½ÃÀ庸°í¼­
»óǰÄÚµå
1807928

¼¼°èÀÇ ¹ÝµµÃ¼ ÷´Ü ÆÐŰ¡ ½ÃÀå : Ç÷§Æûº°, Àç·á À¯Çüº°, ÄÄÆ÷³ÍÆ®º°, ÇÇÄ¡º°, ¿ëµµº°, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º° ¿¹Ãø(2025-2030³â)

Semiconductor Advanced Packaging Market by Platform, Material Type, Components, Pitch, Application, End-Use Industry - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 185 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¹ÝµµÃ¼ ÷´Ü ÆÐŰ¡ ½ÃÀåÀº 2024³â¿¡ 289¾ï 2,000¸¸ ´Þ·¯°¡ µÇ°í, 2025³â¿¡ 305¾ï 5,000¸¸ ´Þ·¯, ¿¬Æò±Õ ¼ºÀå·ü(CAGR)Àº 5.96%¸¦ ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç 2030³â¿¡ 409¾ï 5,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 289¾ï 2,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 305¾ï 5,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 409¾ï 5,000¸¸ ´Þ·¯
¿¬Æò±Õ ¼ºÀå·ü(CAGR)(%) 5.96%

¹ÝµµÃ¼ ÷´Ü ÆÐŰ¡ ºÐ¾ß´Â ¹ÝµµÃ¼ Á¦Á¶ ÁøÈ­ÀÇ Áß´ëÇÑ ÀüȯÁ¡À¸·Î ºÎ»óÇßÀ¸¸ç, ¼ÒÇüÈ­¿Í ¼º´É ¿ä±¸ °£ÀÇ »óÈ£ÀÛ¿ëÀÌ ±âº» ¼³°è ¿øÄ¢À» ÀçÁ¤ÀÇÇϰí ÀÖ½À´Ï´Ù. ÆÐŰ¡ Çõ½ÅÀº ÀÌÁ¦ ÇâÈÄ ÄÄÇ»ÆÃ, ¿¬°á¼º ¹× ¼¾½Ì ¼Ö·ç¼ÇÀÇ ÇÙ½É ÃËÁøÁ¦·Î ÀÛ¿ëÇϸç, ´Ù¾çÇÑ »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ »õ·Î¿î Á¦Ç° ¾ÆÅ°ÅØÃ³¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

´õ ³ôÀº ¼º´É, Àü·Â È¿À²¼º, ºÎǰ ¹Ðµµ¿¡ ´ëÇÑ ³¡¾ø´Â ¼ö¿ä¿¡ ÈûÀÔ¾î, ÷´Ü ÆÐŰ¡ ±â¼úÀº ±âÁ¸ÀÇ ¿ÍÀÌ¾î º»µù ¿Ü¿¡´Â ´ë±Ô¸ð ÀÌÁ¾ ÅëÇÕÀ» ÃËÁøÇϸç ÁøÈ­ÇØ ¿Ô½À´Ï´Ù. ¹«¾îÀÇ ¹ýÄ¢ÀÌ ÇѰ迡 ´Ù´Ù¸£¸é¼­, 2.5D ÀÎÅÍÆ÷Àú, ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡, 3Â÷¿ø ÅëÇÕ È¸·Î(3D IC)¿Í °°Àº ½Å±â¼úÀÌ Àü·Ê ¾ø´Â ½Ã½ºÅÛ ¼öÁØÀÇ ¼º´É Çâ»óÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. °ß°íÇÑ ¼¼¶ó¹Í ÆÐŰÁö¿¡¼­ ÷´Ü ½Ç¸®ÄÜ ±â¹Ý ±âÆÇ ¹× ½Å°³³ä ĸ½¶È­ ¼öÁö¿¡ À̸£´Â Àç·á °úÇÐ ºÐ¾ßÀÇ µ¿½ÃÀû Çõ½ÅÀº ¿­ °ü¸®, ½ÅÈ£ ¹«°á¼º ¹× ±â°èÀû ³»±¸¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ À¯¿¬ ±âÆÇ°ú ½Å°³³ä À¯¸® ±âÆÇÀÇ ºÎ»óÀº ÀÚµ¿Â÷, Åë½Å ¹× Ç×°ø¿ìÁÖ ¿ëµµ¿¡¼­ ´õ¿í ¼ÒÇüÈ­µÇ°í ½Å·Ú¼º ³ôÀº ¼³°èÀÇ ±æÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù.

º» ¿ä¾à º¸°í¼­´Â ÷´Ü ÆÐŰ¡ »ýŰ踦 ÀçÆíÇÏ´Â º¯ÇõÀû È帧À» Á¾ÇÕÇÕ´Ï´Ù. 2025³â ¹Ì±¹ °ü¼¼ÀÇ ´©ÀûÀû ¿µÇâÀ» Æ÷ÇÔÇÑ ÁøÈ­ÇÏ´Â ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿Í ¹«¿ª Á¤Ã¥ÀÌ °ø±Þ¸Á ±¸Á¶¿Í Áö¿ªº° Á¦Á¶ ±â¹ÝÀÇ Àü·«Àû ÀüȯÀ» ¾î¶»°Ô ÃËÁøÇÏ´ÂÁö Á¶¸íÇÕ´Ï´Ù. µ¶ÀÚµéÀº Ç÷§Æû, ¼ÒÀç À¯Çü, ºÎǰ, ÇÇÄ¡, ¿ëµµ, ÃÖÁ¾ »ç¿ë »ê¾÷¿¡ °ÉÄ£ ºÎ¹® Â÷ÀÌ¿¡ ´ëÇÑ ±íÀº ÀÌÇØ¸¦ ¾òÀ» °ÍÀÔ´Ï´Ù. ¶ÇÇÑ º» ºÐ¼®Àº ÁÖ¿ä ¾÷ü¸¦ ÇÁ·ÎÆÄÀϸµÇÏ°í ½ÇÇà °¡´ÉÇÑ ±Ç°í»çÇ×À» Á¦½ÃÇϸç, ÀλçÀÌÆ®ÀÇ ±â¹ÝÀÌ µÇ´Â ¿¬±¸ ¹æ¹ý·ÐÀ» »ó¼¼È÷ ¼³¸íÇÕ´Ï´Ù. ±â¼ú Àü¹®°¡, °ø±Þ¸Á ¼³°èÀÚ, ±â¾÷ Àü·«°¡¿¡°Ô ÇʼöÀûÀÎ ÀÚ·á·Î ±âȹµÈ º» º¸°í¼­´Â ¹ÝµµÃ¼ ÷´Ü ÆÐŰ¡ÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â ±âȸ¿Í µµÀüÀ» ¹ß±¼Çϱâ À§ÇÑ Á¾ÇÕÀû °üÁ¡À» Á¦°øÇÕ´Ï´Ù.

