시장보고서
상품코드
1808002

소형 풍력 터빈 시장 : 터빈 유형, 설치 유형, 블레이드 재료, 컴포넌트, 용량, 용도별 - 세계 예측(2025-2030년)

Small Wind Turbine Market by Turbine Type, Installation Type, Blade Material, Components, Capacity, Application - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 184 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

소형 풍력 터빈 시장은 2024년에는 24억 3,000만 달러로 평가되었습니다. 2025년에 25억 9,000만 달러에 이르고, CAGR 6.48%로 성장하여 2030년에는 35억 5,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 24억 3,000만 달러
추정 연도 : 2025년 25억 9,000만 달러
예측 연도 : 2030년 35억 5,000만 달러
CAGR(%) 6.48%

첨단 소형 풍력 터빈으로 분산형 에너지 전환의 선구자 지속가능성과 지역 송전망의 강인성을 강화합니다.

소형 풍력 터빈은 분산형 재생에너지 시스템으로의 전환에 있어 매우 중요한 구성 요소로 빠르게 부상하고 있습니다. 이 소형 풍력 발전기는 지역에 기반을 둔 풍력 자원을 활용하여 고립된 농촌 지역부터 도시 마이크로그리드까지 다양한 최종 사용자에게 전력을 공급합니다. 전 세계적으로 탄소중립과 회복탄력성으로 우선순위가 이동하는 가운데, 소형 풍력 발전 솔루션은 태양광, 축전지, 기존 전력 인프라를 보완하는 다용도 솔루션입니다.

혁신적 소재, 디지털화, 협력적 정책 프레임워크를 통해 재생가능발전을 재조명합니다.

소형 풍력 터빈 분야는 첨단 소재, 디지털 통합, 협력적 정책 프레임워크의 획기적인 발전으로 인해 혁신적으로 진화하고 있습니다. 최근에는 탄소섬유 복합재료와 고강도 합금의 채택으로 전체 시스템의 무게를 줄이는 동시에 피로 저항성을 향상시켜 낮은 풍속과 열악한 환경에서도 터빈을 안정적으로 운전할 수 있게 되었습니다.

미국의 새로운 관세 조치가 2025년 부품 조달, 공급망 및 시장 접근에 미치는 영향 평가

2025년 초, 미국은 풍력 터빈 부품에 대한 새로운 일련의 관세 조치를 시행하여 세계 공급망 재조정에 불을 붙였습니다. 수입 발전기, 특수 제어 전자기기, 정밀 가공 부품에 의존하는 제조업체는 투입 비용 상승에 직면하여 팀은 대체 조달 전략을 모색하고 조달 일정을 재검토해야 합니다.

터빈 유형, 설치 방법, 블레이드 재료, 구성 요소, 용량, 용도 등 시장 세분화의 중요한 관점을 파악합니다.

시장 세분화에 대한 미묘한 이해를 통해 소형 풍력 터빈의 다양한 촉진요인과 도입 경로를 파악할 수 있습니다. 터빈의 유형을 세분화하면 수평축과 수직축의 성능 프로파일이 명확해지며, 각각 고유한 장점이 있다는 것을 알 수 있습니다. 수평축형 유닛은 안정적인 바람의 흐름 속에서 최적의 에너지 회수를 실현하지만, 수직축형 시스템은 난류가 많은 도시 지역이나 복잡한 지형 환경에서 탁월합니다.

북미, 유럽, 중동 및 아프리카, 아시아태평양에서 소형 풍력 터빈의 보급을 형성하는 지역적 역학을 해독합니다.

지역 역학은 소형 풍력 터빈의 도입 전략에 큰 영향을 미칩니다. 미주 대륙에서는 미국과 캐나다의 성숙한 규제 프레임워크와 인센티브 프로그램이 조기 도입을 촉진하고 있으며, 라틴아메리카 국가들은 농촌의 전기화 및 원격지 채굴 작업의 솔루션으로 소형 풍력을 모색하고 있습니다. 이러한 다양한 조건 하에서 시장 진입 모델과 자금 조달 구조도 각각에 맞게 조정해야 합니다.

