½ÃÀ庸°í¼­
»óǰÄÚµå
1807620

µ¥ÀÌÅÍ ÆÐºê¸¯ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°, µ¥ÀÌÅÍ À¯Çüº°, ¹èÆ÷ Çüź°, Á¶Á÷ ±Ô¸ðº°, ¿ëµµº°, ¾÷°èº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Data Fabric Market by Component, Data Type, Deployment Mode, Organization Size, Application, Vertical - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 190 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

µ¥ÀÌÅÍ ÆÐºê¸¯ ½ÃÀåÀº 2024³â¿¡´Â 37¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇϸç, 2025³â¿¡´Â 49¾ï ´Þ·¯, CAGR 32.30%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 201¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ¿¬µµ 2024 37¾ï 5,000¸¸ ´Þ·¯
ÃßÁ¤¿¬µµ 2025 49¾ï ´Þ·¯
¿¹Ãø¿¬µµ 2030 201¾ï 4,000¸¸ ´Þ·¯
CAGR(%) 32.30%

µ¥ÀÌÅÍ ÆÐºê¸¯ ¼Ö·ç¼ÇÀÇ ÈûÀ» ºô·Á º¹ÀâÇÑ ¸ÖƼ-Ŭ¶ó¿ìµå ¹× ÇÏÀ̺긮µå ȯ°æ¿¡¼­ ¹ÎøÇÑ ÀÇ»ç°áÁ¤À» °¡¼ÓÈ­ÇÏ¿© ¿øÈ°ÇÑ µðÁöÅÐ ÀüȯÀ» ÃËÁøÇϰí, µ¥ÀÌÅÍ ÆÐºê¸¯ ¼Ö·ç¼ÇÀÇ ÈûÀ» À̲ø¾î³À´Ï´Ù.

¿À´Ã³¯ ±â¾÷Àº ½Ç½Ã°£ ÀλçÀÌÆ®, ¿øÈ°ÇÑ ÅëÇÕ, °ß°íÇÑ °Å¹ö³Í½º¿¡ ´ëÇÑ ¿ä±¸°¡ ±× ¾î´À ¶§º¸´Ù ³ôÀº ¼öÁØÀ¸·Î ³ô¾ÆÁö¸é¼­ ±× ¾î´À ¶§º¸´Ù º¹ÀâÇÑ µðÁöÅÐ ¿µ¿ªÀ¸·Î ³ª¾Æ°¡°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­ ¸ñÇ¥ÀÇ Çٽɿ¡´Â µ¥ÀÌÅÍ ÆÐºê¸¯À̶ó´Â °³³äÀÌ ÀÖ½À´Ï´Ù. ÀÌ´Â On-Premise¿Í Ŭ¶ó¿ìµåÀÇ À̱âÁ¾ ¼Ò½º¸¦ ÅëÇÕÇÏ¿© Áö´ÉÀûÀ¸·Î °ü¸®µÇ´Â ¿¡ÄڽýºÅÛÀ¸·Î ¸¸µå´Â ¾ÆÅ°ÅØÃ³ Á¢±Ù ¹æ½ÄÀÔ´Ï´Ù. ÀÌ ÅëÇÕ °èÃþÀº µ¥ÀÌÅÍ °Ë»ö ¹× ¾×¼¼½º¸¦ °£¼ÒÈ­ÇÒ »Ó¸¸ ¾Æ´Ï¶ó, Á¤º¸ ¼ö¸íÁÖ±â Àü¹Ý¿¡ °ÉÃÄ ÀÚµ¿È­, º¸¾È, ¸ÞŸµ¥ÀÌÅͺ£À̽º ÀÎÅÚ¸®Àü½º¸¦ ÅëÇÕÇÕ´Ï´Ù. Á¶Á÷ÀÌ ¹ÎøÇÑ ÀÇ»ç°áÁ¤°ú ¿î¿µ ź·Â¼ºÀ» Ãß±¸ÇÏ´Â °¡¿îµ¥, µ¥ÀÌÅÍ ÆÐºê¸¯Àº °í±Þ ºÐ¼®, ¸Ó½Å·¯´×, ¿£µå-Åõ-¿£µå ÇÁ·Î¼¼½º ÃÖÀûÈ­¸¦ Áö¿øÇÏ´Â ±â¹Ý ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù.

AI, ÇÏÀ̺긮µå ¸ÖƼŬ¶ó¿ìµå ¾ÆÅ°ÅØÃ³, ½Ç½Ã°£ ºÐ¼®ÀÇ °áÇÕÀ¸·Î ±â¾÷ ¿î¿µ°ú ÀλçÀÌÆ®¸¦ Çõ½ÅÇϰí, ÁøÈ­ÇÏ´Â µ¥ÀÌÅÍ È¯°æ Ž»ö

Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, ÀΰøÁö´É, ½Ç½Ã°£ ºÐ¼®ÀÇ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó µ¥ÀÌÅÍ °ü¸® ȯ°æÀº Å« º¯È­ÀÇ ½Ã±â¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ±â¾÷Àº ¸ð³î¸®½Ä, »çÀÏ·ÎÈ­µÈ µ¥ÀÌÅÍ ¾ÆÅ°ÅØÃ³¿¡¼­ Áö¼ÓÀûÀÎ ¹ß°ß°ú Áï°¢ÀûÀÎ ÀλçÀÌÆ® âÃâÀ» Áö¿øÇÏ´Â µ¿Àû ¸ðµ¨·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ AI¿Í ¸Ó½Å·¯´×ÀÇ ¹ßÀüÀº µ¥ÀÌÅÍ Ä«Å»·Î±×È­, °­È­ ¹× ¿ÀÄɽºÆ®·¹ÀÌ¼Ç ¹æ¹ý¿¡ ´ëÇÑ ±â´ëÄ¡¸¦ ³ôÀ̰í, ÁøÈ­ÇÏ´Â ºñÁî´Ï½º ¿ä±¸»çÇ׿¡ ÀûÀÀÇÒ ¼ö ÀÖ´Â ¸ÞŸµ¥ÀÌÅͺ£À̽º °Å¹ö³Í½º ÇÁ·¹ÀÓ¿öÅ©ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

2025³â ¹Ì±¹ °ü¼¼°¡ ±â¼ú °ø±Þ¸Á°ú µ¥ÀÌÅÍ ÆÐºê¸¯ ±¸Çö¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ºñ¿ë ±¸Á¶¿¡ ¹ÌÄ¡´Â ¸Õ ¹Ì·¡ÀÇ ¿µÇâ¿¡ ´ëÇÑ Æò°¡

¹«¿ª Á¤Ã¥ ȯ°æÀº ±â¼ú Á¶´Þ, °ø±Þ¸Á ȸº¹·Â, ±â¾÷ IT »ýŰèÀÇ Àü¹ÝÀûÀÎ ºñ¿ë ±¸Á¶¸¦ Çü¼ºÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¹Ì±¹ÀÌ 2025³â ƯÁ¤ ±â¼ú ¼öÀÔǰ¿¡ ´ëÇÑ °ü¼¼¸¦ ÀλóÇÔ¿¡ µû¶ó Àü ¼¼°è ±â¾÷Àº µ¥ÀÌÅÍ ÆÐºê¸¯ ¼Ö·ç¼ÇÀÇ ÇÙ½É Çϵå¿þ¾î ±¸¼º ¿ä¼Ò¿Í Ư¼ö ¼ÒÇÁÆ®¿þ¾î ¶óÀ̼±½º Á¶´Þ Àü·«À» ÀçÆò°¡Çß½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤Ã¥ º¯È­·Î ÀÎÇØ ºñ¿ë º¯µ¿¼ºÀÌ Ä¿Áö¸é¼­ ¼Ö·ç¼Ç ÇÁ·Î¹ÙÀÌ´õ¿Í ÃÖÁ¾»ç¿ëÀÚ´Â ¸¶Áø ¾Ð·ÂÀ» ¿ÏÈ­Çϱâ À§ÇØ ´ëü °ø±Þ °æ·Î, ÇöÁö Á¶¸³ ¿É¼Ç, Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ¸ð»öÇÒ ¼ö¹Û¿¡ ¾ø½À´Ï´Ù.

µ¥ÀÌÅÍ ÆÐºê¸¯ ½ÃÀåÀÇ ±¸¼º ¿ä¼Ò, µ¥ÀÌÅÍ À¯Çü, ¹èÆ÷ ¸ðµå, Á¶Á÷ ±Ô¸ð, ¾ÖÇø®ÄÉÀ̼Ç, ¼öÁ÷Àû ¿ªÇп¡ ´ëÇÑ ÀÚ¼¼ÇÑ ¼¼ºÐÈ­ ºÐ¼®

öÀúÇÑ ¼¼ºÐÈ­ ºÐ¼®À» ÅëÇØ µ¥ÀÌÅÍ ÆÐºê¸¯ ½ÃÀåÀº Çö´ë ±â¾÷ÀÇ ´Ù¾çÇÑ ¿ä±¸¸¦ ÃæÁ·½ÃŰ´Â ¸íÈ®ÇÑ °èÃþ°ú ÀÌ¿ë »ç·Ê¸¦ Á¦°øÇÏ´Â °ÍÀÌ Æ¯Â¡ÀÎ °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù. ÄÄÆ÷³ÍÆ® ·¹º§¿¡¼­´Â ¸Å´ÏÁöµå ¼­ºñ½º¿Í Àü¹® ¼­ºñ½º°¡ µµÀÔ ¼º°øÀÇ ÇÙ½ÉÀ̸ç, ¸Å´ÏÁöµå ¼­ºñ½º´Â Áö¼ÓÀûÀÎ ¿î¿µ ¸ð´ÏÅ͸µÀ» Á¦°øÇϰí, Àü¹® ¼­ºñ½º´Â ¸ÂÃãÇü ÄÁ¼³ÆÃ, ÅëÇÕ, ÃÖÀûÈ­¸¦ Á¦°øÇÕ´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ÄÄÆ÷³ÍÆ®´Â °Å¹ö³Í½º, ÅëÇÕ, ¸®´ÏÁö, ¿ÀÄɽºÆ®·¹À̼Ç, ¿ÀÄɽºÆ®·¹À̼Ç, º¸¾È, ¸¶½ºÅÍ µ¥ÀÌÅÍ °ü¸®, ¸ÞŸµ¥ÀÌÅÍ °ü¸® µî ¿©·¯ ±â´É ¿µ¿ª¿¡ °ÉÃÄ ÀÌ·¯ÇÑ ¼­ºñ½º¸¦ º¸¿ÏÇϸç, °¢°¢ Áö´ÉÇü ÀÚ°¡ º¹±¸ °¡´ÉÇÑ µ¥ÀÌÅÍ È¯°æÀ» ±¸ÃàÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