¼¼°èÀÇ ¹ÝµµÃ¼ ÷´Ü ÆÐŰ¡ °æÀï ±¸Á¶¸¦ ÀçÁ¤ÀÇÇÏ´Â Àü·Ê ¾ø´Â ±â¼ú ¹× ½ÃÀå º¯È­

Áö³­ 10³â°£ ÷´Ü ÆÐŰ¡ ȯ°æÀº ±Þ¼ÓÇÑ ±â¼úÀû µ¹ÆÄ±¸¿Í º¯È­ÇÏ´Â ½ÃÀå ¼ö¿ä¿¡ ÃËÁøµÇ¾î ±Þ°ÝÇÑ º¯¸ð¸¦ °Þ¾ú½À´Ï´Ù. ÀΰøÁö´É, ¸Ó½Å ·¯´×, ¿§Áö ÄÄÇ»ÆÃÀÇ À¶ÇÕÀº ºñ¿ë ±¸Á¶¿Í ¼º´É ÇѰ迡 ¾Ð¹ÚÀ» °¡ÇØ, ÃÖ¼ÒÇÑÀÇ Áö¿¬ ½Ã°£°ú ÃÖ´ëÀÇ ¿­ È¿À²·Î ÀÌÁ¾ ÅëÇÕÀ» Áö¿øÇÒ ¼ö ÀÖ´Â ÆÐŰ¡ ¾ÆÅ°ÅØÃ³°¡ ÇÊ¿äÇØÁ³½À´Ï´Ù. µ¿½Ã¿¡ 5G ³×Æ®¿öÅ©ÀÇ È®»êÀº °í¹Ðµµ »óÈ£ ¿¬°á°ú ¼ÒÇüÈ­µÈ Æû ÆÑÅÍ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ³ô¿©, ¿þÀÌÆÛ ·¹º§ ÆÒ¾Æ¿ô(fan-out) ¹× ½Ã½ºÅÛ ÀÎ ÆÐŰÁö(SiP) Á¢±Ù¹ýÀ» ÁÖ·ù·Î äÅÃÇÏ°Ô Çß½À´Ï´Ù.

2025³â ¹Ì±¹ °ü¼¼°¡ Àü ¼¼°è ÷´Ü ÆÐŰ¡ÀÇ ±¹°æ °£ ¿ªÇÐ ¹× Çõ½Å¿¡ ¹ÌÄ¡´Â º¹ÇÕÀû ¿µÇ⠺м®

2025³â ½ÃÇà ¿¹Á¤ÀÎ ¹Ì±¹ÀÇ ½Å±Ô °ü¼¼ ºÎ°ú Á¶Ä¡´Â Àü ¼¼°è ¹ÝµµÃ¼ ÷´Ü ÆÐŰ¡ ¾÷üµé¿¡°Ô »ó´çÇÑ ÀüȯÁ¡À» ¸¶·ÃÇß½À´Ï´Ù. Á¤Ã¥ Á¶Ä¡´Â ±¹³» Á¦Á¶¾÷ °­È­¸¦ ¸ñÇ¥·Î ÇÏÁö¸¸, µ¿½Ã¿¡ ¼öÀÔ ±âÆÇ, ºÎǰ ¹× Àåºñ¿¡ ´ëÇÑ ºñ¿ë Áõ°¡¸¦ ÃÊ·¡ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀÌÁß¼ºÀº ±â¾÷µé·Î ÇÏ¿©±Ý °í±Þ ÇØ¿Ü ±â¼úÀ» Ȱ¿ëÇÏ·Á´Â ¿å±¸¿Í ¡¹úÀû °ü¼¼¸¦ ÇÇÇØ¾ß ÇÏ´Â Çʿ伺 »çÀÌ¿¡¼­ Á¶À²ÇÏ¸ç ¿ø Àü·«À» ÀçÁ¶Á¤Çϵµ·Ï Ã˹ßÇß½À´Ï´Ù. °á°úÀûÀ¸·Î ´Ù±¹Àû ±â¾÷µéÀº °ü¼¼ ¸éÁ¦ ±¸¿ª ³» ÀÚü ÆÐŰ¡ ¿ª·® È®ÀåÀÇ ÀÌÁ¡°ú ±âÁ¸ ÇØ¿Ü ÆÄ¿îµå¸® ÀÇÁ¸ Áö¼Ó »çÀÌ¿¡¼­ Àå´ÜÁ¡À» Àú¿ïÁúÇϰí ÀÖ½À´Ï´Ù.

