시장보고서
상품코드
1808250

EMI 차폐 시장 : 재료, 차폐 유형, 차폐 기술, 최종 용도, 유통 채널별 - 세계 예측(2025-2030년)

EMI Shielding Market by Material, Shielding Type, Shielding Technique, End-Use, Distribution Channel - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 187 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

EMI 차폐 시장은 2024년에 83억 4,000만 달러로 평가되었습니다. 2025년에 88억 6,000만 달러에 이르고, CAGR 6.72%로 성장하여 2030년에는 123억 2,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 83억 4,000만 달러
추정 연도 : 2025년 88억 6,000만 달러
예측 연도 : 2030년 123억 2,000만 달러
CAGR(%) 6.72%

현대 전자 시스템을 보호하고 산업 전반의 혁신을 가속화하는 전자기 간섭 차폐의 중요한 역할을 이해합니다.

전자 기기 및 상호 연결 시스템의 급속한 보급으로 거의 모든 분야에서 효과적인 전자기 간섭 차폐의 중요성이 증가하고 있습니다. 디바이스의 소형화 및 복잡성이 증가함에 따라, 부유 전자파로부터 정밀 부품을 보호하는 것은 단순한 기술적 세부 사항이 아니라 성능, 신뢰성 및 규정 준수를 달성하기 위한 중요한 요소로 자리 잡았습니다. 또한, 무선 통신, 첨단 센싱, 소형화된 파워 일렉트로닉스의 통합으로 인해 그 어느 때보다 엄격한 규제 및 성능 요건을 충족시킬 수 있는 혁신적인 차폐 솔루션에 대한 수요가 증가하고 있습니다.

최첨단 소재와 디지털 설계 도구가 차세대 용도의 전자파 차폐를 재정의하는 방법 알아보기

최근 전자파 차폐의 개념화, 설계 및 도입 방식에 큰 변화가 일어나고 있습니다. 한때 시장을 독점했던 전통적인 금속 인클로저는 이제 전도성 코팅, 특수 폴리머 및 미묘한 성능상의 이점을 제공하는 첨단 복합재료와 공존하고 있습니다. 이러한 변화는 복잡한 형태와 역동적인 운영 환경에 적응할 수 있는 보다 가볍고 다재다능한 솔루션의 필요성에 뿌리를 두고 있습니다.

2025년 미국 관세 조정이 EMI 차폐 재료 조달 및 비용 구조에 미치는 영향에 대해 알아봅니다.

2025년 초, 미국의 주요 원자재 및 부품에 대한 관세 개정이 시행되어 EMI 차폐 제품 제조업체에 새로운 복잡성을 가져왔습니다. 특정 금속박과 특수 폴리머가 더 높은 관세율로 재분류됨에 따라, 특히 구리, 니켈, 고도의 전도성 코팅을 수입에 의존하던 공급업체들의 투입비용이 증가했습니다. 이에 따라 기업들은 조달 전략을 재평가하고, 가격 경쟁력을 유지하기 위해 니어쇼어링이나 대체 자재 조달을 고려해야 합니다.

다양한 재료, 용도, 유통 경로를 분석하여 효과적인 EMI 차폐 배치를 위한 개별적인 접근 방식을 파악할 수 있습니다.

시장 세분화에 대한 통찰력은 재료 성능, 적용 요건, 구매자의 선호도에 대한 중요한 차이점을 밝혀냅니다. 전도성 코팅과 페인트는 가볍고 컨포멀한 EMI 장벽이 요구되는 분야에서 틈새 시장을 개척해 왔으며, 전도성 폴리머는 유연성과 내화학성이 가장 중요한 분야에서 선호되고 있습니다. EMC 및 EMI 필터는 고주파 전자 어셈블리에 계속 사용되고 있으며, 기존의 금속 차폐는 신뢰할 수 있는 광범위한 감쇠가 필요한 인클로저에 가장 적합한 솔루션으로 남아 있습니다.

시장 성장 촉진요인과 규제 현황을 매핑하고, 북미, 남미, 유럽, 중동 및 아프리카, 아시아태평양 시장에서의 전략적 기회를 모색합니다.

EMI 차폐 시장의 지역 역학은 기술 투자, 규제 프레임워크, 산업 성숙도에 따라 우선순위가 다르다는 것을 보여줍니다. 북미와 남미에서는 자동차 파워트레인의 전동화 추진과 첨단 국방 통신 시스템의 보급으로 고성능 차폐 솔루션에 대한 수요가 증가하고 있습니다. 현지 생산에 대한 노력은 리드 타임을 더욱 단축하고, 최근 무역 정책의 변동을 피하고 지역의 회복력을 강화하고 있습니다.