소형 풍력 터빈 시장의 주요 제조업체 및 기술 제공업체들의 전략적 움직임과 혁신 파이프라인을 살펴봅니다.

주요 제조업체와 기술 제공업체들은 연구 투자와 생산 능력 확대에 대한 집중적인 투자를 통해 경쟁 구도를 형성하고 있습니다. 유럽의 여러 기업들은 재료 과학에 대한 노력을 강화하여 내구성을 높이면서 무게를 줄이는 새로운 복합재료의 배합에 집중하고 있습니다. 동시에 북미 기업들은 제어 시스템 아키텍처를 강화하고, 진화하는 운영자의 요구 사항을 충족하기 위해 고급 분석 및 사이버 보안 기능을 통합하고 있습니다.

업계 리더들이 공급망의 복잡성을 극복하고 지속 가능한 성장을 가속화하기 위한 전략적 과제와 모범 사례

업계 리더들은 제조를 간소화하고 설치의 복잡성을 줄이는 모듈식 시스템 아키텍처를 우선시함으로써 경쟁력을 강화할 수 있습니다. 표준화된 컴포넌트 인터페이스를 채택함으로써 기업은 프로젝트 타임라인을 단축하고 세계 공급망에서 규모의 경제를 실현할 수 있습니다. 또한, 분석 기능이 통합된 적응형 제어 플랫폼을 통합하여 예지보전 전략을 강화하여 계획되지 않은 다운타임을 최소화하고 운영비용을 절감할 수 있습니다.

소형 풍력 터빈 분석을 위한 1차 조사, 2차 조사 및 강력한 분석 기술을 통합한 종합적인 조사 프레임워크

이 조사는 1차 조사, 2차 정보, 고급 분석 기술을 결합한 엄격한 프레임워크를 통합하고 있습니다. 터빈 제조업체, 부품 공급업체, 프로젝트 개발자, 정책 전문가, 최종 사용자와의 구조화된 인터뷰를 통해 1차적인 조사 결과를 얻었습니다. 이러한 생생한 관점을 통해 현실 세계의 과제, 운영 워크플로우, 새로운 도입 촉진요인이 부각되었습니다.

소형 풍력 터빈의 혁신과 보급을 위한 핵심 통찰력과 미래지향적 관점을 통합하여 소형 풍력 터빈의 혁신과 보급을 위한 길을 제시합니다.

소형 풍력 터빈 분야는 기술 혁신, 규제 진화, 시장 우선순위 변화의 교차점에 위치하고 있습니다. 재료 및 제어 시스템의 획기적인 발전이 성능 기준을 재정의하는 한편, 관세 조정 및 지역 정책 이니셔티브는 공급망 구성과 프로젝트의 경제성에 지속적으로 영향을 미치고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 소형 풍력 터빈 시장 : 터빈 유형별

