AI

제19장 리서치 통계

제20장 리서치 컨택트

제21장 리서치 기사

제22장 부록

LSH 25.09.12

The Single-use Bioprocessing Sensors & Probes Market was valued at USD 1.09 billion in 2024 and is projected to grow to USD 1.23 billion in 2025, with a CAGR of 12.78%, reaching USD 2.25 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 1.09 billion
Estimated Year [2025] USD 1.23 billion
Forecast Year [2030] USD 2.25 billion
CAGR (%) 12.78%

Unveiling the Rise and Transformative Power of Single-Use Bioprocessing Sensors and Probes Shaping Next-Generation Biopharmaceutical Production

Over the past decade, biopharmaceutical manufacturing has undergone a paradigm shift driven by the imperative to accelerate timelines, enhance process safety, and achieve greater operational flexibility. Single-use bioprocessing sensors and probes have emerged as foundational enablers of this transformation, integrating seamlessly with disposable bioreactors, flexible tubing assemblies, and modular downstream units. By embedding real-time analytical capabilities directly into the single-use consumable, these sensors minimize the risk of cross-contamination while ensuring data quality that aligns with stringent regulatory expectations.

As manufacturers strive to adopt quality-by-design principles and intensify process intensification efforts, the ability to monitor critical process parameters with precision has never been more vital. Single-use probes now deliver robust measurement of pH, dissolved oxygen, conductivity, and temperature without the cleaning validation burden associated with traditional stainless-steel instrumentation. Moreover, advances in biocompatible materials and sterilization methods have enhanced sensor longevity and accuracy, supporting multi-day perfusion runs and continuous downstream purification processes. Consequently, organizations are better equipped to optimize yields, reduce batch failures, and accelerate product-to-market timelines.

How Technological Breakthroughs and Sustainability Imperatives Are Redefining the Landscape of Single-Use Bioprocessing Sensor and Probe Adoption

Technological breakthroughs have catalyzed a dramatic redefinition of the single-use sensor and probe landscape. Miniaturization of electronic components, coupled with the advent of in situ optical and fiber optic measurement techniques, has enabled seamless integration of advanced analytics into presterilized assemblies. At the same time, the proliferation of data connectivity standards and cloud-based platforms is empowering manufacturers to harness predictive analytics and digital twin models for proactive process control.

Simultaneously, sustainability imperatives are reshaping material selection and end-of-life management. Bio-based plastics and recyclable polymers are gaining traction as alternatives to traditional single-use materials, aligning with corporate environmental goals without compromising sterility assurance. As life science companies pursue circular economy strategies, sensor developers are innovating in reusable sensor housings and detachable measurement modules, bridging the gap between disposability and component reuse.

Consequently, the fusion of digital transformation, regulatory alignment, and sustainability considerations is creating a new competitive dynamic. Manufacturers that can seamlessly blend advanced sensing technologies with eco-friendly consumables stand to gain a strategic edge, while those that lag risk operational rigidity and higher total cost of ownership.

Assessing the Multifaceted Consequences of United States Tariffs in 2025 on Single-Use Bioprocessing Sensor and Probe Supply Chains and Costs

The introduction of new United States tariffs in 2025 on critical raw materials and imported sensor components has introduced fresh challenges to global supply chains. Component costs for electrochemical and spectroscopic sensor elements have risen, prompting manufacturers to reassess supplier diversification and inventory management strategies. As lead times extend, organizations are increasing buffer stock of sterilized single-use assemblies while negotiating long-term contracts to stabilize pricing.

In response, some bioprocessing firms are exploring regionalization of manufacturing, establishing localized sensor fabrication facilities closer to end-use sites. This shift reduces exposure to cross-border duties and minimizes logistical complexity, though it requires significant capital investment and stringent quality control measures. Others are doubling down on vertical integration, acquiring or partnering with specialty polymer producers and sensor subcomponent suppliers to lock in supply and accelerate new product development.