÷´Ü ÆÐŰ¡ ½ÃÀå ¼¼ºÐÈ­ ½ÉÃþ ºÐ¼® : Ç÷§Æû ¹× ¼ÒÀç ÃËÁø ¿äÀÎÀÌ ºÎǰ°ú ¿ëµµ ÁøÈ­¸¦ ÁÖµµ

÷´Ü ÆÐŰ¡ÀÇ ´Ù¸éÀû Ư¼ºÀ» ¿ÏÀüÈ÷ ÀÌÇØÇÏ·Á¸é 2.5D ÀÎÅÍÆ÷Àú, 3D-IC ÀûÃþ, ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡, ½Ã½ºÅÛ ÀÎ ÆÐŰÁö(SiP) ±¸¼º°ú °°Àº Ç÷§Æû Ä«Å×°í¸®°¡ ¼º´ÉÀ» ¾î¶»°Ô ÃËÁøÇÏ´ÂÁö »ìÆìºÁ¾ß ÇÕ´Ï´Ù. °¢ Ç÷§ÆûÀº °íÀ¯ÇÑ ¿­ °ü¸®, ¹Ðµµ, ÅëÇÕ ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. ¼¼¶ó¹Í ÆÐŰÁö, ĸ½¶È­ ¼öÁö, À¯¸® ±âÆÇ, À¯±â ¶ó¹Ì³×ÀÌÆ®, ½Ç¸®ÄÜ Ä³¸®¾î¿¡ À̸£´Â ¼ÒÀç Çõ½Å ¿ª½Ã ¿­ °ü¸®, ½ÅÈ£ ¹«°á¼º, ±â°èÀû °ß°í¼ºÀ» °³¼±ÇÔÀ¸·Î½á ¼³°è ¸Å°³º¯¼ö¸¦ À籸¼ºÇϰí ÀÖ½À´Ï´Ù.

Àü·«Àû Áö¿ª °üÁ¡ : ¾Æ¸Þ¸®Ä«, EMEA, ¾Æ½Ã¾ÆÅÂÆò¾ç Áö¿ªÀÇ Ã·´Ü ÆÐŰ¡ ȯ°æ¿¡¼­ ºÎ»óÇÏ´Â ±âȸ¿Í µµÀü °úÁ¦

¾Æ¸Þ¸®Ä« Áö¿ª¿¡¼­´Â ÀÚµ¿Â÷ Àü±âÈ­ ÃßÁø°ú Àç»ý¿¡³ÊÁö ÇÁ·ÎÁ§Æ®ÀÇ °­·ÂÇÑ ¼ö¿ä°¡ ÷´Ü ÆÐŰ¡ ½ÃÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì Á¦Á¶¾÷üµéÀº Àü±âÀÚµ¿Â÷ ¹× ±×¸®µå ±Ô¸ð ÀιöÅÍ¿ë Àü·Â °ü¸® ¼Ö·ç¼ÇÀ» Áö¿øÇϱâ À§ÇØ »ý»ê ´É·ÂÀ» È®´ëµÇ°í ÀÖÀ¸¸ç, ¶óƾ ¾Æ¸Þ¸®Ä« ½ÃÀåÀº Áö¼Ó °¡´ÉÇÑ ÆÐŰ¡ ±â¼úÀÇ ½ÃÇèÀåÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¹«¿ª ÇùÁ¤°ú ÁÖ¿ä ¹ÝµµÃ¼ Á¦Á¶ ½Ã¼³°úÀÇ ±ÙÁ¢¼ºÀº ¸®µå ŸÀÓ °¨Ãà°ú °ø±Þ¸Á Åõ¸í¼º Á¦°í¸¦ ¸ñÇ¥·Î ÇÑ Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ÃËÁøÇß½À´Ï´Ù.

¹ÝµµÃ¼ ÷´Ü ÆÐŰ¡ ºÐ¾ßÀÇ Àü·«Àû ÅõÀÚ, Çù·ÂÀû µ¿¸Í ¹× Çõ½Å °æ·Î : ¾÷°è ¸®´õ ÇÁ·ÎÆÄÀϸµ

ÁÖ¿ä ¿ÜºÎ Á¶¸³ ¹× Å×½ºÆ® °ø±Þ¾÷üµéÀº ÀÌÁ¾ ÅëÇÕ¿¡ ´ëÇÑ ±ÞÁõÇÏ´Â ¼ö¿ä¸¦ ÃæÁ·Çϱâ À§ÇØ »ý»ê ´É·Â È®Àå¿¡ ´ëÇÑ ÅõÀÚ¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù. ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ ¹× 3D-IC ÀûÃþÀ» Àü¹®À¸·Î ÇÏ´Â À§Å¹ Á¦Á¶¾÷üµéÀº ÁÖ¿ä ÆÄ¿îµå¸® ¹× ÅëÇÕ ÀåÄ¡ Á¦Á¶¾÷ü¿Í Çù·ÂÇÏ¿© °í±Þ ÀÎÅÍÆ÷Àú ¼Ö·ç¼ÇÀ» °øµ¿ °³¹ßÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ Àåºñ °ø±Þ¾÷üµéÀº 40¸¶ÀÌÅ©·Ð ¹Ì¸¸ ÇÇÄ¡ ±âÇÏÇÐ ±¸Á¶¿¡ ÃÖÀûÈ­µÈ ÇâÈÄ ¸®¼Ò±×·¡ÇÇ, °Ë»ç ¹× °èÃø µµ±¸¿¡ ¿¬±¸ ÀÚ±ÝÀ» ÁýÁßÇϰí ÀÖ½À´Ï´Ù.