ºÏ¹Ì, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç µ¥ÀÌÅÍ ÆÐºê¸¯ »ýÅÂ°è ½ÃÀå µ¿Çâ ¹× ½ÃÀå ¼ºÀå ÃËÁø¿äÀο¡ ´ëÇÑ Áö¿ªº° ÀλçÀÌÆ®

µ¥ÀÌÅÍ ÆÐºê¸¯ÀÇ Ã¤Åà Áö¿ªÀº Áö¿ªº° ±ÔÁ¦ »óȲ, µðÁöÅÐ ÀÎÇÁ¶ó ¼º¼÷µµ, ¼¼°è ½ÃÀ庰·Î Å©°Ô ´Ù¸¥ ºÐ¾ßº° ÃËÁø¿äÀο¡ µû¶ó Çü¼ºµË´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì´Â źźÇÑ Å¬¶ó¿ìµå »ýŰè, ÷´ÜÀÎ ÇÁ¶óÀ̹ö½Ã ±ÔÁ¦, ³ôÀº µðÁöÅÐ Çõ½Å ¼Óµµ°¡ ±âÁ¸ ¹× ½ÅÈï µ¥ÀÌÅÍ ÆÐºê¸¯ Ç÷§Æû¿¡ ºñ¿ÁÇÑ Åä¾çÀ» Á¦°øÇÕ´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì ±â¾÷Àº ¿¬¹æ ¹× ÁÖÁ¤ºÎ µ¥ÀÌÅÍ º¸È£¹ýÀ» ÁؼöÇϸ鼭 ±¹°æ °£ ¿î¿µÀ» Áö¿øÇÒ ¼ö ÀÖ´Â À¯¿¬ÇÏ°í ¿Ïº®ÇÏ°Ô °ü¸®µÇ´Â ¾ÆÅ°ÅØÃ³¿¡ ÁÖ¸ñÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå »óȲÀ» Çü¼ºÇÏ´Â Çõ½Å, ÆÄÆ®³Ê½Ê ¸ðµ¨, °æÀï Â÷º°È­ ¿äÀÎÀ» º¸¿©ÁÖ´Â ÁÖ¿ä µ¥ÀÌÅÍ ÆÐºê¸¯ º¥´õÀÇ Àü·«Àû ÇÁ·ÎÆÄÀÏ

ÁÖ¿ä µ¥ÀÌÅÍ ÆÐºê¸¯ º¥´õµéÀº ½ÃÀå Á¡À¯À²À» È®º¸ÇÏ°í º¹ÀâÇÑ ±â¾÷ ȯ°æ¿¡ Â÷º°È­µÈ °¡Ä¡¸¦ Á¦°øÇϱâ À§ÇØ µ¶ÀÚÀûÀÎ Àü·«Àû ÀÚ¼¼¸¦ ÃëÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä Ŭ¶ó¿ìµå ÇÁ·Î¹ÙÀÌ´õµéÀº ÆÐºê¸¯ ±â´ÉÀ» ÀÚ»ç Ç÷§Æû¿¡ Á÷Á¢ ÅëÇÕÇϰí, ³×ÀÌÆ¼ºê ½ºÅ丮Áö, ÄÄÇ»ÆÃ, ºÐ¼® ¼­ºñ½º¿¡ ´ëÇÑ ¿øÈ°ÇÑ ¿¬°á¼ºÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °í°´Àº ±âÁ¸ ÀÎÇÁ¶ó ÅõÀÚ¸¦ Ȱ¿ëÇϸ鼭 ³»ÀåµÈ °Å¹ö³Í½º ¹× ¸ÞŸµ¥ÀÌÅÍ ÀÎÅÚ¸®Àü½ºÀÇ ÀÌÁ¡À» ´©¸± ¼ö ÀÖ½À´Ï´Ù. ÀÌ¿Í ÇÔ²² µ¶¸³ ¼ÒÇÁÆ®¿þ¾î º¥´õµéÀº µ¥ÀÌÅÍ ¸®´ÏÁö, ¸¶½ºÅÍ µ¥ÀÌÅÍ °ü¸®, ¸ÞŸµ¥ÀÌÅͺ£À̽º ÀÚµ¿È­ µîÀÇ ºÐ¾ß¿¡ ´ëÇÑ ±íÀº Àü¹®¼ºÀ» ¹ÙÅÁÀ¸·Î À̱âÁ¾ ȯ°æ°ú »óÈ£ ¿î¿ë °¡´ÉÇÑ ¸ðµâ½Ä, Ç÷§Æû¿¡ ±¸¾Ö¹ÞÁö ¾Ê´Â ¼Ö·ç¼ÇÀ» ±¸ÃàÇØ ¿Ô½À´Ï´Ù.