기존 소재 혁신 기업과 민첩한 신규 진출기업이 전자파 차폐의 경쟁 지형을 어떻게 형성하고 있는지 평가합니다.

EMI 차폐 산업의 경쟁 환경은 기존 재료 전문가, 민첩한 신생 기업, 전략적 제휴를 맺은 세계 대기업이 특징입니다. 수십 년간의 야금학 전문 지식을 보유한 선도적인 재료 과학 기업은 광범위한 응용 엔지니어링 역량을 활용하여 금속 호일 및 커넥터 쉴드 분야에서 혁신을 지속하고 있습니다.

EMI 차폐에서 경쟁 우위를 확보하기 위해 탄력적인 공급망, 재료 혁신, 협력적 생태계를 도입합니다.

업계 리더는 변화하는 시장 역학 속에서 성공을 거두기 위해 다각적인 전략을 채택해야 합니다. 첫째, 현지 생산 능력을 확대하거나 중요한 재료의 생산을 근해화하여 관세의 영향을 완화하고 공급망의 탄력성을 촉진할 수 있습니다. 현지 생산기지에 투자함으로써 기업은 리드타임을 단축하고 변동하는 무역 정책을 피할 수 있습니다.

1차 정보, 2차 정보, 계산 모델링을 강력하게 결합하여 EMI 차폐의 실용적인 시장 정보를 도출합니다.

본 주요 요약의 기초가 되는 조사는 엄격성과 타당성을 확보하기 위해 정성적 방법과 정량적 방법을 결합했습니다. 1차 조사에서는 설계 엔지니어, 조달 관리자, 규제 전문가 등 다양한 최종 사용 산업 분야의 주요 이해관계자들과 심층 인터뷰를 진행했습니다. 이러한 대화를 통해 현실적인 과제, 재료 선호도, 공급망 전략에 대한 통찰력을 얻을 수 있었습니다.

시장 역학, 지역적 차이, 기술 혁신을 통합하여 EMI 차폐 분야에서 지속 가능한 리더십으로 가는 길을 그려라.

첨단 소재, 디지털 설계 능력, 진화하는 규제 환경의 융합은 EMI 차폐 산업에 과제와 기회를 동시에 가져다주고 있습니다. 관세 조정으로 인해 공급망과 비용 구조에 대한 재평가가 이루어지고 있는 가운데, 소재 혁신은 성능 요구사항에 대응하면서 경쟁력을 유지하기 위한 강력한 수단으로 부상하고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 EMI 차폐 시장 : 소재별

  • 전도성 코팅 및 페인트
  • 전도성 폴리머
  • EMC/EMI 필터
  • 금속 차폐

제9장 EMI 차폐 시장 : 차폐 유형별

  • 케이블 차폐
  • 컴포넌트 차폐
  • 인클로저 차폐
  • 시트 차폐

제10장 EMI 차폐 시장 : 차폐 기술별

  • 흡수 차폐
  • 반사 차폐

제11장 EMI 차폐 시장 : 최종 용도별

  • 항공우주 및 방위
  • 자동차
  • 가전
  • 헬스케어
  • 산업
  • IT 및 통신

제12장 EMI 차폐 시장 : 유통 채널별

  • 오프라인
  • 온라인

제13장 아메리카의 EMI 차폐 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제14장 유럽, 중동 및 아프리카의 EMI 차폐 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제15장 아시아태평양의 EMI 차폐 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • 3M Company
    • Parker Hannifin Corporation
    • Abrisa Technologies
    • Avery Dennison Corporation
    • Bal Seal Engineering, LLC by Kaman Corp.
    • BASF SE
    • Boyd Corporation
    • Celanese Corporation
    • Compagnie de Saint-Gobain S.A.
    • Daniels Manufacturing Corporation
    • Deep Coat Industries
    • Denver Rubber Company
    • Meta Materials Inc.
    • DuPont de Nemours, Inc.
    • EMP Shield Inc.
    • ETS-Lindgren Inc.
    • GEOMATEC Co., Ltd.
    • Graphenest, S.A.
    • Guangzhou Fang Bang Electronics Co., Ltd.
    • Henkel AG & Co. KGaA
    • Holland Shielding Systems BV
    • Huntsman Corporation
    • Jinan EMI Shielding Technology Co. Ltd.
    • Lamart Corporation
    • MADPCB
    • MG Chemicals
    • Mitsubishi Chemical Group Corporation
    • Modus Advanced, Inc.
    • Murata Manufacturing Co., Ltd.
    • NANOTECH ENERGY INC.
    • NV Bekaert SA
    • OIKE & Co., Ltd.
    • Omega Shielding Products, Inc.
    • Panasonic Industry Co., Ltd.
    • Polycase
    • PPG Industries, Inc.
    • RTP Company
    • Saudi Basic Industries Corporation
    • Solvay S.A.
    • STMicroelectronics N.V.
    • Stockwell Elastomerics, Inc.
    • Tatsuta Electric Wire & Cable Co., Ltd.
    • TE Connectivity Corporation
    • Tech Etch, Inc.
    • TEXAS INSTRUMENTS INCORPORATED
    • artience Co., Ltd.