»ê¾÷ °ü°èÀÚ¸¦ À§ÇÑ Çõ½Å °¡¼ÓÈ­ ½Ç¿ëÀû Àü·« ·Îµå¸Ê : ÷´Ü ÆÐŰ¡ ºÐ¾ßÀÇ °ø±Þ¸Á ÃÖÀûÈ­ ¹× ÁöÁ¤ÇÐÀû À§Çè ¿ÏÈ­

½ÅÈï ±âȸ¸¦ Ȱ¿ëÇϱâ À§ÇØ »ê¾÷ °ü°èÀÚµéÀº 3D-IC ÀûÃþ, ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡, ½Ã½ºÅÛ ÀÎ ÆÐŰÁö(SiP) ¿öÅ©Ç÷ο츦 °ËÁõÇÏ´Â ÆÄÀÏ·µ »ý»ê ¶óÀο¡ °øµ¿ ÅõÀÚÇÔÀ¸·Î½á ÀÌÁ¾ ÅëÇÕ ·Îµå¸Ê °¡¼ÓÈ­¸¦ ÃÖ¿ì¼± °úÁ¦·Î »ï¾Æ¾ß ÇÕ´Ï´Ù. ¼³°è, °øÁ¤, ½Å·Ú¼º ¿£Áö´Ï¾îµéÀÌ Æ÷ÇÔµÈ Å©·Î½º-±â´É ÆÀÀ» ±¸¼ºÇÏ¸é °ËÁõ ¹× ¼öÀ² ÃÖÀûÈ­¿¡ ´ëÇÑ ÀϰüµÈ Á¢±Ù ¹æ½ÄÀ» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

÷´Ü ÆÐŰ¡ ¿¬±¸ÀÇ ¾ö¹Ð¼º°ú ½Å·Ú¼º È®º¸¸¦ À§ÇÑ 1Â÷ ÀÎÅͺä¿Í 2Â÷ µ¥ÀÌÅÍ ºÐ¼®À» °áÇÕÇÑ Æ÷°ýÀû ¹æ¹ý·ÐÀû ÇÁ·¹ÀÓ¿öÅ©

º» ºÐ¼®ÀÇ ±â¹ÝÀÌ µÇ´Â ¿¬±¸ ¹æ¹ý·ÐÀº ¾ö¹Ð¼º°ú ½Å·Ú¼ºÀ» º¸ÀåÇϱâ À§ÇØ Æ÷°ýÀûÀÎ 1Â÷ ¹× 2Â÷ Á¢±Ù¹ýÀ» ÅëÇÕÇÕ´Ï´Ù. 1Â÷ µ¥ÀÌÅÍ´Â ±â¼ú µ¿Çâ, ±ÔÁ¦ º¯È­, »ó¾÷Àû Àü·«¿¡ ´ëÇÑ Á÷Á¢ÀûÀÎ °üÁ¡À» Æ÷ÂøÇϱâ À§ÇØ °íÀ§ °æ¿µÁø, ÆÐŰ¡ ¿£Áö´Ï¾î, °ø±Þ¸Á °ü¸®ÀÚ, ÃÖÁ¾ »ç¿ë »ê¾÷ Àü¹®°¡¿ÍÀÇ ½ÉÃþ ÀÎÅͺ並 ÅëÇØ ¼öÁýµÇ¾ú½À´Ï´Ù.

¹ÝµµÃ¼ ÷´Ü ÆÐŰ¡ Çõ½Å ¹× ¹èÆ÷ÀÇ Åº·ÂÀûÀÎ ¼ºÀå ±ËÀûÀ» °¡¸®Å°´Â ÁÖ¿ä µ¿Çâ ¹× Àü·«Àû Çʼö ¿ä¼ÒÀÇ Á¾ÇÕ

¹ÝµµÃ¼ »ê¾÷ÀÌ ÀÌÁ¾ ÅëÇÕÀ¸·Î ÀüȯÀ» Áö¼ÓÇÔ¿¡ µû¶ó, 2.5D ¹× 3D-IC ÀûÃþ, ¿þÀÌÆÛ ·¹º§ ÆÒ¾Æ¿ô, ½Ã½ºÅÛ ÀÎ ÆÐŰÁö(SiP) ¾ÆÅ°ÅØÃ³¿Í °°Àº ÁÖ¿ä µ¿ÇâÀÌ Áö¼Ó°¡´É¼º°ú °ø±Þ¸Á ȸº¹Åº·Â¼ºÀ̶ó´Â Çʼö °úÁ¦·Î ¼ö·ÅµÇ°í ÀÖ½À´Ï´Ù. 2025³â ¹Ì±¹ °ü¼¼ ¿µÇâ µî ±ÔÁ¦ ¾Ð¹Ú°ú ÁöÁ¤ÇÐÀû ¿ªÇÐÀº À¯¿¬ÇÑ Á¦Á¶ ±â¹Ý°ú ´Ù°¢È­µÈ Á¶´Þ Àü·«ÀÇ Á߿伺À» ºÎ°¢½Ãŵ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