Ultimately, the cumulative impact of these tariffs underscores the importance of agile procurement, close collaboration between procurement and process development teams, and continuous risk assessment. Organizations that proactively adapt their sourcing footprint and embrace resilient supply chain architectures will be better positioned to maintain continuity of critical sensing capabilities and uphold compliance standards.

Deciphering Market Dynamics Through In-Depth Segment-Level Analysis of Single-Use Bioprocessing Sensors and Probes Across Diverse Categories

A nuanced analysis of product type segmentation reveals that single-use bioprocessing platforms are supported by a comprehensive suite of sensor components spanning biomass sensors, conductivity sensors, flow sensors, oxygen sensors, pH sensors, pressure sensors, and temperature sensors. Each product category addresses unique process control requirements, from real-time cell density monitoring to ensuring precise environmental conditions during fermentation and purification sequences.

From the perspective of sensor technology, the landscape encompasses electrochemical sensors, fiber optic sensors, optical sensors, piezoelectric sensors, and spectroscopic sensors. These diverse technological approaches enable measurement of analytes with high specificity and minimal drift, while material type segmentation further influences performance parameters, as sensors constructed from glass, metal, or plastic exhibit varying degrees of chemical compatibility, sterilization resilience, and mechanical durability.

Measurement type segmentation underscores the differentiation between biological, chemical, and physical sensing modalities, each critical in maintaining process integrity. Application segmentation distinguishes between upstream processing scenarios-such as cell culture monitoring and fermentation control-and downstream processing applications including filtration control and purification monitoring, where maintaining critical parameters is essential to product quality and safety.

Finally, end users span academic and research institutes, contract research organizations, and pharmaceutical and biotechnology companies, each of which demands tailored sensor solutions. Research laboratories prioritize rapid deployment and flexible configurations, contract research organizations seek consistent reproducibility across diverse client projects, and large biopharma firms focus on scalability and integration within existing automation frameworks.

Mapping Regional Trends and Growth Drivers Across Americas, Europe Middle East & Africa, and Asia-Pacific in the Single-Use Bioprocessing Sensor Domain

In the Americas, bioprocessing leaders are pioneering adoption of integrated single-use sensor platforms to support complex biologics and cell-based therapies. Regulatory endorsements and streamlined validation pathways have accelerated deployment of disposable sensors, while a robust network of contract manufacturing organizations fosters rapid technology transfer from bench to commercial scale. Moreover, sustainability initiatives among North American firms are driving demand for recyclable sensor components and reduced plastic footprint.

Within the Europe, Middle East & Africa region, stringent environmental regulations and growing emphasis on process analytical technology frameworks are shaping procurement decisions. European biopharmaceutical clusters are investing in sensor validation centers and digital analytics hubs, supporting seamless integration of data from electrochemical, optical, and spectroscopic probes. In Middle Eastern markets, partnerships with global sensor developers and incentivized investment policies are laying the groundwork for expanded single-use sensor manufacturing and adoption.

Asia-Pacific markets are experiencing rapid growth fueled by local biopharma expansion and government incentives for advanced therapy production. Key hubs in China, India, and South Korea are establishing domestic supply chains for single-use bioprocessing components, while strategic collaborations between local sensor innovators and established global providers are accelerating technology diffusion. These dynamics are fostering a competitive environment where cost, customization, and service excellence define regional leadership.

Profiling Leading Innovators and Strategic Partnerships Driving Advancement and Competitive Differentiation in Single-Use Bioprocessing Sensors and Probes

Industry leaders are forging strategic alliances to accelerate innovation in single-use sensor design. Major instrumentation companies are collaborating with polymer specialists to develop next-generation sensor housings that enhance sterilization throughput and reduce particulate generation. At the same time, biotechnology firms are partnering with software developers to integrate sensor data streams into digital twin frameworks, enabling real-time process optimization and predictive maintenance.