제17장 리서치 AI

제18장 리서치 통계

제19장 리서치 컨택트

제20장 리서치 기사

제21장 부록

LSH 25.09.18

The EMI Shielding Market was valued at USD 8.34 billion in 2024 and is projected to grow to USD 8.86 billion in 2025, with a CAGR of 6.72%, reaching USD 12.32 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 8.34 billion
Estimated Year [2025] USD 8.86 billion
Forecast Year [2030] USD 12.32 billion
CAGR (%) 6.72%

Understanding the Critical Role of Electromagnetic Interference Shielding in Safeguarding Modern Electronic Systems and Accelerating Innovation Across Industries

The rapid proliferation of electronic devices and interconnected systems has elevated the importance of effective electromagnetic interference shielding across virtually every sector. As devices shrink in size and increase in complexity, protecting sensitive components from stray electromagnetic emissions has become not merely a technical detail but a critical enabler of performance, reliability, and compliance. Furthermore, the integration of wireless communication, advanced sensing, and miniaturized power electronics has intensified the demand for innovative shielding solutions capable of addressing ever more stringent regulatory and performance requirements.

Against this backdrop, a thorough examination of the EMI shielding landscape reveals key drivers shaping market dynamics. The push towards electrification in automotive and aerospace applications, coupled with accelerating deployments of 5G networks and the Internet of Things, underscores the necessity for materials and methods that can deliver lightweight, cost-effective, and high-performing shielding. At the same time, sustainability considerations are prompting material engineers to explore conductive polymers and coatings that align with environmental regulations without sacrificing performance.

This introduction sets the stage for an executive summary that dissects transformative shifts, evaluates tariff impacts, uncovers segmentation insights, and offers actionable strategies. By framing the challenges and opportunities that define the EMI shielding ecosystem, readers gain a foundational understanding of the technological, regulatory, and competitive forces at play.

Exploring How Cutting-Edge Materials and Digital Design Tools Are Redefining Electromagnetic Shielding for Next-Generation Applications

Recent years have seen a profound transformation in how electromagnetic interference shielding is conceptualized, designed, and deployed. Traditional metal enclosures that once dominated the market now coexist with conductive coatings, specialized polymers, and advanced composites that offer nuanced performance benefits. This shift is rooted in the need for lighter, more versatile solutions capable of conforming to intricate geometries and dynamic operational environments.

Moreover, the expansion of wireless technologies, from 5G infrastructure to vehicle-to-everything communication, has elevated absorption shielding techniques that attenuate specific frequency bands, complementing reflection shielding approaches that block EMI across broader spectra. Material science breakthroughs are enabling multifunctional coatings that combine thermal management, corrosion resistance, and EMI attenuation in a single application, thereby streamlining manufacturing processes and reducing system weight.

Meanwhile, digital simulation tools and additive manufacturing technologies are revolutionizing design workflows. Engineers can now model electromagnetic fields with unprecedented accuracy and prototype complex shielding structures through 3D printing, accelerating time to market. These transformative shifts are redefining competitive benchmarks and opening new avenues for differentiation as companies seek to deliver tailored, high-performance solutions.

Unpacking the Far-Reaching Consequences of the 2025 United States Tariff Adjustments on EMI Shielding Material Procurement and Cost Structures

In early 2025, the implementation of revised United States tariffs on key raw materials and components has introduced fresh complexities for manufacturers of EMI shielding products. The reclassification of certain metal foils and specialty polymers under higher duty brackets has elevated input costs, particularly for suppliers reliant on imports of copper, nickel, and advanced conductive coatings. Consequently, organizations must reevaluate procurement strategies and consider nearshoring or alternate material sourcing to maintain price competitiveness.