  • HPC ¿ëµµ ¾ÖÇø®ÄÉÀ̼ÇÀ» À§ÇÑ Ä¨¸´ ±â¹Ý ÀÌÁ¾ ÅëÇÕ »ýŰèÀÇ ±Þ¼ÓÇÑ È®Àå
  • °íÃâ·Â Ĩ ¼º´É Çâ»óÀ» À§ÇÑ °í±Þ ¿­Àüµµ¼º ±âÆÇÀÇ Ã¤ÅÃ
  • AI ¹× 5G ±â±â ¼ö¿ä¸¦ ÃËÁøÇÏ¿© ÆÒ¾Æ¿ô ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡ äÅà ±ÞÁõ
  • Áö¼Ó °¡´ÉÇÑ ¹ÝµµÃ¼ ÆÐŰ¡À» À§ÇÑ Ä£È¯°æ ¹«¿¬ ¼Ö´õ ÇÕ±Ý °³¹ß
  • ÷´Ü ÆÐŰ¡ °ø±Þ¸Á °¡½Ã¼ºÀ» À§ÇÑ ½Ç½Ã°£ ÀÚ»ê ÃßÀû ¹× µðÁöÅÐ Æ®À© ÅëÇÕ
  • Â÷¼¼´ë 3D IC ÀûÃþÀ» À§ÇÑ ¸¶ÀÌÅ©·Î ¹üÇÁ ¹× ÇÏÀ̺긮µå º»µù ±â¼ú Çõ½Å
  • ¿þÀÌÆÛ ·¹º§ °øÁ¤ °áÇÔ °¨¼Ò¸¦ À§ÇÑ AI ±â¹Ý ÀζóÀÎ °Ë»ç ½Ã½ºÅÛ µîÀå
  • ÆÐŰ¡ Æó±â¹° ¹®Á¦ ÇØ°áÀ» À§ÇÑ ½Ç¸®ÄÜ ÀÎÅÍÆ÷Àú Àç»ç¿ë ¹× ¿þÀÌÆÛ ÀçȰ¿ë Àüȯ
  • ¼ÒÇüÈ­µÈ ¸ð¹ÙÀÏ ÇÁ·Î¼¼¼­¸¦ À§ÇÑ ½Ç¸®ÄÜ °üÅë ºñ¾Æ(TSV) ¹× ÀÓº£µðµå ´ÙÀÌ ÅëÇÕ
  • HPC ¸ðµâÀÇ ¿­Àüµµ¼º Çâ»óÀ» À§ÇÑ ±¸¸® ÇÊ·¯ ¸¶ÀÌÅ©·Î ¹üÇÁ ±â¼ú·ÎÀÇ Àüȯ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ(2025³â)

Á¦8Àå ¹ÝµµÃ¼ ÷´Ü ÆÐŰ¡ ½ÃÀå : Ç÷§Æûº°

  • 2.5D
  • 3D IC
  • FOWLP
  • SiP

Á¦9Àå ¹ÝµµÃ¼ ÷´Ü ÆÐŰ¡ ½ÃÀå : Àç·á À¯Çüº°

  • ¼¼¶ó¹Í ÆÐŰ¡
  • ĸ½¶È­ ¼öÁö
  • À¯¸® ±âÆÇ
  • À¯±â ±âÆÇ
  • ½Ç¸®ÄÜ ±âÆÇ

Á¦10Àå ¹ÝµµÃ¼ ÷´Ü ÆÐŰ¡ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Ĩ·¿
  • ´ÙÀÌ
  • I/O ÆÐµå ¶Ç´Â ¹üÇÁ
  • ȸ·Î ±âÆÇ
  • SoC

Á¦11Àå ¹ÝµµÃ¼ ÷´Ü ÆÐŰ¡ ½ÃÀå : ÇÇÄ¡º°

  • 40¸¶ÀÌÅ©·Î¹ÌÅÍ ÀÌ»ó
  • 40¸¶ÀÌÅ©·Î¹ÌÅÍ ¹Ì¸¸

Á¦12Àå ¹ÝµµÃ¼ ÷´Ü ÆÐŰ¡ ½ÃÀå : ¿ëµµº°

  • DC-DC ÄÁ¹öÅÍ
  • IGBT
  • MOSFET

Á¦13Àå ¹ÝµµÃ¼ ÷´Ü ÆÐŰ¡ ½ÃÀå : ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ÀÚµ¿Â÷
    • ADAS
    • ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ
  • ¼ÒºñÀÚ °¡Àü
    • ½º¸¶Æ®Æù
    • ÅÂºí¸´
    • ¿þ¾î·¯ºí
  • ¿¡³ÊÁö
    • ž籤 ¹ßÀü
    • dz·Â ¿¡³ÊÁö
  • ÇコÄɾî
    • ÀÇ·á¿ë À̹Ì¡ µð¹ÙÀ̽º
    • ¿þ¾î·¯ºí µð¹ÙÀ̽º
  • »ê¾÷
    • »ê¾÷¿ë IoT
    • ·Îº¿
  • Åë½Å
    • 5G ±â¼ú
    • ³×Æ®¿öÅ© Àåºñ

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ ¹ÝµµÃ¼ ÷´Ü ÆÐŰ¡ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¹ÝµµÃ¼ ÷´Ü ÆÐŰ¡ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¹ÝµµÃ¼ ÷´Ü ÆÐŰ¡ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2024³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2024³â)
  • °æÀï ºÐ¼®
    • Amkor Technology, Inc.
    • AOI ELECTRONICS CO., LTD.
    • ASE Group
    • AT&S Company
    • Camtek Ltd.
    • ChipMOS Technologies Inc.
    • Evatec AG
    • FlipChip International LLC by HuaTian Technology Corporation
    • HANA Micron Inc.
    • Infineon Technologies AG
    • Intel Corporation
    • ISI Interconnect Systems by Molex company
    • JCET Group
    • Microsemi Corporation
    • NEPES Corportion
    • NXP Semiconductors NV
    • Orient Semiconductor Electronics, Ltd.
    • Plan Optik AG
    • Powertech Technology Inc.
    • Samsung Electronics Co., Ltd.
    • Schweizer Electronic AG
    • Shinko Electric Industries Co. Ltd
    • Siemens AG
    • Signetics Corporation
    • Taiwan Semiconductor Manufacturing Company Limited
    • TDK Corporation
    • Teledyne DALSA
    • Tongfu Microelectronics Co., Ltd.
    • UTAC GROUP
    • Veeco Instruments Inc.

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃ

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

HBR

The Semiconductor Advanced Packaging Market was valued at USD 28.92 billion in 2024 and is projected to grow to USD 30.55 billion in 2025, with a CAGR of 5.96%, reaching USD 40.95 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 28.92 billion
Estimated Year [2025] USD 30.55 billion
Forecast Year [2030] USD 40.95 billion
CAGR (%) 5.96%

The semiconductor advanced packaging arena has emerged as a critical inflection point in the evolution of semiconductor manufacturing, where the interplay between miniaturization and performance demands is redefining foundational design principles. Innovations in packaging now serve as the principal enabler for next-generation computing, connectivity, and sensing solutions, catalyzing new product architectures across multiple industries.