In parallel, startups with specialized expertise in fiber optic and spectroscopic sensing are attracting investment from large life science conglomerates seeking to broaden their disposable offerings. These partnerships often include joint development agreements that facilitate rapid prototyping and regulatory submission support. Simultaneously, contract manufacturing organizations are aligning with sensor innovators to co-develop custom probes tailored to client-specific bioprocesses.

Furthermore, instrument providers are expanding their service portfolios to include end-to-end sensor lifecycle management, offering calibration, validation, and remote monitoring packages. This shift from purely consumable sales to solution-based models underscores a broader industry transition toward outcome-oriented partnerships, where performance guarantees and data integrity form the cornerstone of long-term customer relationships.

Strategic Imperatives for Industry Leaders to Capitalize on Emerging Opportunities and Navigate Challenges in Single-Use Bioprocessing Sensor Deployment

To capitalize on emerging market opportunities, industry leaders should invest in modular sensor architectures that allow rapid customization for varied bioprocess applications. By prioritizing interoperability with automation platforms and digital analytics tools, organizations can reduce integration timelines and support scalable process intensification initiatives. In addition, collaborating with material scientists to adopt bio-based or recyclable polymers will address sustainability goals without compromising sensor performance.

Risk mitigation strategies must include diversifying the supplier base for critical sensor components and exploring regional production capabilities to minimize exposure to supply chain disruptions and tariff fluctuations. Engaging procurement, engineering, and quality teams in cross-functional risk assessments will enhance visibility into potential bottlenecks and enable proactive contingency planning.

Finally, manufacturers should cultivate a data-driven culture by integrating sensor output into advanced process control systems and leveraging machine learning algorithms to detect anomalies and predict maintenance needs. By combining real-time monitoring with predictive insights, teams can drive continuous improvement, reduce downtime, and maintain consistent product quality across both clinical and commercial operations.

Methodological Framework and Rigorous Research Approaches Underpinning the Analysis of Single-Use Bioprocessing Sensor and Probe Technologies

The research underpinning this analysis employed a rigorous two-phase methodology combining extensive secondary data collection with targeted primary investigations. In the first phase, a thorough review of peer-reviewed journals, patent filings, regulatory guidelines, and industry whitepapers provided a comprehensive baseline understanding of sensor technologies, material innovations, and process applications.

Building on these insights, the second phase involved in-depth interviews with technical experts from leading biopharma companies, sensor manufacturers, and academic research centers. These discussions were designed to validate emerging trends, explore practical implementation challenges, and capture end-user perspectives on performance requirements and regulatory compliance.

Data triangulation was achieved by cross-referencing interview feedback with observed procurement patterns and published case studies. An independent quality assurance review by an advisory panel of bioprocessing specialists ensured the reliability and objectivity of findings. This methodological framework supports a balanced view of technological capabilities, market dynamics, and strategic priorities shaping the single-use sensor landscape.

Synthesizing Insights and Future Perspectives on the Evolution and Strategic Trajectory of Single-Use Bioprocessing Sensors and Probes

As the biopharmaceutical industry continues its shift toward more agile and sustainable manufacturing architectures, single-use bioprocessing sensors and probes stand at the forefront of innovation. The integration of advanced measurement modalities, coupled with digital analytics and eco-friendly materials, is redefining how organizations monitor and control critical process parameters.

Looking ahead, the convergence of sensor miniaturization, data science, and circular economy principles will drive even greater automation, cost reduction, and regulatory alignment. Companies that invest in open architecture sensor platforms, resilient supply chains, and data-centric process control will be well positioned to lead the next wave of biomanufacturing excellence.

