시장보고서
상품코드
1807572

광섬유 컴포넌트 시장 : 컴포넌트 유형별, 전송 모드별, 데이터 레이트별, 용도별, 최종사용자별, 판매채널별 - 세계 예측(2025-2030년)

Fiber Optic Components Market by Component Type, Transmission Mode, Data Rate, Application, End User, Sales Channel - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 196 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

광섬유 컴포넌트 시장은 2024년에는 335억 3,000만 달러로 평가되었습니다. 2025년에 CAGR 9.30%로 365억 8,000만 달러로 성장하여 2030년에는 571억 8,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 335억 3,000만 달러
추정 연도 : 2025년 365억 8,000만 달러
예측 연도 : 2030년 571억 8,000만 달러
CAGR(%) 9.30%

세계 네트워크에서 광섬유 구성 요소의 진화와 전략적 중요성을 통해 고속 연결의 미래를 형성합니다.

고속 데이터 전송 및 첨단 통신 인프라에 대한 수요가 가속화됨에 따라 광섬유 컴포넌트은 세계 연결성 확대의 중심에 자리 잡고 있습니다. 네트워크가 전례 없는 대역폭 요구 사항을 지원하기 위해 진화함에 따라, 이러한 구성 요소는 신호 무결성을 보장하고 손실을 최소화하며 다양한 용도에 원활하게 통합할 수 있도록 하는 데 필수적인 요소입니다. 능동 및 수동 장치 증가로 인해 광섬유 컴포넌트에는 장거리 전송을 강화하는 광 증폭기, 양방향 신호 흐름을 관리하는 서큘레이터, 전기 신호를 광 펄스로 놀라운 정확도로 변환하는 트랜시버 등이 포함되었습니다.

차세대 기술 및 지속 가능한 관행 채택으로 광섬유 컴포넌트 개발 및 대규모 배포를 재정의하는 차세대 기술 채택

차세대 네트워크 아키텍처가 광섬유 컴포넌트에 더 높은 성능, 유연성, 지속가능성을 요구하는 가운데, 새로운 연결성의 시대가 도래하고 있습니다. 5G 네트워크의 구축으로 고밀도 스몰셀 구축을 지원할 수 있는 소형, 고효율 트랜시버와 광 스위치의 필요성이 증가하고 있습니다. 이와 함께 클라우드 데이터센터가 확대됨에 따라 여러 광 기능을 하나의 칩에 통합하여 전력 소비와 실장 면적을 줄일 수 있는 광집적회로에 대한 관심이 높아지고 있습니다.

2025년 미국 관세가 광섬유 공급망, 부품 비용, 전략적 조달에 미치는 영향에 대한 평가

2025년 미국의 새로운 관세 도입은 세계 광섬유 컴포넌트 공급망에 복잡성을 가져와 조달 비용 상승을 초래하고 주요 기업들이 조달 전략을 재평가하도록 유도하고 있습니다. 주요 광학 재료 및 완성된 모듈의 관세가 상승함에 따라 많은 제조업체들이 지정학적 리스크를 줄이기 위해 생산의 니어쇼어링과 공급업체 포트폴리오의 다각화를 모색하기 시작했습니다. 이러한 변화는 북미, 동남아시아, 유럽의 일부 2차 제조 거점에 대한 투자를 가속화했습니다.

시장 계층화를 통해 구성 요소 유형, 전송 모드, 데이터 속도, 용도, 최종 사용자, 판매 채널에 걸친 중요한 동향을 파악할 수 있습니다.

시장의 계층화는 공급업체가 성공하기 위해 탐색해야 하는 수요와 혁신의 경로에서 중요한 뉘앙스를 드러냅니다. 구성 요소 유형에 따라 장거리 전송의 신호 강도를 높이는 광 증폭기, 양방향 흐름을 가능하게 하는 서큘레이터, 데이터 스트림의 동적 우회를 용이하게 하는 광 스위치와 같은 활성 장치, 고처리량 용도에 맞게 조정된 트랜시버 및 통합 송수신 모듈을 포함합니다. 송수신 모듈이 포함됩니다. 이를 보완하는 수동 소자로는 신호 전력을 정확하게 조정하는 광 감쇠기, 삽입 손실을 최소화하도록 설계된 커넥터, 특정 파장을 분리하는 필터, 역반사를 방지하는 아이솔레이터, 여러 엔드포인트로 광전력을 분배하는 스플리터 등이 있습니다.

