시장보고서
상품코드
1807923

모놀리식 마이크로파 IC 시장 : 부품, 재료, 기술, 주파수 대역, 최종사용자별 - 세계 예측(2025-2030년)

Monolithic Microwave IC Market by Component, Material, Technology, Frequency Band, End User - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 197 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

모놀리식 마이크로파 IC 시장은 2024년에는 94억 8,000만 달러에 달하며, 2025년에는 102억 9,000만 달러, CAGR 8.73%로 성장하며, 2030년에는 156억 8,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 94억 8,000만 달러
추정연도 2025 102억 9,000만 달러
예측연도 2030 156억 8,000만 달러
CAGR(%) 8.73%

진화, 기술적 혁신, 시장 역학, 모놀리식 마이크로웨이브 집적회로의 채택에 영향을 미치는 전략적 중요성 탐색

모놀리식 마이크로웨이브 집적회로(MMIC)는 통신, 레이더, 위성통신 등 다양한 분야에서 소형 고주파 신호처리를 가능하게 하는 핵심 기술로 부상하고 있습니다. 단일 반도체 기판에 여러 마이크로파 기능을 집적화하여 전력 효율, 대역폭, 신뢰성에서 타의 추종을 불허하는 성능을 발휘합니다.

마이크로웨이브 집적의 신기술, 소재 혁신, 진화하는 수요 패턴별 패러다임 전환을 풀어봅니다.

고속 신호 처리 및 적응형 제어 루프가 가능한 새로운 디지털 빔 포밍 아키텍처는 마이크로파 서브시스템 설계의 범위를 재정의하고 있습니다. 네트워크 사업자들이 더 높은 처리량과 동적 주파수 할당을 추구함에 따라 MMIC 개발자들은 실시간 빔 스티어링을 지원할 수 있는 재구성 가능한 위상 시프터와 파워 앰프를 통합하고 있습니다.

2025년까지 시행되는 미국 관세가 마이크로웨이브 IC의 비용 구조, 공급망, 전략적 조달 결정에 미치는 누적 영향 분석

반도체 수입에 대한 목표 관세가 도입된 이후 미국 당국이 2025년까지 부과하는 누적 관세는 고성능 마이크로웨이브 부품의 세계 공급망을 재편하고 있습니다. 다양한 원자재와 완성된 모듈에 적용되는 이러한 관세는 원가구조를 상승시키고, 제조업체들이 조달 전략을 재평가하도록 유도하고 있습니다.

주요 부품, 재료, 기술, 주파수 대역, 최종사용자 세분화를 통해 전략적 인사이트를 얻음으로써 다양한 용도 요구사항과 설계 우선순위를 파악할 수 있습니다.

구성 요소의 세분화를 분석하면 감쇠기, 믹서, 위상 시프터가 각각 신호 조정 및 동적 범위 제어에서 매우 중요한 역할을 하는 반면, 전력 증폭기와 트랜시버는 전송 요구 사항의 핵심을 담당하고 있음을 알 수 있습니다. 전압 제어 발진기는 민첩한 주파수 조정 기능을 제공하여 이러한 기능을 보완하고 유연한 시스템 아키텍처를 가능하게 합니다.

미국, 중동 및 아프리카, 아시아태평양의 지역적 역학 관계를 매핑하고, 마이크로파 IC 채택의 성장 촉진요인과 지정학적 영향을 파악

북미와 남미에서는 국방 현대화 프로그램과 5G 네트워크 구축의 가속화로 인해 고성능 마이크로파 프론트엔드에 대한 대규모 투자가 촉진되고 있습니다. 북미 제조업체들은 군 기관 및 주요 초대형 데이터센터 사업자와의 긴밀한 협력 관계를 통해 공동 개발 구상 및 기술 이전을 위한 풍부한 환경을 조성하고 있습니다. 한편, 라틴아메리카 시장은 자동차 레이더 및 에너지 분야 모니터링 솔루션의 매력적인 테스트베드로 부상하고 있습니다.