  • 수평축
  • 수직축

제9장 소형 풍력 터빈 시장 : 설치 유형별

  • Off-grid
  • On-grid

제10장 소형 풍력 터빈 시장 : 블레이드 재료별

  • 알루미늄 합금
  • 탄소섬유 복합재
  • 유리섬유 강화 플라스틱

제11장 소형 풍력 터빈 시장 : 컴포넌트별

  • 제어 시스템
  • 발전기
  • 로터 블레이드
  • 타워

제12장 소형 풍력 터빈 시장 : 용량별

  • 0-5kW
  • 20-100kW
  • 5-20kW

제13장 소형 풍력 터빈 시장 : 용도별

  • 농업
  • 상업
  • 주택
  • 유틸리티

제14장 아메리카의 소형 풍력 터빈 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제15장 유럽, 중동 및 아프리카의 소형 풍력 터빈 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제16장 아시아태평양의 소형 풍력 터빈 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Aeolos Wind Energy Ltd.
    • Bergey Windpower Co.
    • Endurance Wind Power Inc.
    • ENERCON Global GmbH
    • Envision Energy USA Limited
    • GE Vernova Group
    • Guangzhou Infinite Windpower Generator Manufacture Co., Ltd.
    • Halus Power Systems
    • Hefei Wind Wing Energy Technology Co., Ltd.
    • Hi-VAWT Technology Corp. Ltd.
    • HYenergy Systems Pvt. Ltd.
    • Kestrel Wind Turbines
    • Kingspan Group
    • NevonProjects Pvt. Ltd.
    • Northern Power Systems LLC
    • Proven Energy
    • Qingdao Greef New Energy Equipment Co., Ltd.
    • Ryse Energy
    • SD Wind Energy Limited
    • Smarttwister
    • TUGE Energia OU
    • Vortex Bladeless Ltd.
    • WEG SA
    • WindEnergy7 LLC
    • XZERES Wind Corp.

제18장 리서치 AI

제19장 리서치 통계

제20장 리서치 컨택트

제21장 리서치 기사

제22장 부록

LSH 25.09.18

The Small Wind Turbine Market was valued at USD 2.43 billion in 2024 and is projected to grow to USD 2.59 billion in 2025, with a CAGR of 6.48%, reaching USD 3.55 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 2.43 billion
Estimated Year [2025] USD 2.59 billion
Forecast Year [2030] USD 3.55 billion
CAGR (%) 6.48%

Pioneering Distributed Energy Transformation with Advanced Small Wind Turbines Enhancing Sustainability and Local Grid Resilience

Small wind turbines are rapidly emerging as pivotal components in the transition to decentralized renewable energy systems. These compact machines harness localized wind resources to generate electricity for diverse end users, ranging from isolated rural communities to urban microgrids. As global priorities shift toward carbon neutrality and resilience, small wind solutions offer a versatile complement to solar, battery storage, and conventional power infrastructure.

Over the past decade, advances in turbine design, materials science, and control technologies have expanded the feasibility of small-scale installations. Lightweight composite blades and modular tower configurations now enable more efficient energy capture in moderate wind regimes, while integrated sensors and connectivity platforms support real-time monitoring and adaptive performance optimization. As a result, developers and end users can tailor wind energy deployments to unique site conditions and load profiles with unprecedented precision.

This executive summary distills key developments, emerging challenges, and strategic opportunities shaping the small wind turbine landscape. It synthesizes insights on regulatory shifts, supply chain dynamics, and regional adoption patterns, providing a concise yet comprehensive resource for decision-makers seeking to navigate this dynamic segment of the renewable energy market.

Reimagining Renewable Power Generation Through Breakthrough Materials, Digitalization, and Collaborative Policy Frameworks

The small wind turbine sector is undergoing transformative evolution driven by breakthroughs in advanced materials, digital integration, and collaborative policy frameworks. In recent years, the adoption of carbon fiber composites and high-strength alloys has reduced overall system weight while enhancing fatigue resistance, enabling turbines to operate reliably at lower wind speeds and in more challenging environments.

Concurrently, the integration of digital twins, IoT-enabled control systems, and machine learning analytics has ushered in an era of predictive maintenance and operational efficiency. Real-time performance monitoring allows operators to identify subtle deviations in rotor speed, vibration, and power output, thereby minimizing downtime and extending asset lifespans. These digital capabilities are increasingly embedded within sophisticated platform services that aggregate data across fleets and geographies.

Policy innovation has further accelerated sectoral momentum. Governments and regulatory bodies are crafting incentive schemes, feed-in tariffs, and permitting reforms tailored to distributed generation projects. Public-private partnerships are catalyzing pilot deployments in remote and off-grid regions, demonstrating the viability of small wind turbines for rural electrification and critical infrastructure resilience. Together, these shifts are forging a new paradigm in which small wind represents a vital pillar of integrated renewable energy portfolios.

Assessing the Far-Reaching Effects of New US Tariff Measures on Component Sourcing, Supply Chains, and Market Access in 2025

In early 2025, the United States implemented a new suite of tariff measures targeting wind turbine components, sparking a recalibration of global supply chains. Manufacturers dependent on imported generators, specialized control electronics, and precision-machined parts have encountered elevated input costs, prompting teams to seek alternative sourcing strategies and to reassess procurement timelines.