세계 주요 시장에서의 광섬유 컴포넌트 수요 패턴과 시장 성장 촉진요인을 강조하는 지역적 역학에 대한 이해

지역 역학은 경제, 인프라 및 정책 환경이 광섬유 구성 요소의 채택에 어떤 영향을 미치는지 명확하게 보여줍니다. 북미와 남미에서는 광대역 확대와 데이터센터 보급을 위한 활발한 투자가 고속 트랜시버와 저손실 패시브 디바이스에 대한 수요를 증가시키고 있으며, 무역 정책은 국경을 초월한 제조 제휴의 형태를 계속 변화시키고 있습니다. 유럽, 중동 및 아프리카에서는 에너지 효율이 높은 앰프와 재활용 가능한 재료를 우선시하는 녹색 이니셔티브와 공존하는 이질적인 네트워크가 공존하고 있으며, 성숙 시장과 신흥 시장 모두에서 지속가능성의 중요성이 커지고 있습니다.

광섬유 컴포넌트 생태계 내 경쟁 리더십을 형성하는 전략적 기업 움직임과 공동 혁신의 전략적 움직임

업계 리더들은 귀중한 지적재산권 확보, 분야 간 협력 관계 구축, 제조 발자국 최적화를 위한 노력을 강화하고 있습니다. 전통 있는 부품 제조업체는 광통합 플랫폼에 많은 투자를 하고 있으며, 전문 소재 제조업체는 새로운 저손실 섬유와 첨단 코팅 기술을 개발하고 있습니다. 양사는 전략적 제휴를 통해 액티브 소자와 패시브 소자를 통합 모듈로 통합하는 엔드 투 엔드 솔루션을 공동 개발하여 시스템의 복잡성을 줄이고 시장 출시 시간을 단축하고 있습니다.

광섬유 컴포넌트의 새로운 기회를 활용하기 위한 업계 리더들의 실행 가능한 전략과 미래지향적 접근법

이러한 기회를 활용하기 위해 업계 리더들은 설계 및 제조 워크플로우의 엔드투엔드 디지털화를 우선시하고, AI 기반 시뮬레이션 툴을 활용하여 혁신 주기를 가속화해야 합니다. 여러 지역에 걸친 유연한 생산라인을 적극적으로 구축함으로써 관세 리스크를 줄이고 지역 수요 변화에 대한 대응력을 높일 수 있습니다. 조직은 공동 연구 생태계를 더욱 육성하고, 학계 및 스타트업과 협력하여 비용을 낮추고 성능을 향상시킬 수 있는 새로운 재료와 통합 기술을 모색해야 합니다.

1차 인터뷰, 2차 조사, 데이터 삼각측량 등 탄탄한 다층적 조사 프레임워크를 통해 종합적인 시장 인사이트 확보

이번 조사는 종합적이고 신뢰할 수 있는 통찰력을 확보하기 위해 다층적인 접근 방식을 채택했습니다. 1차 데이터는 주요 부품 제조업체, 네트워크 사업자, 최종 사용자 기업의 고위 임원, 엔지니어, 조달 전문가와의 심층 인터뷰를 통해 수집되었습니다. 이러한 정성적 관점은 프로젝트 일정, 기술 채택률, 채널 선호도를 파악하는 정량적 조사를 통해 보완되었습니다.

지속적인 혁신을 추진하면서 광섬유 컴포넌트 이해관계자가 나아가야 할 길을 명확히 하기 위해 주요 조사 결과와 전략적 핵심 사항을 통합합니다.

이번 Executive Summary에서는 광섬유 컴포넌트 시장을 재정의하는 매우 중요한 힘, 즉 혁신적인 기술 변화 및 관세 주도 공급망 재편부터 세분화된 세분화 역학 및 지역별 수요 촉진요인에 이르기까지 다양한 요인을 확인했습니다. 기업 전략 분석 결과, 전략적 파트너십, 통합, 광학적 통합, 지속가능성, 디지털화에 대한 끊임없는 집중으로 특징지어지는 생태계가 드러났습니다.