Fueled by insatiable demand for higher performance, power efficiency, and component density, advanced packaging techniques have evolved beyond conventional wire bonding to drive heterogeneous integration at scale. As Moore's Law approaches diminishing returns, emerging approaches such as 2.5D interposers, fan-out wafer-level packaging, and three-dimensional integrated circuits are unlocking unprecedented system-level performance gains. Concurrent breakthroughs in materials science, ranging from robust ceramic packages to advanced silicon-based substrates and novel encapsulation resins, are enhancing thermal management, signal integrity, and mechanical resilience. Furthermore, the rise of flexible substrates and novel glass substrates is paving the way for more compact and reliable designs in automotive, telecommunications, and aerospace applications.

This executive summary synthesizes the transformative currents reshaping the advanced packaging ecosystem. It illuminates how evolving regulatory frameworks and trade policies, including the cumulative impact of 2025 United States tariffs, are driving strategic pivots in supply chain architecture and regional manufacturing footprints. Readers will gain a deep understanding of segmentation nuances across platform, material type, component, pitch, application, and end-use industries. Additionally, the analysis profiles leading players, outlines actionable recommendations, and details the research methodology underpinning our insights. Designed as an indispensable resource for technologists, supply chain architects, and corporate strategists, it provides a holistic perspective to navigate the opportunities and challenges shaping the future of semiconductor advanced packaging.

Unprecedented Technological and Market Shifts Redefining the Competitive Architecture of Semiconductor Advanced Packaging Worldwide

Over the past decade, the advanced packaging landscape has undergone a radical metamorphosis driven by rapid technological breakthroughs and shifting market demands. The convergence of artificial intelligence, machine learning, and edge computing has exerted pressure on cost structures and performance thresholds, necessitating packaging architectures that can support heterogeneous integration with minimal latency and maximum thermal efficiency. In parallel, the proliferation of 5G networks has elevated the need for high-density interconnects and miniaturized form factors, pushing wafer-level fan-out and system-in-package approaches into mainstream adoption.

Moreover, manufacturers are embracing green manufacturing initiatives and sustainability mandates, which is catalyzing the transition to eco-friendly materials such as bio-based encapsulation resins and low-k substrates. Regulatory scrutiny surrounding conflict minerals and carbon emissions has accelerated investment in closed-loop recycling systems for copper and substrate materials, aligning environmental stewardship with operational excellence. Consequently, supply chain resilience has become a strategic imperative, prompting firms to diversify supplier networks and establish localized assembly hubs across multiple regions.

As a result of these transformative shifts, competitive dynamics are realigning. Companies that can deliver compact, high-performance packaging solutions while mitigating environmental impact and geopolitical risk are gaining market traction. Industry alliances, cross-sector partnerships, and university collaborations are emerging to accelerate innovation cycles, standardize interconnect protocols, and streamline qualification processes. Together, these forces are shaping a new era of semiconductor packaging where agility, sustainability, and heterogeneous integration define competitive advantage.

Examining the Compounded Consequences of 2025 United States Tariffs on Cross-Border Dynamics and Innovation in Advanced Semiconductor Packaging

The imposition of new United States tariffs scheduled for 2025 has created a significant inflection point for global semiconductor advanced packaging players. While policy measures aim to bolster domestic manufacturing, they simultaneously introduce increased costs for imported substrates, components, and equipment. This duality has prompted firms to recalibrate their sourcing strategies, balancing the desire to leverage advanced foreign technologies against the imperative to avoid punitive duties. Consequently, multinational enterprises are weighing the benefits of in-house packaging capacity expansion within tariff-exempt zones against continued reliance on established overseas foundries.

In light of these developments, some organizations are accelerating the reshoring of critical packaging operations to mitigate exposure to cross-border tariff fluctuations. This trend has driven strategic investments in modular assembly lines adaptable to alternative substrate materials and integration techniques. At the same time, affected players are forging collaborative research agreements with domestic equipment manufacturers to localize production of specialized tools for wafer-level fan-out and 3D-IC stacking. These alliances not only reduce tariff liability but also foster technology transfer that could strengthen the national packaging ecosystem in the long term.

Furthermore, the cascading effect of tariffs has compelled downstream customers in automotive, consumer electronics, and telecommunications sectors to reassess supply chain elasticity. As a result, just-in-time delivery models are giving way to hybrid stock strategies, blending safety stocks with dynamic replenishment planning. While these adjustments incur additional working capital demands, they insulate end users from sudden cost escalations and facilitate smoother product launch cycles. Ultimately, the strategic shifts induced by 2025 tariffs are redefining how innovation, risk management, and competitiveness intersect within the semiconductor packaging domain.

Deep Dive into Advanced Packaging Market Segmentation Reveals Platform and Material Drivers Shaping Component and Application Evolution

To fully appreciate the multifaceted nature of advanced packaging, it is essential to examine how platform categories such as 2.5D interposers, 3D-IC stacking, fan-out wafer-level packaging, and system-in-package configurations drive performance. Each platform presents distinct thermal, density, and integration benefits. Material innovations spanning ceramic packages, encapsulation resins, glass substrates, organic laminates, and silicon carriers are also reshaping design parameters by improving thermal management, signal integrity, and mechanical robustness.

Component-level segmentation underscores the evolving roles of chiplets and discrete dies in heterogeneous designs, while I/O pads or bumps and advanced substrates enable pitch geometries both above and below the forty-micron threshold. In high-frequency telecommunication modules, fine-pitch interconnections reduce signal loss, whereas safety-critical automotive converters leverage robust substrate technologies to withstand harsh operating conditions. The choice between conventional and glass interposers hinges on application-specific criteria, balancing cost and performance.