µ¥ÀÌÅÍ ÆÐºê¸¯ µµÀÔÀ» ÃÖÀûÈ­Çϰí, °Å¹ö³Í½º¸¦ °­È­Çϸç, Çõ½ÅÀ» ÅëÇØ Áö¼Ó°¡´ÉÇÑ ¼ºÀåÀ» °¡¼ÓÇÒ ¼ö ÀÖµµ·Ï ¾÷°è ¸®´õ¸¦ Áö¿øÇÏ´Â ½ÇÇà °¡´ÉÇÑ Àü·«Àû Á¦¾È

ÁøÈ­ÇÏ´Â µ¥ÀÌÅÍ ÆÐºê¸¯ ȯ°æÀ» È¿°úÀûÀ¸·Î ÇìÃijª°¡±â À§ÇØ ¾÷°è ¸®´õµéÀº ±â¼ú ÅõÀÚ¿Í Á¶Á÷ ¿ª·® ±¸ÃàÀÇ ±ÕÇüÀ» ¸ÂÃß´Â ÀüüÀûÀÎ Á¢±Ù ¹æ½ÄÀ» äÅÃÇØ¾ß ÇÕ´Ï´Ù. ¸ÕÀú, µ¥ÀÌÅÍ ÆÐºê¸¯ÀÇ ±¸»óÀ» µ¥ÀÌÅÍ ¼ÒÀ¯±Ç, ǰÁú ±âÁØ, Á¢±Ù Á¦¾î¿¡ ´ëÇÑ ¿ªÇÒ, Ã¥ÀÓ, Á¤Ã¥À» Á¤ÀÇÇÏ´Â ¸íÈ®ÇÑ °Å¹ö³Í½º ÇÁ·¹ÀÓ¿öÅ©¿¡¼­ µ¥ÀÌÅÍ ÆÐºê¸¯ÀÇ ±¸»óÀ» °íÁ¤ÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù. ¸ÞŸµ¥ÀÌÅͺ£À̽º ÀÚµ¿È­¸¦ °Å¹ö³Í½º ÇÁ·Î¼¼½º¿¡ ÅëÇÕÇÔÀ¸·Î½á ±â¾÷Àº ¿î¿µ ºÎ´ãÀ» ´Ã¸®Áö ¾Ê°íµµ ¹Îø¼º°ú ÄÄÇöóÀ̾𽺸¦ ¸ðµÎ ´Þ¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù.

1Â÷ Á¶»ç, 2Â÷ Á¤º¸, °­·ÂÇÑ ºÐ¼® ±â¹ýÀ» °áÇÕÇÑ Á¾ÇÕÀûÀÎ Á¶»ç ÇÁ·¹ÀÓ¿öÅ©¸¦ ÅëÇØ Á¤È®ÇÑ ½ÃÀå ÀλçÀÌÆ®¸¦ Á¦°ø

º» Á¶»ç¹æ¹ýÀº µ¥ÀÌÅÍ ÆÐºê¸¯ ½ÃÀåÀÇ º¹À⼺À» ¿ÏÀüÈ÷ ÆÄ¾ÇÇϱâ À§ÇØ ¾ö°ÝÇÑ ´Ù´Ü°è Á¶»ç¹æ¹ýÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ù ¹øÂ° ´Ü°è¿¡¼­´Â À繫Á¦Ç¥, ±ÔÁ¦ ´ç±¹ Á¦Ãâ ¼­·ù, ¾÷°è ¹é¼­, ±â¼ú ·Îµå¸Ê µîÀÇ ºÐ¼®À» Æ÷ÇÔÇÑ Á¾ÇÕÀûÀÎ 2Â÷ Á¶»ç¸¦ ÅëÇØ ½ÃÀå ¿ªÇÐ, °ø±Þ¾÷üÀÇ Á¦°ø Á¦Ç°, Áö¿ªÀû Â÷ÀÌ¿¡ ´ëÇÑ ±âÃÊÀûÀÎ ÀÌÇØ¸¦ µµ¸ðÇß½À´Ï´Ù. ÀÌ¿Í ÇÔ²² °íÀ§ IT ÀÓ¿ø, µ¥ÀÌÅÍ ¾ÆÅ°ÅØÆ®, ¸Å´ÏÁöµå ¼­ºñ½º ¸®´õ¸¦ ´ë»óÀ¸·Î 1Â÷ ÀÎÅͺ並 ½Ç½ÃÇÏ¿©, µµÀÔ ÃËÁø¿äÀÎ, µµÀÔ °úÁ¦, ¼º°ø ¿äÀÎ µî¿¡ ´ëÇÑ ¹Ì¹¦ÇÑ °üÁ¡À» Á¦°øÇß½À´Ï´Ù.

µ¥ÀÌÅÍ ÆÐºê¸¯ÀÇ ÁøÈ­, ½ÃÀå ¿µÇâ¿äÀÎ, ¹Ì·¡ ±â¾÷ µ¥ÀÌÅÍ °ü¸® ¼º°ú¸¦ ÃËÁøÇÒ Àü·«Àû °úÁ¦¿¡ ´ëÇÑ ÀλçÀÌÆ® ÅëÇÕ