목차

제1장 서론

제2장 분석 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 광섬유 컴포넌트 시장 : 컴포넌트 유형별

  • 액티브 컴포넌트
    • 광증폭기
    • 광써큐레이터
    • 광스위치
    • 광트랜시버
    • 송수신기
  • 패시브 컴포넌트
    • 광 감쇠기
    • 광 커넥터
    • 광학 필터
    • 광 아이솔레이터
    • 광 스플리터

제9장 광섬유 컴포넌트 시장 : 전송 모드별

  • 멀티 모드 시스템
  • 싱글 모드 시스템

제10장 광섬유 컴포넌트 시장 : 데이터 레이트별

  • 40-100Gbps
  • 40Gbps 미만
  • 100Gbps 이상

제11장 광섬유 컴포넌트 시장 : 용도별

  • 통신 및 네트워킹
    • 액세스 네트워크
    • 장거리 통신
    • 메트로 네트워크
  • 조명 및 이미징
  • 다중화 및 스위칭
  • 광인터페이스
  • 센싱 및 모니터링
  • 신호 증폭
  • 신호 전송 및 분배
  • 시험 및 측정

제12장 광섬유 컴포넌트 시장 : 최종사용자별

  • 은행, 금융서비스 및 보험(BFSI)
  • 에너지 및 유틸리티
  • 정부 및 방위
  • 의료
  • IT 및 통신
  • 제조업
  • 미디어 및 엔터테인먼트
  • 소매업
  • 운송 및 물류

제13장 광섬유 컴포넌트 시장 : 판매채널별

  • 오프라인
    • 전자상거래 플랫폼
    • 제조업체 웹사이트
  • 온라인

제14장 아메리카의 광섬유 컴포넌트 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제15장 유럽, 중동 및 아프리카의 광섬유 컴포넌트 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제16장 아시아태평양의 광섬유 컴포넌트 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제17장 경쟁 구도

  • 시장 점유율 분석(2024년)
  • FPNV 포지셔닝 매트릭스(2024년)
  • 경쟁 분석
    • Accelink Technology Co. Ltd.
    • Amphenol Corporation
    • Belden Inc.
    • Broadcom Inc.
    • Cisco Systems, Inc
    • Coherent Incorporated
    • CommScope Inc.
    • Corning Incorporated
    • Diamond SA
    • Emcore Corporation
    • Fujikura Ltd.
    • Fujitsu Limited
    • Furukawa Electric Co., Ltd.
    • HENGTONG GROUP CO.,LTD.
    • Hirose Electric Co., Ltd.
    • HUBER+SUHNER AG
    • Lumentum Operations LLC
    • MW Technologies
    • Nexans S.A.
    • Nissin Kasei Co., Ltd.
    • OFS Fitel, LLC
    • Optical Cable Corporation
    • Prysmian S.p.A
    • Schlumberger Limited
    • Senko Advanced Co Ltd
    • Shenzhen Nokoxin Technology Co., Ltd.
    • Sterlite Technologies Limited
    • Sumitomo Electric Industries, Ltd.
    • TE Connectivity Ltd.
    • 3M Company

제18장 리서치 AI

제19장 리서치 통계

제20장 리서치 컨택트

제21장 리서치 기사

제22장 부록

LSH 25.09.18

The Fiber Optic Components Market was valued at USD 33.53 billion in 2024 and is projected to grow to USD 36.58 billion in 2025, with a CAGR of 9.30%, reaching USD 57.18 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 33.53 billion
Estimated Year [2025] USD 36.58 billion
Forecast Year [2030] USD 57.18 billion
CAGR (%) 9.30%

Shaping the Future of High-Speed Connectivity Through the Evolution and Strategic Significance of Fiber Optic Components in Global Networks

The accelerating demand for high-speed data transmission and advanced telecommunications infrastructure has placed fiber optic components at the center of global connectivity expansion. As networks evolve to support unprecedented bandwidth requirements, these components are essential in ensuring signal integrity, minimizing loss, and enabling seamless integration across diverse applications. With an increasing array of active and passive devices, the landscape of fiber optic components now encompasses optical amplifiers that bolster long-haul transmissions, circulators that manage bidirectional signal flows, and transceivers that convert electrical signals into optical pulses with remarkable precision.