경쟁 전략, 혁신 로드맵, 시장 지위 강화를 위한 주요 모놀리식 마이크로웨이브 IC 제조업체의 협력 파트너십 검증

주요 업체들은 MMIC 시장내 입지를 확보하기 위해 유기적 혁신과 타겟형 인수를 결합한 차별화 전략을 추구해 왔습니다. 몇몇 업계 선도 기업은 광대역 갭 반도체를 통합하여 제품 포트폴리오를 강화함으로써 진화하는 네트워크 인프라 요구사항에 대응하는 고출력 밀도 솔루션을 가능하게 하고 있습니다.

마이크로웨이브 IC의 기술 발전, 공급망 복원력, 그리고 새로운 용도의 최전선을 활용하기 위한 업계 리더들을 위한 실행 가능한 권고안 마련

업계 리더들은 고출력, 내열성 MMIC의 급증하는 수요에 대응하기 위해 광대역 갭 반도체 제조 역량에 대한 전략적 투자를 우선적으로 고려해야 합니다. 국내 웨이퍼 팹 설립 및 제휴는 불안정한 무역 정책에 대한 위험을 줄이고 공정 개발 및 제품 엔지니어링 팀 간의 긴밀한 통합을 가능하게 합니다.

신뢰할 수 있는 마이크로웨이브 IC 인사이트를 위해 1차 인터뷰, 2차 데이터 분석, 삼각측량 기술을 통합한 엄격한 다방법 조사 방법론 개요

본 조사는 MMIC 시장에 대한 종합적인 인사이트를 제공하기 위해 1차 조사와 2차 조사를 결합한 방식을 채택했습니다. 1차 조사에는 주요 반도체 기업, 시스템 통합사업자, 최종사용자 기업의 주요 임원, 설계 엔지니어, 조달 전문가와의 심층 인터뷰가 포함됩니다. 이러한 대화를 통해 기술 우선순위, 공급망 과제, 채택 촉진요인에 대한 직접적인 견해를 얻을 수 있었습니다.

모 놀리식 마이크로파 IC 시장을 명확하고 확실하게 탐색하기 위해 중요 인사이트, 전략적 중요 사항, 미래 전망을 요약

모놀리식 마이크로웨이브 집적회로는 재료 혁신, 용도 요구사항의 진화, 지정학적 역학관계의 변화로 인해 큰 변화의 시기를 맞이하고 있습니다. 차량용 레이더, 차세대 무선 인프라, 국방 현대화 프로그램이 계속 확대됨에 따라 MMIC는 고성능의 소형화된 서브시스템을 구현하는 데 있으며, 점점 더 핵심적인 역할을 할 것입니다. 무역 정책과 공급망 복원력의 상호 작용으로 인해 전략적 조달과 현지 역량 개발의 중요성이 커지고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 모놀리식 마이크로파 IC 시장 : 컴포넌트별

  • 감쇠기
  • 믹서
  • 위상 시프터
  • 파워 앰프
  • 트랜시버
  • 전압 제어 발진기(VCO)

제9장 모놀리식 마이크로파 IC 시장 : 소재별

  • 갈륨 비소
  • 질화갈륨
  • 인화인듐
  • 실리콘 게르마늄

제10장 모놀리식 마이크로파 IC 시장 : 기술별

  • 이질 접합 바이폴라 트랜지스터
  • 고전자 이동도 트랜지스터
  • 금속 반도체 전계 효과 트랜지스터
  • 메타모픽 고전자 이동도 트랜지스터

제11장 모놀리식 마이크로파 IC 시장 : 주파수 대역별

  • C밴드(4-8GHz)
  • Ku밴드(12-18GHz)
  • L밴드(1-2GHz)
  • S밴드(2-4GHz)
  • X밴드(8-12GHz)

제12장 모놀리식 마이크로파 IC 시장 : 최종사용자별

  • 자동차
  • 가전
  • 헬스케어
  • 산업
  • 군·방위
  • 통신

제13장 아메리카의 모놀리식 마이크로파 IC 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제14장 유럽, 중동 및 아프리카의 모놀리식 마이크로파 IC 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제15장 아시아태평양의 모놀리식 마이크로파 IC 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Analog Devices, Inc.
    • Infineon Technologies AG
    • MACOM Technology Solutions Inc.
    • MicroWave Technology, Inc.
    • Mini-Circuits by Scientific Components Corporation
    • Northrop Grumman Corporation
    • NXP Semiconductors N.V.
    • Qorvo Inc.
    • Semiconductor Components Industries, LLC
    • Skyworks Solutions, Inc.
    • Texas Instruments Incorporated
    • Toshiba Corporation
    • United Monolithic Semiconductors Group
    • VECTRAWAVE S.A.
    • WIN Semiconductors Corp.
    • Wolfspeed, Inc.