±â¾÷ÀÌ µ¥ÀÌÅͺ£À̽º Çõ½ÅÀÇ ÈûÀ» Ȱ¿ëÇϱâ À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, µ¥ÀÌÅÍ ÆÐºê¸¯Àº ÅëÇÕÀûÀ̰í Áö´ÉÀûÀÌ¸ç ¾ÈÀüÇÑ ±â¾÷ µ¥ÀÌÅÍ °ü¸®¸¦ À§ÇÑ ÇʼöÀûÀÎ ±â¹ÝÀ¸·Î¼­ ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÇÏÀ̺긮µå ¸ÖƼ Ŭ¶ó¿ìµå ¾ÆÅ°ÅØÃ³, AI °­È­ ºÐ¼®, ¾ö°ÝÇÑ ±ÔÁ¦ÀÇ À¶ÇÕÀ¸·Î ¿øÈ°ÇÑ µ¥ÀÌÅÍ ÅëÇÕ, ¼³°è¿¡ ÀÇÇÑ °Å¹ö³Í½º, ÀÚµ¿È­µÈ ¿ÀÄɽºÆ®·¹À̼ÇÀÇ Á߿伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀÌ º¸°í¼­´Â ÁøÈ­ÇÏ´Â ¹«¿ª Á¤Ã¥ºÎÅÍ Áö¿ª ¿ªÇÐ, ¼Ö·ç¼Ç Àü·«À» Çü¼ºÇÏ´Â ¹Ì¹¦ÇÑ ¼¼ºÐÈ­¿¡ ´ëÇÑ ÀλçÀÌÆ®±îÁö ½ÃÀåÀ» ÀçÁ¤ÀÇÇÏ´Â º¯ÇõÀû º¯È­¸¦ ¹àÇô³Â½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå µ¥ÀÌÅÍ ÆÐºê¸¯ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼­ºñ½º
    • ¸Å´ÏÁöµå ¼­ºñ½º
    • Àü¹® ¼­ºñ½º
  • ¼ÒÇÁÆ®¿þ¾î
    • µ¥ÀÌÅÍ °Å¹ö³Í½º
    • µ¥ÀÌÅÍ ÅëÇÕ
    • µ¥ÀÌÅÍ °èÅë
    • µ¥ÀÌÅÍ ¿ÀÄɽºÆ®·¹À̼Ç
    • µ¥ÀÌÅÍ º¸¾È
    • ¸¶½ºÅÍ µ¥ÀÌÅÍ °ü¸®(MDM)
    • ¸ÞŸµ¥ÀÌÅÍ °ü¸®

Á¦9Àå µ¥ÀÌÅÍ ÆÐºê¸¯ ½ÃÀå : µ¥ÀÌÅÍ À¯Çüº°

  • ±¸Á¶È­ µ¥ÀÌÅÍ
  • ºñ±¸Á¶È­ µ¥ÀÌÅÍ

Á¦10Àå µ¥ÀÌÅÍ ÆÐºê¸¯ ½ÃÀå : ¹èÆ÷ ¸ðµåº°

  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦11Àå µ¥ÀÌÅÍ ÆÐºê¸¯ ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦12Àå µ¥ÀÌÅÍ ÆÐºê¸¯ ½ÃÀå : ¿ëµµº°

  • AI/ML ¸ðµ¨ Æ®·¹ÀÌ´× Áö¿ø
  • ºñÁî´Ï½º ÇÁ·Î¼¼½º ÃÖÀûÈ­
  • °í°´ °æÇè °ü¸®
  • µ¥ÀÌÅÍ Å½Áö¿Í īŻ·Î±× ÀÛ¼º
  • µ¥ÀÌÅÍ ¿þ¾îÇϿ콺¿Í µ¥ÀÌÅÍ ·¹ÀÌÅ© °ü¸®
  • ºÎÁ¤ ŽÁö¿Í º¸¾È °ü¸®
  • °Å¹ö³Í½º, ¸®½ºÅ©, ÄÄÇöóÀ̾ð½º(GRC)
  • IoT µ¥ÀÌÅÍ °ü¸®
  • ¿î¿µ ÀÎÅÚ¸®Àü½º
  • ½Ç½Ã°£ ºÐ¼®

Á¦13Àå µ¥ÀÌÅÍ ÆÐºê¸¯ ½ÃÀå : ¾÷°èº°

  • ÀºÇà, ±ÝÀ¶ ¼­ºñ½º, º¸Çè(BFSI)
  • ±³À°
  • ¿¡³ÊÁö¡¤À¯Æ¿¸®Æ¼
  • Á¤ºÎ ¹× °ø°ø ºÎ¹®
  • ÇコÄɾî¿Í »ý¸í°úÇÐ
  • IT¡¤Åë½Å
  • Á¦Á¶¾÷
  • ¹Ìµð¾î & ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • ¼Ò¸Å¡¤E-Commerce
  • ¿î¼Û¡¤¹°·ù

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ µ¥ÀÌÅÍ ÆÐºê¸¯ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ µ¥ÀÌÅÍ ÆÐºê¸¯ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¥ÀÌÅÍ ÆÐºê¸¯ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Cisco Systems, Inc.
    • Dell Inc.
    • Hewlett Packard Enterprise Company
    • Hitachi, Ltd.
    • International Business Machines Corporation
    • Oracle Corporation
    • Precisely Holdings, LLC
    • SAP SE
    • Microsoft Corporation
    • Cloudera, Inc.
    • Google LLC by Alphabet Inc.
    • Amazon Web Services, Inc.