In this evolving landscape, continuous collaboration between technology developers, end users, and regulatory authorities will be essential to unlocking the full potential of single-use sensors, ensuring that innovation translates into consistent product quality, operational efficiency, and sustainable growth.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rising demand for disposable pH and dissolved oxygen sensors in biopharmaceutical production
  • 5.2. Expansion of single-use sensor applications in upstream and downstream bioprocessing stages
  • 5.3. Impact of sustainability trends on the design and materials of single-use bioprocessing probes
  • 5.4. Collaborations between sensor manufacturers and bioprocessing firms to customize sensor solutions
  • 5.5. Increasing focus on regulatory compliance driving innovation in single-use sensor technologies
  • 5.6. Development of cost-effective, high-sensitivity single-use sensors for cell culture applications
  • 5.7. Emergence of multifunctional single-use probes improving process accuracy and scalability
  • 5.8. Integration of IoT and AI in single-use bioprocessing sensors for predictive analytics
  • 5.9. Advancements in real-time monitoring technologies for single-use bioprocessing probes
  • 5.10. Growing adoption of single-use sensors in biologics manufacturing to enhance efficiency and reduce contamination

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Single-use Bioprocessing Sensors & Probes Market, by Product Type

  • 8.1. Introduction
  • 8.2. Biomass Sensors
  • 8.3. Conductivity Sensors
  • 8.4. Flow Sensors
  • 8.5. Oxygen Sensors
  • 8.6. pH Sensors
  • 8.7. Pressure Sensors
  • 8.8. Temperature Sensors

9. Single-use Bioprocessing Sensors & Probes Market, by Sensor Technology

  • 9.1. Introduction
  • 9.2. Electrochemical Sensors
  • 9.3. Fiber Optic Sensors
  • 9.4. Optical Sensors
  • 9.5. Piezoelectric Sensors
  • 9.6. Spectroscopic Sensors

10. Single-use Bioprocessing Sensors & Probes Market, by Material Type

  • 10.1. Introduction
  • 10.2. Glass
  • 10.3. Metal
  • 10.4. Plastic

11. Single-use Bioprocessing Sensors & Probes Market, by Measurement Type

  • 11.1. Introduction
  • 11.2. Biological
  • 11.3. Chemical
  • 11.4. Physical

12. Single-use Bioprocessing Sensors & Probes Market, by Application

  • 12.1. Introduction
  • 12.2. Downstream Processing
    • 12.2.1. Filtration Control
    • 12.2.2. Purification Monitoring
  • 12.3. Upstream Processing
    • 12.3.1. Cell Culture Monitoring
    • 12.3.2. Fermentation Control

13. Single-use Bioprocessing Sensors & Probes Market, by End User

  • 13.1. Introduction
  • 13.2. Academic & Research Institutes
  • 13.3. Contract Research Organizations
  • 13.4. Pharmaceutical & Biotechnology Companies

14. Americas Single-use Bioprocessing Sensors & Probes Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Single-use Bioprocessing Sensors & Probes Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Single-use Bioprocessing Sensors & Probes Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. 3M Company
    • 17.3.2. ABEC Inc.
    • 17.3.3. Avantor, Inc.
    • 17.3.4. Broadley-James Corporation
    • 17.3.5. Compagnie de Saint-Gobain S.A.
    • 17.3.6. Cytiva by Danaher Corporation
    • 17.3.7. Emerson Electric Co.
    • 17.3.8. Eppendorf SE
    • 17.3.9. ESCO BIOENGINEERING CO., LTD
    • 17.3.10. ESI Technologies Group by Keysight Technologies
    • 17.3.11. GE HealthCare Technologies Inc.
    • 17.3.12. Getinge AB
    • 17.3.13. Hamilton Bonaduz AG
    • 17.3.14. Honeywell International, Inc.
    • 17.3.15. Infors AG
    • 17.3.16. Meissner Filtration Products, Inc.
    • 17.3.17. Merck KGaA
    • 17.3.18. Parker-Hannifin Corporation
    • 17.3.19. PBS Biotech, Inc.
    • 17.3.20. PendoTECH
    • 17.3.21. Polestar Technologies, Inc.
    • 17.3.22. Sartorius AG
    • 17.3.23. SmarAct GmbH
    • 17.3.24. Thermo Fisher Scientific Inc.
    • 17.3.25. Vekamaf Services B.V.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제