제17장 리서치 AI

제18장 리서치 통계

제19장 리서치 컨택

제20장 리서치 기사

제21장 부록

KSA 25.09.16

The Monolithic Microwave IC Market was valued at USD 9.48 billion in 2024 and is projected to grow to USD 10.29 billion in 2025, with a CAGR of 8.73%, reaching USD 15.68 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 9.48 billion
Estimated Year [2025] USD 10.29 billion
Forecast Year [2030] USD 15.68 billion
CAGR (%) 8.73%

Exploring the Evolution, Technological Breakthroughs, Market Dynamics, and Strategic Imperatives Influencing Monolithic Microwave Integrated Circuits Adoption

Monolithic microwave integrated circuits (MMICs) have emerged as a cornerstone technology enabling compact, high frequency signal processing across telecommunications, radar, and satellite communications domains. By integrating multiple microwave functions onto a single semiconductor substrate, these circuits deliver unmatched performance in power efficiency, bandwidth, and reliability.

Over the past decade, advances in semiconductor materials and packaging have accelerated MMIC adoption in automotive radar systems, 5G network infrastructure, and aerospace applications. This convergence of automotive safety requirements, commercial mobile broadband throughput, and defense modernization initiatives has created a diverse demand landscape that challenges traditional discrete component designs.

Concurrently, the relentless push for miniaturization has driven innovations in design topology, thermal management, and process integration. The integration of novel materials such as gallium nitride and silicon germanium has further expanded the capabilities of MMICs, enabling higher power densities and improved noise performance. As a result, system architects can address stringent size, weight, and power constraints without compromising on functional versatility.

This executive summary synthesizes the critical drivers, market shifts, and strategic considerations influencing the MMIC landscape. Drawing on in-depth analysis of technological breakthroughs, regulatory impacts, and competitive dynamics, the following sections provide actionable insights to support informed decision making across R&D, product development, and investment planning.

Unveiling the Paradigm Shifts Driven by Emerging Technologies, Material Innovations, and Evolving Demand Patterns in Microwave Integration

Emerging digital beamforming architectures, enabled by high-speed signal processing and adaptive control loops, are redefining the scope of microwave subsystem design. As network operators pursue higher throughput and dynamic spectrum allocation, MMIC developers are incorporating reconfigurable phase shifters and power amplifiers capable of supporting real time beam steering.

Simultaneously, material innovation in gallium nitride and metamorphic high electron mobility transistor structures has unlocked new performance thresholds for power density and thermal resilience. These advancements are converging with sophisticated packaging techniques, such as flip chip and multi layer ceramic substrates, to deliver unprecedented integration levels.

Moreover, the rise of heterogeneous integration strategies that combine disparate semiconductor technologies on a single module has expanded the design toolkit available to system integrators. This shift enables the co packaging of digital logic, RF front ends, and passive components, streamlining manufacturing and reducing system latency.

Looking ahead, the integration of artificial intelligence driven design tools and predictive analytics for performance optimization promises to accelerate development cycles. By leveraging data from simulation, prototyping, and field deployments, next generation MMICs will be tailored more precisely to application-specific requirements, reinforcing their strategic role in mission critical systems.

Analyzing the Cumulative Influence of United States Tariffs Implemented Through 2025 on Cost Structures, Supply Chains, and Strategic Sourcing Decisions in Microwave ICs

Since the introduction of targeted tariffs on semiconductor imports, the cumulative duties imposed by U.S. authorities through 2025 have reshaped global supply chains for high performance microwave components. These levies, applied across various raw materials and finished modules, have elevated cost structures and prompted manufacturers to reevaluate sourcing strategies.

In response to the tariff landscape, many design houses have intensified efforts to localize production and qualify alternative suppliers in tariff exempt jurisdictions. This pivot has involved significant investment in domestic wafer fabrication facilities and the establishment of strategic partnerships with foundries outside the tariff regime.