Simultaneously, passive parts such as attenuators, connectors, and splitters are being refined to deliver lower insertion losses and higher reliability under varied environmental conditions. This continuous innovation is driven by the convergence of photonic integration, machine learning-enabled network optimization, and rising sustainability standards. Against this backdrop, stakeholders-from equipment manufacturers to service providers-must navigate a rapidly shifting environment where technological breakthroughs occur alongside evolving regulatory and economic pressures.

This executive summary sets the stage for a comprehensive examination of the forces reshaping the market. Through detailed analysis of transformative shifts, tariff impacts, segmentation dynamics, regional performance, corporate strategies, and actionable recommendations, this report equips decision-makers with the insights required to anticipate challenges, harness emerging opportunities, and forge pathways toward long-term success in the fiber optic component domain.

Embracing Next-Generation Technologies and Sustainable Practices That Redefine Fiber Optic Component Development and Deployment at Scale

A new era of connectivity is emerging as next-generation network architectures demand greater performance, flexibility, and sustainability from fiber optic components. The rollout of 5G networks has intensified the need for compact, high-efficiency transceivers and optical switches capable of supporting dense small-cell deployments. In parallel, the expansion of cloud data centers has fueled interest in photonic integrated circuits, which merge multiple optical functions into single chips, thereby reducing power consumption and footprint.

Environmental considerations are also reshaping vendor roadmaps, with material scientists exploring recyclable fiber jackets and low-carbon manufacturing processes. Moreover, the advent of edge computing has altered traditional hub-and-spoke models, pushing component manufacturers to engineer devices that operate effectively in decentralized, sometimes harsh, environments. Innovation in coherent optical amplifiers and tunable filters is facilitating dynamic bandwidth allocation, thereby enabling service providers to address fluctuating traffic demands with minimal latency.

Taken together, these technological and operational shifts are redefining the fundamentals of component design, production, and deployment. Companies that can anticipate evolving performance benchmarks and integrate sustainability alongside high-speed capabilities will establish leadership positions, meeting both regulatory expectations and customer requirements in an increasingly competitive environment.

Assessing the Far-Reaching Consequences of 2025 U.S. Tariffs on Supply Chains, Component Costs, and Strategic Sourcing in Fiber Optics

The introduction of new U.S. tariffs in 2025 has injected complexity into global fiber optic component supply chains, leading to higher procurement costs and prompting companies to reevaluate sourcing strategies. As duties on key optical materials and finished modules rose, many manufacturers began exploring nearshoring production and diversifying supplier portfolios to mitigate geopolitical risk. This shift has accelerated investments in secondary manufacturing hubs across North America, Southeast Asia, and parts of Europe, where local incentives and streamlined customs procedures offer alternative pathways to market.

In response to cost pressures, research and development teams have prioritized the redesign of component architectures, substituting higher-duty materials with tariff-exempt alternatives without compromising performance. These engineering efforts have fostered closer collaboration between in-house designers and specialized material suppliers, leading to innovative composite structures that balance durability with economic efficiency. Meanwhile, procurement leaders have renegotiated long-term contracts and implemented dynamic hedging strategies to buffer against future tariff fluctuations.

Despite short-term margin compression, these adaptations have driven a more resilient global ecosystem. By embracing agile manufacturing processes and strengthening regional partnerships, the industry is positioning itself to withstand further trade disruptions and maintain the velocity of fiber optic infrastructure expansion worldwide.

Deep-Dive into Market Stratification Reveals Critical Trends Across Component Types, Transmission Modes, Data Rates, Applications, End Users, and Sales Channels

Market stratification unveils critical nuances in demand and innovation pathways that vendors must navigate to succeed. Based on component type, the landscape encompasses active devices such as optical amplifiers that boost signal strength for long-haul transmissions, circulators that enable bidirectional flows, and optical switches that facilitate dynamic rerouting of data streams, alongside transceivers and integrated transmitter-receiver modules tailored for high-throughput applications. Complementing these are passive elements including optical attenuators that precisely regulate signal power, connectors designed to minimize insertion loss, filters that isolate specific wavelengths, isolators that prevent back reflections, and splitters that distribute optical power to multiple endpoints.