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃ

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

KSA 25.09.16

The Data Fabric Market was valued at USD 3.75 billion in 2024 and is projected to grow to USD 4.90 billion in 2025, with a CAGR of 32.30%, reaching USD 20.14 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 3.75 billion
Estimated Year [2025] USD 4.90 billion
Forecast Year [2030] USD 20.14 billion
CAGR (%) 32.30%

Unlocking the Power of Data Fabric Solutions to Drive Seamless Digital Transformation and Accelerate Agile Decision-Making Across Complex Multicloud and Hybrid Environments

Enterprises today are navigating an ever-more complex digital terrain where the demand for real-time insights, seamless integration, and robust governance has reached unprecedented levels. At the heart of these transformational objectives lies the concept of a data fabric, an architectural approach that unifies disparate sources, both on premises and in the cloud, into a cohesive, intelligently managed ecosystem. This unified layer not only streamlines data discovery and access, but also embeds automation, security, and metadata-driven intelligence across the lifecycle of information. As organizations pursue agile decision-making and operational resilience, a data fabric delivers the foundational capabilities that underpin advanced analytics, machine learning, and end-to-end process optimization.

In an era defined by hybrid infrastructure and data sovereignty considerations, the ability to orchestrate, govern, and optimize data assets becomes a strategic differentiator. This introduction outlines the critical role of data fabric in reshaping enterprise data management, accelerating innovation, and democratizing access to insights. By establishing a self-service, governed environment, organizations can reduce time to value, mitigate compliance risks, and empower cross-functional teams with trustworthy data. This section sets the stage for a deep dive into the evolving landscape, regulatory influences, segmentation dynamics, regional variations, vendor strategies, and actionable recommendations that will guide stakeholders at all levels.

Navigating the Evolving Data Landscape Where AI, Hybrid Multicloud Architectures, and Real-Time Analytics Converge to Transform Enterprise Operations and Insights

The data management landscape is undergoing a profound transformation fueled by the convergence of cloud computing, artificial intelligence, and the growing imperative for real-time analytics. Enterprises are shifting away from monolithic, siloed data architectures toward dynamic models that support continuous discovery and immediate insight generation. At the same time, advancements in AI and machine learning have elevated expectations for how data should be cataloged, enriched, and orchestrated, propelling the adoption of metadata-driven governance frameworks that can adapt to evolving business requirements.

Hybrid and multicloud strategies have become the de facto standard for large organizations, demanding a unified approach to data connectivity, movement, and security. As a result, data fabrics are emerging as the strategic answer to these demands, enabling intelligent automation of data pipelines, consistent policy enforcement, and a holistic view of data assets across distributed environments. Furthermore, regulatory landscapes around data privacy and sovereignty are shaping requirements for granular control, auditability, and lineage, reinforcing the need for solutions that integrate governance by design. In parallel, the rise of edge computing and IoT deployments is extending the boundary of traditional data domains, creating new opportunities for real-time operational intelligence. Together, these shifts underscore a pivotal moment in enterprise data management where agility, resilience, and intelligence converge to drive unprecedented business value.

Assessing the Far-Reaching Effects of 2025 United States Tariffs on Technology Supply Chains and Cost Structures Impacting Data Fabric Implementations

The trade policy environment plays a critical role in shaping technology procurement, supply chain resilience, and the overall cost structure of enterprise IT ecosystems. With the implementation of increased tariffs on certain technology imports by the United States in 2025, organizations worldwide are reevaluating sourcing strategies for hardware components and specialized software licenses that form the backbone of data fabric solutions. This policy shift has introduced a higher degree of cost volatility, compelling solution providers and end users alike to explore alternate supply routes, local assembly options, and strategic partnerships to mitigate margin pressures.

In response to these tariff-induced headwinds, many vendors have accelerated their investment in regional manufacturing hubs or partnered with domestic suppliers to ensure continuity and cost stability. Likewise, enterprises are rethinking total cost of ownership models, factoring in the potential for incremental duties and logistical expenses. As a result, some organizations have prioritized platforms that offer modular, software-centric architectures requiring fewer specialized hardware dependencies. This realignment has also spurred greater emphasis on open standards and interoperable frameworks, enabling clients to switch or augment components without facing prohibitive import costs. Consequently, the cumulative impact of these trade measures is driving both vendors and adopters toward more agile, cost-efficient, and locally optimized data fabric deployments.

In-Depth Segmentation Analysis Revealing Component, Data Type, Deployment Mode, Organizational Size, Application, and Vertical Dynamics in the Data Fabric Market

A thorough segmentation analysis reveals that the data fabric market is characterized by distinct layers of offerings and use cases that respond to the diverse needs of modern enterprises. At the component level, managed and professional services are central to successful implementations, with managed services providing ongoing operational oversight and professional services delivering custom consulting, integration, and optimization. Software components complement these services across multiple functional domains including governance, integration, lineage, orchestration, security, master data management, and metadata management, each playing a vital role in creating an intelligent, self-healing data environment.

Data fabric solutions also differentiate themselves by the types of data they handle, seamlessly bridging structured relational datasets with unstructured content such as documents, logs, and multimedia to support comprehensive analytics workflows. Deployment flexibility further enriches this landscape, with organizations choosing between purely on-premises installations for heightened control, fully cloud-based models for agility and scalability, or hybrid configurations that blend both to address data residency and performance requirements. Enterprise size is another key axis, as large organizations typically demand deep customization, extensive governance, and high-throughput capabilities, whereas small and medium enterprises often value turnkey platforms that minimize complexity and accelerate time to insight.

Across application areas, data fabric platforms are leveraged for AI and ML model training support, business process optimization, customer experience management, data discovery and cataloging, data warehousing and lake management, fraud detection and security management, governance risk and compliance programs, IoT data consolidation, operational intelligence, and real-time analytics. Finally, vertical-specific considerations shape deployment strategies, from the compliance-driven demands of banking and financial services to the high-velocity operational needs of manufacturing, retail, telecommunications, and public sector entities.