Meanwhile, component distributors and contract manufacturers are adapting inventory policies and adjusting lead time projections to mitigate tariff volatility. By incorporating tariff rate clauses into procurement contracts and maintaining buffer stock, organizations strive to preserve margin stability while ensuring on time project delivery.

Furthermore, the tariff scenario has spurred interest in material substitution and design optimization to reduce reliance on tariffed inputs. Designers are increasingly exploring innovative substrate options and packaging approaches that maintain performance while offering potential tariff relief. This cost conscious engineering mindset is emerging as a key strategic advantage in an era of evolving trade policy.

Looking forward, companies that proactively integrate trade compliance expertise into their supply chain risk management frameworks will be best positioned to navigate this complex environment. Collaboration across procurement, engineering, and legal teams will be essential to balance cost containment, quality assurance, and regulatory adherence.

Deriving Strategic Insights from Key Component, Material, Technology, Frequency Band, and End User Segmentation Revealing Diverse Application Demands and Design Priorities

Analysis of component segmentation reveals that attenuators, mixers, and phase shifters each play pivotal roles in signal conditioning and dynamic range control, while power amplifiers and transceivers address core transmission requirements. Voltage controlled oscillators complement these functions by providing agile frequency tuning capabilities, enabling flexible system architectures.

Material segmentation underscores distinct performance trade offs: gallium arsenide remains a stalwart choice for low noise applications, gallium nitride excels in high power scenarios, indium phosphide offers superior electron mobility for ultra high frequency operation, and silicon germanium balances integration efficiency with cost considerations. These materials form the bedrock of performance oriented design decisions.

From a technology standpoint, heterojunction bipolar transistors deliver robust linearity, high electron mobility transistor variants push frequency and power boundaries, metal semiconductor field effect transistors offer precise voltage controlled switching, and metamorphic high electron mobility transistor structures drive breakthrough power density. Frequency band analysis further highlights application diversity, with C band applications in satellite links, Ku band adoption in broadcast services, L and S band deployment in naval radar and aviation, and X band usage in advanced imaging and surveillance systems.

Finally, end user segmentation spans automotive radar, consumer electronics connectivity, healthcare imaging and diagnostics, industrial sensing, defense and military communication systems, and telecommunications infrastructure. Each vertical imposes unique performance benchmarks, driving tailored development road maps and influencing prioritization of design features across the MMIC portfolio.

Mapping Regional Dynamics Across Americas, Europe Middle East and Africa, and Asia Pacific to Illuminate Growth Drivers and Geopolitical Influences in Microwave IC Adoption

Across the Americas, defense modernization programs and accelerated 5G network rollouts have driven significant investment in high performance microwave front ends. North American manufacturers benefit from close collaboration with military agencies and leading hyperscale data center operators, fostering an environment rich in co development initiatives and technology transfer. Meanwhile, Latin American markets are emerging as attractive test beds for automotive radar and energy sector monitoring solutions.

In Europe, Middle East and Africa, regulatory frameworks related to spectrum allocation and data sovereignty shape deployment strategies for MMIC based subsystems. European Union directives on harmonized standards have catalyzed a cohesive approach to aerospace communication satellite projects and next generation digital radar implementations. In the Middle East and Africa, growing satellite ground station infrastructure and regional defense procurement support adoption of ruggedized circuit designs optimized for extreme operating conditions.

In Asia Pacific, robust consumer electronics demand, extensive 5G infrastructure expansion, and automotive manufacturing ecosystems create a fertile environment for MMIC innovation. Key markets in East Asia lead in the adoption of gallium nitride technology for wireless base stations, while South Asian initiatives focused on smart transportation systems drive growth in automotive radar modules. This regional mosaic underscores the strategic importance of localized R&D and targeted go to market tactics.

Examining Competitive Strategies, Innovation Roadmaps, and Collaborative Partnerships of Leading Monolithic Microwave IC Manufacturers Enhancing Market Position

Leading manufacturers have pursued differentiated strategies to secure their positions within the MMIC market, blending organic innovation with targeted acquisitions. Several industry stalwarts have strengthened their product portfolios by integrating wide bandgap semiconductors, enabling higher power density solutions that cater to evolving network infrastructure requirements.