Transmission mode analysis highlights the coexistence of multimode systems-optimized for shorter, cost-effective links in enterprise and metro environments-alongside single-mode solutions that deliver superior distance and bandwidth for access networks and long-haul backbones. Data rate considerations span deployments operating below forty gigabits per second for legacy and specialized use cases, systems between forty and one hundred gigabits for mainstream data center interconnects, and cutting-edge platforms exceeding one hundred gigabits targeting hyperscale and carrier-grade networks.

Diverse application contexts further shape component requirements, from communication and networking realms encompassing access, metro, and long-haul segments to lighting and imaging uses, multiplexing and switching infrastructures, optical interfacing setups, sensing and monitoring installations, signal amplification nodes, transmission distribution grids, and rigorous testing and measurement processes. End-user industries range from banking, financial services, and insurance through energy, government and defense, and healthcare, to information and telecommunications operators, manufacturers, media and entertainment firms, retailers, and transportation and logistics providers. Finally, sales channels reveal bifurcated buyer journeys, with traditional offline routes and burgeoning online platforms interacting in complex ways; offline channels include both e-commerce portals and direct manufacturer websites, reflecting a shift toward digital procurement supported by integrated supply chain management tools.

Uncovering Regional Dynamics That Highlight Fiber Optic Component Demand Patterns and Growth Drivers Across Major Global Markets

Regional dynamics underscore how economic, infrastructural, and policy environments influence fiber optic component adoption. In the Americas, robust investments in broadband expansion and data center proliferation have elevated demand for high-speed transceivers and low-loss passive devices, while trade policies continue to reshape cross-border manufacturing alliances. Across Europe, Middle East & Africa, heterogeneous networks coexist alongside green initiatives that prioritize energy-efficient amplifiers and recyclable materials, reinforcing the importance of sustainability in both mature and emerging markets.

Asia-Pacific stands out for its large-scale deployment of single-mode systems driven by national broadband initiatives, 5G infrastructure rollouts, and an expanding IoT ecosystem. Governments across this region are actively incentivizing domestic production of advanced photonic components, creating a fertile ground for local and international players to collaborate. Transitioning between these regions, intercontinental submarine cable projects and regional interconnectivity programs further influence procurement cycles and technological preferences.

Collectively, these geographic trends demonstrate that while global demand for fiber optic components is rising uniformly, the pace, priorities, and policy frameworks vary significantly. Suppliers that tailor their product portfolios, manufacturing footprints, and channel strategies to each region's unique requirements will capture a disproportionate share of the market's upside potentials.

Strategic Corporate Movements and Collaborative Innovations Shaping Competitive Leadership Within the Fiber Optic Components Ecosystem

Industry leaders are intensifying their efforts to secure valuable intellectual property, forge cross-sector collaborations, and optimize manufacturing footprints. Established component manufacturers are investing heavily in photonic integration platforms, while specialized material providers are developing novel low-loss fibers and advanced coating techniques. Through strategic alliances, companies are co-developing end-to-end solutions that merge active and passive elements into unified modules, reducing system complexity and accelerating time to market.

In parallel, new entrants with expertise in silicon photonics and compound semiconductors are challenging incumbents by offering miniaturized, high-performance components that address space and power constraints in edge and dense data center environments. Joint ventures between telecommunications operators and component vendors are also emerging, aimed at aligning product roadmaps with network evolution plans and ensuring rapid prototype validation under real-world conditions.

Moreover, mergers and acquisitions are reshaping the competitive landscape, enabling regional specialists to access global distribution channels and allowing multinational corporations to enhance their product suites. This consolidation trend underscores the critical importance of scale, supply chain integration, and technical differentiation in achieving sustainable growth within the fiber optic component ecosystem.