Regional Examination Highlighting Market Trends and Growth Drivers Across the Americas, Europe Middle East Africa, and Asia Pacific Data Fabric Ecosystems

The geography of data fabric adoption is shaped by regional regulatory landscapes, digital infrastructure maturity, and sector-specific drivers that vary significantly across global markets. In the Americas, robust cloud ecosystems, progressive privacy regulations, and high rates of digital transformation have created fertile ground for both established and emerging data fabric platforms. Enterprises in North and South America are focusing on flexible, fully managed architectures that can support cross-border operations while ensuring compliance with federal and state data protection laws.

In Europe, the Middle East, and Africa, a complex patchwork of regulatory requirements, including stringent data residency mandates and evolving privacy frameworks, has led organizations to emphasize hybrid and on-premise solutions. Localized partnerships and European-based processing capabilities have become critical for firms operating under the GDPR and related directives, driving investment in Regionally compliant data fabric offerings.

The Asia-Pacific region is witnessing rapid digitalization across manufacturing, retail, and telecommunications sectors, coupled with government initiatives promoting data sovereignty and smart city initiatives. This convergence has spurred demand for highly scalable cloud-native fabrics that can ingest massive IoT streams, support AI-driven insights, and adapt to variable network conditions. Regional players, alongside global vendors, are capitalizing on these opportunities by establishing local data centers and delivering industry-specific templates optimized for high-growth markets in APAC.

Strategic Profiles of Leading Data Fabric Providers Showcasing Innovation, Partnership Models, and Competitive Differentiators Shaping the Market Landscape

Leading data fabric vendors have adopted distinct strategic postures to capture market share and deliver differentiated value across complex enterprise landscapes. Major cloud providers have integrated fabric capabilities directly into their platforms, emphasizing seamless connectivity to native storage, compute, and analytics services. This approach allows clients to leverage existing infrastructure investments while benefiting from embedded governance and metadata intelligence. In parallel, independent software vendors have built modular, platform-agnostic solutions that interoperate with heterogeneous environments, focusing on deep expertise in areas such as data lineage, master data management, and metadata-driven automation.

Partnership ecosystems have emerged as another defining feature of the competitive landscape, with providers forging alliances with systems integrators, managed service firms, and consulting houses to deliver end-to-end solutions. These partnerships enable rapid deployment, custom development, and ongoing optimization, often supported by co-branded frameworks and implementation methodologies. Additionally, several vendors are differentiating themselves through AI-enhanced capabilities, offering predictive data health monitoring, anomaly detection, and autonomous remediation features that reduce operational overhead and accelerate time to value.

As regulatory pressures and compliance requirements intensify, companies with robust governance modules and transparent lineage tracking are gaining traction in sectors such as financial services, healthcare, and government. Conversely, vendors specializing in high-performance data orchestration and streaming analytics are winning mandates in retail, manufacturing, and telecommunications, where real-time insights and operational intelligence are paramount. This multifaceted competitive dynamic underscores the importance of strategic focus, integration prowess, and continuous innovation in shaping the future of the data fabric market.

Actionable Strategic Recommendations Empowering Industry Leaders to Optimize Data Fabric Adoption, Enhance Governance, and Fuel Sustainable Growth Through Innovation

To effectively navigate the evolving data fabric landscape, industry leaders must adopt a holistic approach that balances technological investment with organizational capability building. First, it is essential to anchor data fabric initiatives in a clear governance framework that defines roles, responsibilities, and policies across data ownership, quality standards, and access controls. By embedding metadata-driven automation into governance processes, enterprises can achieve both agility and compliance without introducing additional operational burdens.

In parallel, investing in integration expertise-either through internal talent development or strategic partnerships-will accelerate implementation timelines and ensure that data pipelines remain resilient as environments evolve. Embracing open standards and interoperable architectures reduces vendor lock-in risk and supports future-proofing, especially in hybrid and multicloud deployments. Leaders should also prioritize the incorporation of AI-enhanced capabilities for proactive data quality monitoring, predictive lineage tracking, and intelligent orchestration, thereby reducing manual efforts and optimizing resource utilization.

Finally, cultivating a data-centric culture through targeted training programs and cross-functional collaboration empowers business users to leverage self-service capabilities securely and effectively. By aligning data fabric projects with strategic business objectives-such as enhancing customer experiences, streamlining operations, or driving revenue growth-organizations can demonstrate tangible value, secure executive sponsorship, and establish a roadmap for continuous improvement.

Comprehensive Research Framework Combining Primary Interviews, Secondary Data Sources, and Robust Analytical Techniques to Ensure Accurate Market Insights

This research employs a rigorous, multi-phased methodology designed to capture the full complexity of the data fabric market. The initial phase involved comprehensive secondary research, including analysis of public financial statements, regulatory filings, industry whitepapers, and technology roadmaps, to establish a foundational understanding of market dynamics, vendor offerings, and regional variations. Concurrently, a series of primary interviews with senior IT executives, data architects, and managed services leads provided nuanced perspectives on adoption drivers, implementation challenges, and success factors.

Data triangulation techniques were applied to reconcile insights from secondary sources with field data, ensuring the accuracy and reliability of key findings. Quantitative analysis of implementation case studies and performance metrics enabled benchmarking of solution capabilities across functional domains such as governance, integration, and orchestration. Qualitative assessments, including SWOT analyses and competitor profiling, offered strategic context for identifying emerging trends, competitive differentiators, and investment hotspots.