Moreover, the tariff landscape has accelerated efforts to localize production of critical components. Industry leaders are forging joint ventures and licensing agreements with domestic firms to establish assembly and machining capabilities within North America. These initiatives aim to mitigate exposure to import levies while fostering higher-value manufacturing clusters.

Despite these adjustments, some players have encountered logistical bottlenecks as regional suppliers ramp up capacity. In response, several turbine producers have explored dual-sourcing frameworks that balance imported subassemblies with domestically fabricated elements. This hybrid approach ensures continuity of supply while preserving cost competitiveness.

Looking ahead, stakeholders are closely monitoring tariff reviews and potential exemptions that could realign trade dynamics. By proactively engaging with policymakers and trade associations, companies are positioning themselves to advocate for stable regulatory conditions and to secure long-term access to diversified component sources.

Unlocking Critical Market Segmentation Perspectives Across Turbine Type, Installation, Blade Material, Components, Capacity, and Application Dimensions

A nuanced understanding of market segmentation reveals the varied drivers and adoption pathways for small wind turbines. Turbine type segmentation underscores the distinct performance profiles of horizontal axis and vertical axis designs, each offering unique advantages: horizontal axis units deliver optimized energy capture in steady wind flows, whereas vertical axis systems excel in turbulent urban or complex terrain environments.

Installation type segmentation highlights the divergent requirements of off grid and on grid applications. Off grid installations empower remote facilities and rural communities with autonomous energy access, reducing reliance on diesel generators and centralized grids. In contrast, on grid configurations integrate seamlessly with existing distribution networks, enabling net-metering arrangements and local energy reinjection.

Diverse blade materials further differentiate product offerings. Aluminum alloy blades cater to cost-sensitive projects seeking lightweight but robust structures, while carbon fiber composites furnish high-performance models with exceptional stiffness-to-weight ratios. Fiberglass reinforced plastic emerges as a versatile alternative, balancing durability, manufacturability, and resistance to environmental stressors.

Component segmentation emphasizes the integral roles of control systems, generators, rotor blades, and towers in overall system efficacy. Advanced control architectures facilitate remote diagnostics and adaptive pitch regulation, whereas state-of-the-art generators optimize electromagnetic conversion efficiency under variable load conditions. Meanwhile, rotor blade aerodynamics and tower height interplay to maximize energy yield.

Capacity segmentation spans small-scale assets from micro installations below 5 kW designed for single-home or small-farm use, through medium-range units between 5 and 20 kW targeting commercial and community energy projects, up to larger configurations in the 20 to 100 kW band that power campus microgrids and localized utility applications.

Application segmentation further delineates market channels: agricultural deployments support irrigation and livestock operations with reliable off grid power; commercial installations enhance sustainability credentials for retail outlets and hospitality venues; residential systems integrate clean energy generation into the built environment; and utility-scale community projects leverage clustered arrays to supply distributed load centers.

Decoding Regional Dynamics Shaping Small Wind Turbine Adoption Across the Americas, Europe Middle East & Africa, and Asia-Pacific Territories

Regional dynamics exert a profound influence on small wind turbine deployment strategies. In the Americas, mature regulatory frameworks and incentive programs in the United States and Canada have stimulated early adoption, while Latin American nations are exploring small wind as a solution for rural electrification and remote mining operations. These diverse conditions necessitate tailored go-to-market models and financing structures.

Across Europe, Middle East & Africa, policy-driven targets and feed-in tariff regimes in Western Europe have created stable investment environments, supporting a proliferation of demonstration sites and microgrid integrations. Meanwhile, select Middle Eastern countries are piloting off grid wind installations to diversify their energy mix, and African initiatives are leveraging mini and off grid systems to advance social development objectives in underserved regions.