Implementable Strategies and Forward-Looking Initiatives for Industry Leaders to Harness Emerging Opportunities in Fiber Optic Components

To capitalize on the unfolding opportunities, industry leaders should prioritize end-to-end digitalization of their design and manufacturing workflows, leveraging AI-driven simulation tools to accelerate innovation cycles. Proactively establishing flexible manufacturing lines across multiple regions will mitigate tariff risks and enhance responsiveness to local demand shifts. Organisations must further cultivate ecosystems of collaborative research, engaging with academic institutions and startups to explore emerging materials and integration techniques that lower costs and improve performance.

Investments in circular economy initiatives will not only address regulatory expectations but also create differentiation in customer proposals, as sustainable packaging, recyclable fibers, and energy-efficient amplifiers become purchasing criteria. Developing modular component families that support field-replaceable upgrades will extend service life and reduce total cost of ownership for network operators. In addition, creating digital platforms for predictive maintenance and integrated supply chain visibility will strengthen customer relationships and foster long-term partnerships.

Finally, aligning commercial strategies with regional infrastructure plans-whether in North America's hyperscale corridors, Europe's green connectivity mandates, or Asia-Pacific broadband expansions-will unlock critical first-mover advantages. By combining strategic foresight with agile execution, companies can navigate industry complexities and emerge as preferred solutions providers in a rapidly advancing fiber optic landscape.

Robust Multi-Tiered Research Framework Employing Primary Interviews, Secondary Analysis, and Data Triangulation to Ensure Comprehensive Market Insights

This research employed a multi-tiered approach to ensure comprehensive and reliable insights. Primary data were collected through in-depth interviews with senior executives, engineers, and procurement specialists across leading component manufacturers, network operators, and end-user organizations. These qualitative perspectives were complemented by quantitative surveys capturing project timelines, technology adoption rates, and channel preferences.

Secondary research sources included published technical papers, regulatory filings, patent databases, and corporate disclosures, which were analyzed to validate assumptions and identify emerging innovation trends. Data triangulation techniques were applied to reconcile discrepancies and enhance the robustness of key findings. Market dynamics were cross-verified against historical deployment figures and macroeconomic indicators to contextualize current developments.

Throughout the analysis, rigorous validation steps-such as peer reviews by domain experts and consistency checks against public infrastructure projects-ensured the accuracy and relevance of conclusions. This disciplined methodology provides stakeholders with confidence that the insights presented reflect both the strategic imperatives and operational realities shaping the fiber optic component market.

Synthesizing Key Findings and Strategic Imperatives to Illuminate the Path Forward for Fiber Optic Component Stakeholders While Driving Continuous Innovation

This executive summary has illuminated the pivotal forces redefining fiber optic component markets-from transformative technological shifts and tariff-driven supply chain realignments to granular segmentation dynamics and region-specific demand drivers. Analysis of corporate strategies reveals an ecosystem marked by strategic partnerships, consolidation, and a relentless focus on photonic integration, sustainability, and digitalization.

Actionable recommendations emphasize the need for flexible production networks, circular economy initiatives, and AI-enabled development platforms to remain competitive. By aligning product portfolios with regional infrastructure priorities and embracing collaborative research models, companies can navigate uncertainties and unlock new market segments. As global connectivity requirements continue to accelerate, the ability to anticipate regulatory changes and adapt swiftly will distinguish market leaders from the rest.

Investors, executives, and engineering teams equipped with these insights are better positioned to make informed decisions, prioritize resource allocation, and craft resilient strategies. The path forward demands agility, collaboration, and a clear vision-qualities that will drive sustained growth in the evolving fiber optic component landscape.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Expansion of 5G networks driving demand for high-density fiber optic connectors across global markets
  • 5.2. Rising adoption of coherent optical transceivers to meet escalating data center bandwidth requirements
  • 5.3. Integration of photonic integrated circuits in fiber optic modules to reduce power consumption and footprint
  • 5.4. Development of bend-insensitive fibers to support compact network installations in urban and enterprise environments
  • 5.5. Surge in demand for polarization-maintaining fibers in aerospace and defense communication systems
  • 5.6. Emergence of hollow-core fiber technologies to achieve ultra-low latency in high-speed networks
  • 5.7. Adoption of advanced fiber coating materials to enhance durability against harsh environmental conditions
  • 5.8. Development of multi-core fiber systems for exponentially increasing capacity in telecommunication backbones
  • 5.9. Integration of machine learning algorithms in optical component manufacturing for process optimization and quality control
  • 5.10. Rising investment in automated fiber inspection tools to ensure high yield in mass production environments