These tariff adjustments have also triggered cascading effects across the value chain. Original equipment manufacturers face the prospect of adjusted BoM (bill of materials) costs, which may prompt design changes or supplier renegotiations to preserve margin targets. Some manufacturers have begun exploring alternative alloys and hybrid material formulations to offset increased duties, while others are accelerating investments in domestic production capabilities to reduce exposure to volatile trade policies.

Navigating this tariff environment requires a nuanced understanding of product classification, free trade agreement eligibility, and long-term supply chain resilience. As a result, companies that proactively adapt sourcing models, optimize material portfolios, and engage in strategic partnerships are best positioned to mitigate cost pressures and capitalize on evolving market conditions.

Analyzing Diverse Material, Application, and Distribution Pathways to Illuminate Tailored Approaches for Effective EMI Shielding Deployment

Insights into market segmentation reveal critical distinctions in material performance, application requirements, and buyer preferences. Conductive coatings and paints have carved out a niche in scenarios demanding lightweight, conformal EMI barriers, while conductive polymers are gaining traction where flexibility and chemical resistance are paramount. EMC and EMI filters continue to serve high-frequency electronic assemblies, and traditional metal shielding remains the go-to solution for enclosures requiring reliable, broad-spectrum attenuation.

Differentiation also emerges when considering shielding types. Cable shielding dominates in applications like data transmission and power delivery, component shielding addresses discrete IC and device-level interference, and enclosure shielding protects whole systems from external noise. Sheet shielding provides modular, customizable barriers for prototypes and field repairs, highlighting the diverse pathways to market adoption.

The choice of shielding technique-whether absorption or reflection-further nuances design decisions. Absorption shielding excels in mitigating resonant effects within electronic cavities, whereas reflection shielding offers robust defense against external emissions across a wide spectrum. End-use segmentation underscores how aerospace and defense demand rigorous certification and performance margins, automotive prioritizes durability under cyclical loads, consumer electronics seeks cost-effective integration, and healthcare systems require biocompatible and easy-to-sterilize materials. In industrial, IT, and telecommunications settings, reliability under continuous operation and ease of installation drive material selection.

Finally, distribution channel dynamics reflect shifting buyer behaviors. Offline channels remain vital for high-volume B2B procurement, whereas online platforms increasingly cater to rapid-turn prototyping and small-batch orders, illustrating how convenience and speed are reshaping supply models.

Mapping Regional Demand Drivers and Regulatory Landscapes to Reveal Strategic Opportunities Across the Americas, EMEA, and Asia-Pacific Markets

Regional dynamics in the EMI shielding market demonstrate varying priorities shaped by technological investment, regulatory frameworks, and industrial maturity. In the Americas, the drive toward electrification in automotive powertrains and the rollout of advanced defense communication systems have amplified demand for high-performance shielding solutions. Localized manufacturing initiatives further reduce lead times and circumvent recent trade policy fluctuations, strengthening regional resilience.

Across Europe, the Middle East, and Africa, stringent electromagnetic compatibility regulations coupled with expansive infrastructure projects are motivating the adoption of advanced shielding materials and techniques. Renewable energy installations and smart grid deployments are creating new opportunities for both absorption and reflection shielding, while an emphasis on sustainability is steering research toward recyclable and low-carbon-impact materials.

Asia-Pacific remains the largest growth engine, fueled by robust consumer electronics manufacturing, rapid 5G network expansion, and burgeoning industrial automation. The region's cost-sensitive markets benefit from mass-produced metal shielding, even as premium segments pursue conductive polymers and coatings to meet lightweight design requirements. Government incentives for semiconductor fabrication and local content mandates are further shaping supply chain strategies and investment flows across major hubs.

Evaluating How Established Material Innovators and Agile New Entrants Are Shaping the Competitive Terrain in Electromagnetic Interference Shielding

The competitive landscape in the EMI shielding industry is characterized by established material specialists, agile startups, and global conglomerates forging strategic alliances. Leading material science firms with decades of metallurgical expertise continue to innovate in metal foils and connector shielding, leveraging extensive application engineering capabilities.

At the same time, specialized polymer developers are challenging the status quo by introducing novel conductive composites that combine shielding effectiveness with flexibility and corrosion resistance. These firms often collaborate closely with academic institutions to accelerate R&D cycles, translating lab-scale breakthroughs into commercial products within compressed timelines.