Asia-Pacific encompasses a broad spectrum of market maturity levels. China and India have emerged as manufacturing powerhouses for key turbine components, benefiting from economies of scale and government-backed industrial incentives. In contrast, nations such as Japan and Australia pursue high-precision hybrid configurations that couple wind with solar and battery storage, aiming to enhance resilience and grid stability in islanded applications.

Examining Strategic Moves and Innovation Pipelines of Leading Manufacturers and Technology Providers in Small Wind Turbine Markets

Leading manufacturers and technology providers are shaping the competitive landscape through targeted investments in research and capacity expansion. Several European companies have intensified their material science initiatives, focusing on novel composite formulations that reduce weight while boosting durability. Simultaneously, North American firms are enhancing their control system architectures, embedding advanced analytics and cybersecurity features to meet evolving operator requirements.

In Asia, certain global conglomerates are leveraging large-scale production capabilities to drive component costs down, enabling broader adoption in price-sensitive markets. These manufacturers have forged partnerships with local engineering firms to streamline installation processes and to offer comprehensive service packages, including predictive maintenance contracts.

Collaboration between component specialists and full-system integrators is becoming increasingly prevalent. Strategic alliances are facilitating the cross-pollination of expertise in areas such as aerodynamic optimization, digital monitoring, and power electronics. Moreover, select innovators are exploring modular, plug-and-play product lines that simplify procurement and expedite deployment timelines.

Collectively, these company-driven initiatives reflect a shared commitment to expanding market reach, enhancing product differentiation, and driving continuous innovation across this rapidly evolving industry segment.

Strategic Imperatives and Best Practices for Industry Leaders to Navigate Supply Chain Complexities and Accelerate Sustainable Growth

Industry leaders can bolster their competitive position by prioritizing modular system architectures that streamline manufacturing and reduce installation complexity. By adopting standardized component interfaces, companies will accelerate project timelines and unlock economies of scale across global supply chains. Moreover, integrating adaptive control platforms with built-in analytics will empower predictive maintenance strategies, minimizing unplanned downtime and lowering operational expenditure.

Supplier diversification emerges as another critical imperative. Securing multiple sourcing pathways for key components mitigates exposure to trade disruptions and tariff variances. Establishing strategic alliances with regional fabricators and component specialists will foster resilience and enable rapid scale-up in response to project demand. In parallel, engaging proactively with policymakers to advocate for consistent incentive frameworks and streamlined permitting processes will help stabilize market conditions.

Finally, cultivating community engagement and stakeholder partnerships will enhance social license and facilitate site acquisition. Offering educational outreach, local workforce training, and revenue-sharing mechanisms encourages public support and accelerates project approvals. By aligning business models with broader social and environmental goals, pioneers in the small wind sector will unlock new growth corridors and sustain long-term success.

Comprehensive Research Framework Integrating Primary Engagements, Secondary Intelligence, and Robust Analytical Techniques for Small Wind Turbine Analysis

This research integrates a rigorous framework combining primary engagements, secondary intelligence, and advanced analytical techniques. Primary insights were garnered through structured interviews with turbine manufacturers, component suppliers, project developers, policy experts, and end users. These firsthand perspectives illuminated real-world challenges, operational workflows, and emerging adoption drivers.

Secondary research drew upon a curated selection of peer-reviewed journals, industry white papers, technical standards publications, and trade association reports. This literature review provided historical context, technology roadmaps, and regulatory developments, ensuring a comprehensive understanding of both macro trends and niche innovations.

Data triangulation methodologies were applied to validate qualitative findings and to identify convergent themes across distinct information sources. Scenario analysis and case study evaluations were conducted to explore best-practice models, risk mitigation approaches, and go-to-market strategies. Throughout the process, robust data governance and quality assurance protocols ensured the reliability and reproducibility of all analytical outputs.

Synthesizing Core Insights and Forward-Looking Perspectives to Illuminate the Path Ahead for Small Wind Turbine Innovation and Deployment

The small wind turbine sector stands at the intersection of technological innovation, regulatory evolution, and shifting market priorities. Breakthroughs in materials and control systems are redefining performance benchmarks, while tariff adjustments and regional policy initiatives continue to influence supply chain configurations and project economics.