Application segmentation spans DC-DC converters for efficient power regulation, insulated-gate bipolar transistors designed for automotive inverters, and MOSFETs optimized for rapid switching. End-use verticals range from aerospace and defense to automotive driver assistance and infotainment, consumer electronics including smartphones and wearables, renewable energy in solar and wind systems, healthcare diagnostics and wearable monitors, industrial automation via IoT and robotics, and telecommunications infrastructure for 5G and networking. This framework highlights convergence zones for innovation and investment.

Strategic Regional Perspectives Highlight Emerging Opportunities and Challenges across Americas EMEA and Asia-Pacific Advanced Packaging Environments

In the Americas, advanced packaging has been propelled by robust demand from automotive electrification initiatives and renewable energy projects. Manufacturers in North America are expanding capacity to support power management solutions for electric vehicles and grid-scale inverters, while Latin American markets are emerging as testbeds for sustainable packaging techniques. Trade agreements and proximity to key chip fabrication sites have fostered strategic partnerships aimed at reducing lead times and improving supply chain transparency.

Europe, the Middle East, and Africa present a diverse tapestry of regulatory frameworks and investment incentives. European Union directives on environmental compliance are accelerating the adoption of eco-friendly substrate materials and circular economy practices. Meanwhile, defense and aerospace operations in selected European nations are driving high-reliability packaging requirements, and energy transitions in Middle Eastern and African markets are opening pathways for solar and wind power converter technologies that demand specialized packaging solutions.

Asia-Pacific continues to dominate global advanced packaging volumes, with leading hubs in East Asia and Southeast Asia refining high-volume wafer-level fan-out, system-in-package, and chiplet integration services. Government-funded initiatives in semiconductor capital equipment manufacturing have strengthened local ecosystems, while collaborative research consortia in key economies are standardizing design rules for next-generation interconnect protocols. These regional dynamics underscore the importance of aligning product roadmaps with localized needs and regulatory landscapes.

Profiling Industry Leaders Unveils Strategic Investments Collaborative Alliances and Innovation Pathways in Semiconductor Advanced Packaging Sector

Leading outside assembly and test providers are intensifying investments in capacity expansion to meet surging demand for heterogeneous integration. Contract manufacturers that specialize in fan-out wafer-level packaging and 3D-IC stacking are partnering with major foundries and integrated device manufacturers to co-develop advanced interposer solutions. At the same time, equipment suppliers are channeling research funding into next-generation lithography, inspection, and metrology tools optimized for sub-40-micron pitch geometries.

Several integrated device manufacturers have announced strategic partnerships to internalize advanced packaging capabilities, reducing reliance on external service providers and accelerating time-to-market. Collaborative joint ventures between substrate producers and chip fabricators are emerging to standardize material specifications and streamline qualification processes. Concurrently, smaller design houses are leveraging open-source packaging reference designs to accelerate prototyping and validate innovative materials without significant capital expenditures.

In parallel, leading logistics and materials suppliers are introducing digital platforms that enable real-time tracking of substrate batches and encapsulation resin lots, enhancing traceability and quality assurance across complex value chains. These cross-industry alliances and strategic investments are setting new benchmarks in throughput, yield, and reliability, positioning early adopters to capture the largest share of the advanced packaging opportunity.

Practical Strategic Roadmap for Industry Stakeholders to Accelerate Innovation Optimize Supply Chains and Mitigate Geopolitical Risks in Advanced Packaging

To capitalize on emerging opportunities, industry stakeholders should prioritize the acceleration of heterogeneous integration roadmaps by co-investing in pilot production lines that validate 3D-IC stacking, fan-out wafer-level packaging, and system-in-package workflows. Establishing cross-functional teams that include design, process, and reliability engineers can ensure a cohesive approach to qualification and yield optimization.

Supply chain resilience can be bolstered by adopting dual-sourcing strategies for critical substrate materials and encapsulation resins, coupled with the creation of buffer inventories calibrated to tariff volatility and lead-time fluctuations. Companies should explore collaborative sourcing agreements with regional material producers to mitigate geopolitical risks and reduce the carbon footprint associated with long-haul logistics.

Finally, embedding sustainability and digitalization into core operations will future-proof growth. Implementing digital twins for packaging processes, integrating automated inspection systems, and upskilling the workforce in advanced materials and design for reliability will create a robust foundation for innovation. By aligning these initiatives with clear Key Performance Indicators, organizations can track progress and demonstrate continuous improvement in performance, cost, and environmental impact.

Comprehensive Methodological Framework Combining Primary Interviews and Secondary Data Analysis to Ensure Rigor and Reliability in Advanced Packaging Research

The research methodology underpinning this analysis integrates comprehensive primary and secondary approaches to ensure rigor and reliability. Primary data was gathered through in-depth interviews with senior executives, packaging engineers, supply chain managers, and end-use industry specialists to capture first-hand perspectives on technological trends, regulatory shifts, and commercial strategies.

Secondary research encompassed an extensive review of industry publications, patent filings, academic journals, equipment manufacturer white papers, and government regulatory databases. This phase provided historical context, technology benchmarking, and comparative analyses of material performance characteristics. Data triangulation techniques were applied to reconcile disparate sources and validate key findings, while quantitative metrics were normalized to account for regional price variances and currency fluctuations.

Quality control measures included peer reviews by subject matter experts, iterative validation cycles with interview participants, and adherence to structured data governance protocols. The result is a robust analytical framework that delivers transparent, actionable insights tailored to executive decision-makers, technologists, and strategic planners operating in the advanced packaging landscape.