Global electronics giants and tier-one suppliers also play a pivotal role by integrating in-house shielding solutions into broader system architectures, thereby capturing greater share of the value chain. Their scale enables significant investments in advanced testing facilities and certification processes, setting high industry benchmarks for performance and reliability.

This multifaceted competitive environment incentivizes continuous innovation, as players strive to differentiate through tailored material formulations, integrated design services, and end-to-end supply chain solutions. Companies that can seamlessly marry technical expertise with responsive global logistics are best positioned to meet diverse customer needs and navigate the complexities of tariff-driven cost pressures.

Implementing a Resilient Supply Chain, Material Innovation, and Collaborative Ecosystem to Seize Competitive Advantage in EMI Shielding

Industry leaders must adopt a multi-pronged strategy to thrive amid shifting market dynamics. First, expanding local manufacturing capabilities or nearshoring critical material production can mitigate tariff impacts and foster supply chain resilience. By investing in regional production hubs, companies can reduce lead times and bypass fluctuating trade policies.

Second, prioritizing material innovation to deliver multifunctional shielding solutions will unlock new application segments. Integrating thermal management, corrosion resistance, and EMI attenuation within a single product not only simplifies assembly processes but also enhances system reliability, creating a compelling value proposition for OEMs.

Third, embracing digital design and simulation tools will accelerate development cycles and improve performance validation. Virtual prototyping and computational electromagnetic modeling can identify optimal shielding architectures before committing to costly physical prototypes, thereby conserving resources and reducing time to market.

Lastly, cultivating strategic partnerships with end users, academic institutions, and logistics providers will create an ecosystem that fosters co-innovation and ensures rapid, cost-effective delivery. Collaborative frameworks can streamline certification processes and align product roadmaps with emerging industry standards, positioning leaders to capitalize on nascent growth pockets.

Leveraging a Robust Combination of Primary Insights, Secondary Sources, and Computational Modeling to Derive Actionable Market Intelligence for EMI Shielding

The research underpinning this executive summary combined qualitative and quantitative methodologies to ensure rigor and relevance. Primary research involved in-depth interviews with key stakeholders, including design engineers, procurement managers, and regulatory experts across diverse end-use industries. These conversations provided insights into real-world challenges, material preferences, and supply chain strategies.

Secondary research drew upon patent databases, technical journals, industry white papers, and regulatory filings to corroborate emerging trends and material innovations. Competitive benchmarking analyses were conducted to map product portfolios, R&D investments, and strategic partnerships among leading shielding solution providers.

Additionally, trade data and tariff schedules were meticulously reviewed to assess the impact of recent policy changes on material costs and sourcing decisions. Computational modeling case studies illustrated how absorption and reflection shielding techniques perform across different frequency bands, informing strategic recommendations.

This multi-layered methodology ensures that findings reflect both current market realities and forward-looking perspectives, providing a robust foundation for decision-making and long-term strategic planning.

Synthesizing Market Dynamics, Regional Variations, and Technological Innovations to Chart a Pathway Toward Sustainable Leadership in EMI Shielding

The convergence of advanced materials, digital design capabilities, and evolving regulatory landscapes presents both challenges and opportunities for the EMI shielding industry. As tariff adjustments prompt reevaluation of supply chains and cost structures, material innovation emerges as a powerful lever to maintain competitiveness while addressing performance demands.

Regional nuances highlight the importance of localized production strategies in the Americas, regulatory compliance and sustainability in EMEA, and scale-driven adoption in Asia-Pacific. Competitive dynamics underscore the value of collaboration, as industry leaders, specialized developers, and system integrators co-create solutions that meet increasingly complex requirements.