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Fiber Optic Components Market, by Component Type

  • 8.1. Introduction
  • 8.2. Active Components
    • 8.2.1. Optical Amplifiers
    • 8.2.2. Optical Circulators
    • 8.2.3. Optical Switches
    • 8.2.4. Optical Transceivers
    • 8.2.5. Transmitters & Receivers
  • 8.3. Passive Components
    • 8.3.1. Optical Attenuators
    • 8.3.2. Optical Connectors
    • 8.3.3. Optical Filters
    • 8.3.4. Optical Isolators
    • 8.3.5. Optical Splitters

9. Fiber Optic Components Market, by Transmission Mode

  • 9.1. Introduction
  • 9.2. Multimode Systems
  • 9.3. Single-Mode Systems

10. Fiber Optic Components Market, by Data Rate

  • 10.1. Introduction
  • 10.2. Between 40-100 Gbps
  • 10.3. Less Than 40 Gbps
  • 10.4. More than 100 Gbps

11. Fiber Optic Components Market, by Application

  • 11.1. Introduction
  • 11.2. Communication & Networking
    • 11.2.1. Access Networks
    • 11.2.2. Long-Haul Communication
    • 11.2.3. Metro Networks
  • 11.3. Lighting & Imaging
  • 11.4. Multiplexing & Switching
  • 11.5. Optical Interfacing
  • 11.6. Sensing & Monitoring
  • 11.7. Signal Amplification
  • 11.8. Signal Transmission & Distribution
  • 11.9. Testing & Measurement

12. Fiber Optic Components Market, by End User

  • 12.1. Introduction
  • 12.2. Banking, Financial Services & Insurance (BFSI)
  • 12.3. Energy & Utilities
  • 12.4. Government & Defense
  • 12.5. Healthcare
  • 12.6. IT & Telecommunications
  • 12.7. Manufacturing
  • 12.8. Media & Entertainment
  • 12.9. Retail
  • 12.10. Transportation & Logistics

13. Fiber Optic Components Market, by Sales Channel

  • 13.1. Introduction
  • 13.2. Offline
    • 13.2.1. eCommerce Platforms
    • 13.2.2. Manufacturer Websites
  • 13.3. Online

14. Americas Fiber Optic Components Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Fiber Optic Components Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Fiber Optic Components Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Accelink Technology Co. Ltd.
    • 17.3.2. Amphenol Corporation
    • 17.3.3. Belden Inc.
    • 17.3.4. Broadcom Inc.
    • 17.3.5. Cisco Systems, Inc
    • 17.3.6. Coherent Incorporated
    • 17.3.7. CommScope Inc.
    • 17.3.8. Corning Incorporated
    • 17.3.9. Diamond SA
    • 17.3.10. Emcore Corporation
    • 17.3.11. Fujikura Ltd.
    • 17.3.12. Fujitsu Limited
    • 17.3.13. Furukawa Electric Co., Ltd.
    • 17.3.14. HENGTONG GROUP CO.,LTD.
    • 17.3.15. Hirose Electric Co., Ltd.
    • 17.3.16. HUBER+SUHNER AG
    • 17.3.17. Lumentum Operations LLC
    • 17.3.18. MW Technologies
    • 17.3.19. Nexans S.A.
    • 17.3.20. Nissin Kasei Co., Ltd.
    • 17.3.21. OFS Fitel, LLC
    • 17.3.22. Optical Cable Corporation
    • 17.3.23. Prysmian S.p.A
    • 17.3.24. Schlumberger Limited
    • 17.3.25. Senko Advanced Co Ltd
    • 17.3.26. Shenzhen Nokoxin Technology Co., Ltd.
    • 17.3.27. Sterlite Technologies Limited
    • 17.3.28. Sumitomo Electric Industries, Ltd.
    • 17.3.29. TE Connectivity Ltd.
    • 17.3.30. 3M Company

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제