Synthesis of Key Trends and Strategic Imperatives Pointing to a Resilient Growth Trajectory in Semiconductor Advanced Packaging Innovation and Deployment

As the semiconductor industry continues its shift toward heterogeneous integration, key trends such as 2.5D and 3D-IC stacking, wafer-level fan-out, and system-in-package architectures are converging with sustainability and supply chain resilience imperatives. Regulatory pressures and geopolitical dynamics, including the impact of 2025 United States tariffs, underscore the importance of flexible manufacturing footprints and diversified sourcing strategies.

Strategic imperatives for stakeholders include accelerating collaboration across the value chain, from substrate producers to end-use application developers, in order to standardize interfaces and streamline qualification processes. Embracing digitalization through digital twins, automated inspection, and real-time tracking systems will enhance yield management and reduce time-to-market. Furthermore, targeted investments in eco-friendly materials and recycling infrastructure will align cost structures with evolving environmental mandates.

Looking ahead, the advanced packaging sector is poised for resilient growth driven by cross-industry partnerships, material science breakthroughs, and agile supply chain architectures. Organizations that balance performance optimization with geopolitical awareness and environmental stewardship will be best positioned to lead the next wave of innovation and capture emerging opportunities.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rapid expansion of chiplet-based heterogeneous integration ecosystems for HPC applications
  • 5.2. Adoption of advanced thermally conductive substrates to improve high-power chip performance
  • 5.3. Surge in fan-out wafer-level packaging adoption driven by AI and 5G device demand
  • 5.4. Development of eco-friendly lead-free solder alloys for sustainable semiconductor packaging
  • 5.5. Integration of real-time asset tracking and digital twins for advanced packaging supply chain visibility
  • 5.6. Innovations in micro-bump and hybrid bonding techniques for next-generation 3D IC stacking
  • 5.7. Emergence of AI-powered in-line inspection systems for defect reduction in wafer-level processes
  • 5.8. Shift towards silicon interposer reuse and wafer recycling to address packaging waste challenges
  • 5.9. Integration of through-silicon vias and embedded dies for miniaturized mobile processors
  • 5.10. Shift towards copper pillar microbump technology to enhance thermal conductivity in HPC modules

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Semiconductor Advanced Packaging Market, by Platform

  • 8.1. Introduction
  • 8.2. 2.5D
  • 8.3. 3D-IC
  • 8.4. Fan-out Wafer-level Packaging
  • 8.5. System-in-Package

9. Semiconductor Advanced Packaging Market, by Material Type

  • 9.1. Introduction
  • 9.2. Ceramic Package
  • 9.3. Encapsulation Resins
  • 9.4. Glass Substrates
  • 9.5. Organic Substrates
  • 9.6. Silicon-Based

10. Semiconductor Advanced Packaging Market, by Components

  • 10.1. Introduction
  • 10.2. Chiplet
  • 10.3. Die
  • 10.4. I/O Pads or Bumps
  • 10.5. Substrate
  • 10.6. System-on-Chip (SoC)

11. Semiconductor Advanced Packaging Market, by Pitch

  • 11.1. Introduction
  • 11.2. 40µm & Above
  • 11.3. Less Than 40µm

12. Semiconductor Advanced Packaging Market, by Application

  • 12.1. Introduction
  • 12.2. DC-DC Converter
  • 12.3. IGBT
  • 12.4. MOSFET

13. Semiconductor Advanced Packaging Market, by End-Use Industry

  • 13.1. Introduction
  • 13.2. Aerospace & Defense
  • 13.3. Automotive
    • 13.3.1. ADAS
    • 13.3.2. Infotainment Systems
  • 13.4. Consumer Electronics
    • 13.4.1. Smartphones
    • 13.4.2. Tablets
    • 13.4.3. Wearables
  • 13.5. Energy
    • 13.5.1. Solar Power
    • 13.5.2. Wind Energy
  • 13.6. Healthcare
    • 13.6.1. Medical Imaging Devices
    • 13.6.2. Wearable Devices
  • 13.7. Industrial
    • 13.7.1. Industrial IoT
    • 13.7.2. Robotics
  • 13.8. Telecommunications
    • 13.8.1. 5G Technology
    • 13.8.2. Networking Equipment

14. Americas Semiconductor Advanced Packaging Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Semiconductor Advanced Packaging Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Semiconductor Advanced Packaging Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Amkor Technology, Inc.
    • 17.3.2. AOI ELECTRONICS CO., LTD.
    • 17.3.3. ASE Group
    • 17.3.4. AT&S Company
    • 17.3.5. Camtek Ltd.
    • 17.3.6. ChipMOS Technologies Inc.
    • 17.3.7. Evatec AG
    • 17.3.8. FlipChip International LLC by HuaTian Technology Corporation
    • 17.3.9. HANA Micron Inc.
    • 17.3.10. Infineon Technologies AG
    • 17.3.11. Intel Corporation
    • 17.3.12. ISI Interconnect Systems by Molex company
    • 17.3.13. JCET Group
    • 17.3.14. Microsemi Corporation
    • 17.3.15. NEPES Corportion
    • 17.3.16. NXP Semiconductors N.V.
    • 17.3.17. Orient Semiconductor Electronics, Ltd.
    • 17.3.18. Plan Optik AG
    • 17.3.19. Powertech Technology Inc.
    • 17.3.20. Samsung Electronics Co., Ltd.
    • 17.3.21. Schweizer Electronic AG
    • 17.3.22. Shinko Electric Industries Co. Ltd
    • 17.3.23. Siemens AG
    • 17.3.24. Signetics Corporation
    • 17.3.25. Taiwan Semiconductor Manufacturing Company Limited
    • 17.3.26. TDK Corporation
    • 17.3.27. Teledyne DALSA
    • 17.3.28. Tongfu Microelectronics Co., Ltd.
    • 17.3.29. UTAC GROUP
    • 17.3.30. Veeco Instruments Inc.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