Collaboration has also emerged as a competitive lever, with key players forging alliances with foundries, testing laboratories, and system integrators to accelerate time to market. These partnerships facilitate access to advanced packaging capabilities and streamline qualification processes for demanding defense and aerospace customers.

Investment in R&D remains at the forefront of corporate agendas, with a focus on next generation device physics, thermal management techniques, and design automation tools. Companies are deploying agile process development methodologies to iterate rapidly on new material compositions and device topologies, supported by machine learning enhanced simulation platforms.

Looking ahead, firms that can seamlessly integrate design, manufacturing, and distribution capabilities will achieve scale advantages. Strategic expansion into emerging application areas such as satellite based internet constellations and autonomous vehicle radar systems will differentiate the next wave of industry leaders.

Formulating Actionable Recommendations for Industry Leaders to Capitalize on Technological Advances, Supply Chain Resilience, and Emerging Application Frontiers in Microwave ICs

Industry leaders should prioritize strategic investments in wide bandgap semiconductor fabrication capacity to address burgeoning demand for high power, thermally resilient MMICs. Establishing or partnering with domestic wafer fabs reduces exposure to volatile trade policies and enables closer integration between process development and product engineering teams.

At the same time, cultivating a resilient, multi tier supply chain by diversifying material and component sourcing is essential. Organizations can mitigate risk by qualifying alternative suppliers across multiple geographies and embedding tariff rate stabilizing clauses within procurement agreements.

Forging deeper collaborations with network operators, system integrators, and end user consortia will unlock critical design insights and accelerate adoption of advanced microwave modules. Co creation initiatives and joint test bed programs facilitate early validation of emerging architectures, reducing time to market.

Aligning product road maps with evolving frequency band requirements and application-specific performance targets ensures that design investments generate maximum value. Proactive engagement with standards bodies and spectrum regulators can also anticipate regulatory shifts and streamline certification pathways.

Finally, building a robust talent pipeline in RF design, material science, and advanced packaging engineering will sustain long term innovation momentum. Investing in targeted training programs and academic partnerships fosters a skilled workforce capable of navigating the complexities of next generation MMIC development.

Outlining a Rigorous Multi-Method Research Methodology Integrating Primary Interviews, Secondary Data Analysis, and Triangulation Techniques for Reliable Microwave IC Insights

This research effort employed a methodical blend of primary and secondary research techniques to deliver comprehensive insights into the MMIC market. Primary research included in depth interviews with key executives, design engineers, and procurement specialists across leading semiconductor companies, system integrators, and end user organizations. These conversations provided firsthand perspectives on technological priorities, supply chain challenges, and adoption drivers.

Secondary research involved an exhaustive review of industry publications, patent filings, technical standards, white papers from materials consortia, and regulatory documentation related to frequency spectrum management. This phase also incorporated detailed analysis of corporate financial reports and technology road map disclosures to contextualize strategic investments and innovation trajectories.

To ensure data integrity, all findings underwent rigorous validation through triangulation. Quantitative information was cross referenced against multiple independent sources, while qualitative insights were corroborated through follow up discussions and expert panels. Analytical frameworks such as SWOT analysis, technology maturity mapping, and scenario planning were applied to distill actionable recommendations.

This structured methodology underpins the credibility of the insights presented, offering decision makers a reliable foundation for strategic planning and operational execution in the rapidly evolving monolithic microwave IC market.

Summarizing Critical Insights, Strategic Imperatives, and Forward Looking Perspectives to Navigate the Monolithic Microwave IC Market with Clarity and Confidence

The monolithic microwave integrated circuit landscape is undergoing a profound transformation driven by material innovation, evolving application requirements, and shifting geopolitical dynamics. As automotive radar, next generation wireless infrastructure, and defense modernization programs continue to expand, MMICs will play an increasingly central role in enabling high performance, compact subsystems. The interplay between trade policies and supply chain resilience has elevated the importance of strategic sourcing and local capacity development.

Looking ahead, the confluence of wide bandgap semiconductor adoption, advanced packaging techniques, and AI enabled design tools promises to accelerate development cycles and unlock new capability frontiers. Companies that adeptly navigate tariff complexities, collaborate across the ecosystem, and align their innovation road maps with emerging frequency band allocations will capture the greatest competitive advantage. Cultivating a skilled engineering workforce and embedding agility within R&D processes will further reinforce market leadership.