By examining segmentation dimensions, regional dynamics, and competitive strategies, this analysis offers a panoramic view of the forces reshaping distributed renewable power generation. Leaders who embrace modular designs, diversified supply networks, and proactive stakeholder engagement will be best positioned to capitalize on emerging opportunities.

Looking forward, continued collaboration across the value chain, coupled with targeted investments in digitalization and local manufacturing, will drive further cost reductions and system efficiencies. As communities and organizations seek resilient energy solutions, small wind turbines will play an increasingly vital role in diversified portfolios that balance environmental stewardship with operational reliability.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of real-time IoT monitoring and predictive maintenance in small wind turbines for enhanced reliability
  • 5.2. Rise of hybrid microgrid systems combining small wind turbines with rooftop solar for resilient off-grid power
  • 5.3. Adoption of vertical axis wind turbines in urban rooftops to optimize low-wind-density energy harvesting
  • 5.4. Use of advanced carbon fiber composites to reduce nacelle weight and improve turbine efficiency
  • 5.5. Growth in community-owned small wind cooperatives driving local investment and shared energy benefits
  • 5.6. Deployment of small wind turbines in precision agriculture to power smart irrigation and sensor networks
  • 5.7. Regulatory incentives and streamlined permitting accelerating residential small wind turbine installations

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Small Wind Turbine Market, by Turbine Type

  • 8.1. Introduction
  • 8.2. Horizontal Axis
  • 8.3. Vertical Axis

9. Small Wind Turbine Market, by Installation Type

  • 9.1. Introduction
  • 9.2. Off Grid
  • 9.3. On Grid

10. Small Wind Turbine Market, by Blade Material

  • 10.1. Introduction
  • 10.2. Aluminum Alloy
  • 10.3. Carbon Fiber Composite
  • 10.4. Fiberglass Reinforced Plastic

11. Small Wind Turbine Market, by Components

  • 11.1. Introduction
  • 11.2. Control Systems
  • 11.3. Generator
  • 11.4. Rotor Blades
  • 11.5. Tower

12. Small Wind Turbine Market, by Capacity

  • 12.1. Introduction
  • 12.2. 0-5 kW
  • 12.3. 20-100 kW
  • 12.4. 5-20 kW

13. Small Wind Turbine Market, by Application

  • 13.1. Introduction
  • 13.2. Agriculture
  • 13.3. Commercial
  • 13.4. Residential
  • 13.5. Utility

14. Americas Small Wind Turbine Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Small Wind Turbine Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Small Wind Turbine Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Aeolos Wind Energy Ltd.
    • 17.3.2. Bergey Windpower Co.
    • 17.3.3. Endurance Wind Power Inc.
    • 17.3.4. ENERCON Global GmbH
    • 17.3.5. Envision Energy USA Limited
    • 17.3.6. GE Vernova Group
    • 17.3.7. Guangzhou Infinite Windpower Generator Manufacture Co., Ltd.
    • 17.3.8. Halus Power Systems
    • 17.3.9. Hefei Wind Wing Energy Technology Co., Ltd.
    • 17.3.10. Hi-VAWT Technology Corp. Ltd.
    • 17.3.11. HYenergy Systems Pvt. Ltd.
    • 17.3.12. Kestrel Wind Turbines
    • 17.3.13. Kingspan Group
    • 17.3.14. NevonProjects Pvt. Ltd.
    • 17.3.15. Northern Power Systems LLC
    • 17.3.16. Proven Energy
    • 17.3.17. Qingdao Greef New Energy Equipment Co., Ltd.
    • 17.3.18. Ryse Energy
    • 17.3.19. SD Wind Energy Limited
    • 17.3.20. Smarttwister
    • 17.3.21. TUGE Energia OU
    • 17.3.22. Vortex Bladeless Ltd.
    • 17.3.23. WEG SA
    • 17.3.24. WindEnergy7 LLC
    • 17.3.25. XZERES Wind Corp.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제