Throughout the research process, strict quality control measures were enforced, with peer reviews and validation workshops conducted to refine narratives and verify data points. The resulting report delivers a balanced, evidence-based view of the global data fabric landscape, supporting informed decision-making for technology buyers, investors, and solution providers.

Synthesizing Insights on Data Fabric Evolution, Market Influencers, and Strategic Imperatives Driving Future Enterprise Data Management Outcomes

As organizations strive to harness the power of data-driven innovation, the data fabric emerges as the indispensable foundation for unified, intelligent, and secure enterprise data management. The convergence of hybrid multicloud architectures, AI-enhanced analytics, and stringent regulatory mandates has elevated the importance of seamless data integration, governance by design, and automated orchestration. This report has illuminated the transformative shifts redefining the market, from evolving trade policies to regional dynamics and nuanced segmentation insights that shape solution strategies.

Key players continue to differentiate through partnership models, embedded intelligence, and domain-specific capabilities, while enterprises are increasingly focused on scalable, future-proof platforms that can adapt to rapidly changing business landscapes. Actionable recommendations underscore the need for robust governance frameworks, open architectures, and cultural alignment to fully realize the promise of data fabric initiatives. By embracing these strategic imperatives, organizations can reduce risk, accelerate time to insight, and secure a competitive advantage in a data-centric economy.

Ultimately, the evolution of data fabric technologies and practices will be driven by the relentless pursuit of agility, resilience, and innovation. Stakeholders who proactively integrate these principles into their digital transformation roadmaps will be best positioned to capitalize on emerging opportunities and navigate the complexities of an increasingly interconnected and regulated data landscape.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Enterprise adoption of cloud-native data fabric architectures for hybrid multi-cloud environments
  • 5.2. Integration of AI-driven metadata management to enhance data fabric operational intelligence
  • 5.3. Implementation of zero-trust security frameworks within enterprise data fabric deployments
  • 5.4. Convergence of data fabric and data mesh methodologies for unified governance and discovery
  • 5.5. Real-time data replication and change-data-capture streaming within data fabric pipelines
  • 5.6. Adoption of open-source data fabric solutions to mitigate vendor lock-in and reduce costs
  • 5.7. Self-service data orchestration interfaces empowering citizen integrators on data fabric platforms
  • 5.8. Integration of edge computing nodes with data fabric for low-latency processing of IoT streams
  • 5.9. Emerging data fabric solutions for ensuring privacy and compliance in multi-cloud data integration initiatives
  • 5.10. Integrating data mesh principles with fabric frameworks to optimize distributed data management strategies

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Data Fabric Market, by Component

  • 8.1. Introduction
  • 8.2. Services
    • 8.2.1. Managed Services
    • 8.2.2. Professional Services
  • 8.3. Software
    • 8.3.1. Data Governance
    • 8.3.2. Data Integration
    • 8.3.3. Data Lineage
    • 8.3.4. Data Orchestration
    • 8.3.5. Data Security
    • 8.3.6. Master Data Management (MDM)
    • 8.3.7. Metadata Management

9. Data Fabric Market, by Data Type

  • 9.1. Introduction
  • 9.2. Structured Data
  • 9.3. Unstructured Data

10. Data Fabric Market, by Deployment Mode

  • 10.1. Introduction
  • 10.2. Cloud
  • 10.3. On-Premise

11. Data Fabric Market, by Organization Size

  • 11.1. Introduction
  • 11.2. Large Enterprises
  • 11.3. Small & Medium Enterprises (SMEs)

12. Data Fabric Market, by Application

  • 12.1. Introduction
  • 12.2. AI/ML Model Training Support
  • 12.3. Business Process Optimization
  • 12.4. Customer Experience Management
  • 12.5. Data Discovery & Cataloging
  • 12.6. Data Warehousing & Data Lake Management
  • 12.7. Fraud Detection & Security Management
  • 12.8. Governance, Risk, & Compliance (GRC)
  • 12.9. IoT Data Management
  • 12.10. Operational Intelligence
  • 12.11. Real-Time Analytics

13. Data Fabric Market, by Vertical

  • 13.1. Introduction
  • 13.2. Banking, Financial Services, and Insurance (BFSI)
  • 13.3. Education
  • 13.4. Energy & Utilities
  • 13.5. Government & Public Sector
  • 13.6. Healthcare & Life Sciences
  • 13.7. IT & Telecommunications
  • 13.8. Manufacturing
  • 13.9. Media & Entertainment
  • 13.10. Retail & eCommerce
  • 13.11. Transportation & Logistics

14. Americas Data Fabric Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Data Fabric Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Data Fabric Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Cisco Systems, Inc.
    • 17.3.2. Dell Inc.
    • 17.3.3. Hewlett Packard Enterprise Company
    • 17.3.4. Hitachi, Ltd.
    • 17.3.5. International Business Machines Corporation
    • 17.3.6. Oracle Corporation
    • 17.3.7. Precisely Holdings, LLC
    • 17.3.8. SAP SE
    • 17.3.9. Microsoft Corporation
    • 17.3.10. Cloudera, Inc.
    • 17.3.11. Google LLC by Alphabet Inc.
    • 17.3.12. Amazon Web Services, Inc.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