In conclusion, the insights and recommendations articulated herein provide a blueprint for organizations seeking to thrive in this dynamic environment. By embracing a holistic view that integrates technology, supply chain, and regulatory considerations, stakeholders can drive sustained growth and deliver next generation microwave solutions with confidence.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Adoption of gallium nitride monolithic microwave ICs driving higher power density and efficiency in 5G base stations
  • 5.2. Integration of monolithic microwave ICs with silicon carbide substrates for enhanced thermal management in automotive radar
  • 5.3. Advances in mmWave monolithic microwave IC packaging techniques enabling ultra-compact 6G handheld devices
  • 5.4. Emergence of software-defined active antenna systems powered by monolithic microwave IC front ends for smart cities
  • 5.5. Rising demand for wideband monolithic microwave ICs in low-earth-orbit satellite communication and earth observation terminals
  • 5.6. Development of multi-beam monolithic microwave IC phased array solutions revolutionizing next-generation defense radar platforms
  • 5.7. Shift towards digital predistortion and linearization modules integrated into monolithic microwave ICs for high-efficiency power amplifiers
  • 5.8. Miniaturization of monolithic microwave ICs for biomedical telemetry implants and wireless neural interfaces
  • 5.9. Expansion of monolithic microwave ICs in high-frequency non-destructive testing (NDT) systems for aerospace and industrial asset monitoring
  • 5.10. Integration of secure-by-design encryption modules within monolithic microwave ICs for defense and aerospace-grade communications

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Monolithic Microwave IC Market, by Component

  • 8.1. Introduction
  • 8.2. Attenuators
  • 8.3. Mixers
  • 8.4. Phase Shifters
  • 8.5. Power Amplifiers
  • 8.6. Transceivers
  • 8.7. Voltage-Controlled Oscillators (VCO)

9. Monolithic Microwave IC Market, by Material

  • 9.1. Introduction
  • 9.2. Gallium Arsenide
  • 9.3. Gallium Nitride
  • 9.4. Indium Phosphide
  • 9.5. Silicon Germanium

10. Monolithic Microwave IC Market, by Technology

  • 10.1. Introduction
  • 10.2. Heterojunction Bipolar Transistors
  • 10.3. High Electron Mobility Transistors
  • 10.4. Metal-Semiconductor Field-Effect Transistor
  • 10.5. Metamorphic High Electron Mobility Transistors

11. Monolithic Microwave IC Market, by Frequency Band

  • 11.1. Introduction
  • 11.2. C Band (4-8 GHz)
  • 11.3. Ku Band (12-18 GHz)
  • 11.4. L Band (1-2 GHz)
  • 11.5. S Band (2-4 GHz)
  • 11.6. X Band (8-12 GHz)

12. Monolithic Microwave IC Market, by End User

  • 12.1. Introduction
  • 12.2. Automotive
  • 12.3. Consumer Electronics
  • 12.4. Healthcare
  • 12.5. Industrial
  • 12.6. Military & Defense
  • 12.7. Telecommunications

13. Americas Monolithic Microwave IC Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Monolithic Microwave IC Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Monolithic Microwave IC Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Analog Devices, Inc.
    • 16.3.2. Infineon Technologies AG
    • 16.3.3. MACOM Technology Solutions Inc.
    • 16.3.4. MicroWave Technology, Inc.
    • 16.3.5. Mini-Circuits by Scientific Components Corporation
    • 16.3.6. Northrop Grumman Corporation
    • 16.3.7. NXP Semiconductors N.V.
    • 16.3.8. Qorvo Inc.
    • 16.3.9. Semiconductor Components Industries, LLC
    • 16.3.10. Skyworks Solutions, Inc.
    • 16.3.11. Texas Instruments Incorporated
    • 16.3.12. Toshiba Corporation
    • 16.3.13. United Monolithic Semiconductors Group
    • 16.3.14. VECTRAWAVE S.A.
    • 16.3.15. WIN Semiconductors Corp.
    • 16.3.16. Wolfspeed, Inc.

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제