By embracing resilient sourcing models, investing in multifunctional shielding technologies, and harnessing digital simulation tools, organizations can navigate the shifting terrain and unlock new growth avenues. Ultimately, a strategic, data-driven approach rooted in deep technical expertise will differentiate market leaders from followers, ensuring sustained success in an era defined by rapid innovation and dynamic regulatory frameworks.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rising demand for multifunctional EMI shielding solutions with integrated thermal management in electric vehicle powertrains
  • 5.2. Development of lightweight graphene-based composites enabling flexible EMI shielding for next-generation wearable electronics
  • 5.3. Adoption of additive manufacturing and 3D printing to produce complex EMI shielding geometries with high precision
  • 5.4. Increasing regulatory pressure to phase out heavy metal shielding alloys and adopt sustainable, non-toxic EMI materials
  • 5.5. Integration of ultra-thin metalized films in 5G infrastructure components to meet stringent RF interference suppression requirements
  • 5.6. Advancements in conductive polymer coatings delivering scalable and cost-effective EMI shielding for consumer electronics
  • 5.7. Application of AI and machine learning in design optimization of EMI shielding materials for targeted frequency attenuation
  • 5.8. Deployment of hybrid magnetic nanoparticle-infused polymers to achieve tunable broadband EMI attenuation in aerospace systems
  • 5.9. Strategic partnerships aimed at integrating EMI shielding solutions within autonomous vehicle LiDAR and radar sensor housings

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. EMI Shielding Market, by Material

  • 8.1. Introduction
  • 8.2. Conductive Coatings & Paints
  • 8.3. Conductive Polymers
  • 8.4. EMC/EMI Filters
  • 8.5. Metal Shielding

9. EMI Shielding Market, by Shielding Type

  • 9.1. Introduction
  • 9.2. Cable Shielding
  • 9.3. Component Shielding
  • 9.4. Enclosure Shielding
  • 9.5. Sheet Shielding

10. EMI Shielding Market, by Shielding Technique

  • 10.1. Introduction
  • 10.2. Absorption Shielding
  • 10.3. Reflection Shielding

11. EMI Shielding Market, by End-Use

  • 11.1. Introduction
  • 11.2. Aerospace & Defense
  • 11.3. Automotive
  • 11.4. Consumer Electronics
  • 11.5. Healthcare
  • 11.6. Industrial
  • 11.7. IT & Telecommunications

12. EMI Shielding Market, by Distribution Channel

  • 12.1. Introduction
  • 12.2. Offline
  • 12.3. Online

13. Americas EMI Shielding Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa EMI Shielding Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific EMI Shielding Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. 3M Company
    • 16.3.2. Parker Hannifin Corporation
    • 16.3.3. Abrisa Technologies
    • 16.3.4. Avery Dennison Corporation
    • 16.3.5. Bal Seal Engineering, LLC by Kaman Corp.
    • 16.3.6. BASF SE
    • 16.3.7. Boyd Corporation
    • 16.3.8. Celanese Corporation
    • 16.3.9. Compagnie de Saint-Gobain S.A.
    • 16.3.10. Daniels Manufacturing Corporation
    • 16.3.11. Deep Coat Industries
    • 16.3.12. Denver Rubber Company
    • 16.3.13. Meta Materials Inc.
    • 16.3.14. DuPont de Nemours, Inc.
    • 16.3.15. EMP Shield Inc.
    • 16.3.16. ETS-Lindgren Inc.
    • 16.3.17. GEOMATEC Co., Ltd.
    • 16.3.18. Graphenest, S.A.
    • 16.3.19. Guangzhou Fang Bang Electronics Co., Ltd.
    • 16.3.20. Henkel AG & Co. KGaA
    • 16.3.21. Holland Shielding Systems BV
    • 16.3.22. Huntsman Corporation
    • 16.3.23. Jinan EMI Shielding Technology Co. Ltd.
    • 16.3.24. Lamart Corporation
    • 16.3.25. MADPCB
    • 16.3.26. MG Chemicals
    • 16.3.27. Mitsubishi Chemical Group Corporation
    • 16.3.28. Modus Advanced, Inc.
    • 16.3.29. Murata Manufacturing Co., Ltd.
    • 16.3.30. NANOTECH ENERGY INC.
    • 16.3.31. NV Bekaert SA
    • 16.3.32. OIKE & Co., Ltd.
    • 16.3.33. Omega Shielding Products, Inc.
    • 16.3.34. Panasonic Industry Co., Ltd.
    • 16.3.35. Polycase
    • 16.3.36. PPG Industries, Inc.
    • 16.3.37. RTP Company
    • 16.3.38. Saudi Basic Industries Corporation
    • 16.3.39. Solvay S.A.
    • 16.3.40. STMicroelectronics N.V.
    • 16.3.41. Stockwell Elastomerics, Inc.
    • 16.3.42. Tatsuta Electric Wire & Cable Co., Ltd.
    • 16.3.43. TE Connectivity Corporation
    • 16.3.44. Tech Etch, Inc.
    • 16.3.45. TEXAS INSTRUMENTS INCORPORATED
    • 16.3.46. artience Co., Ltd.

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제