시장보고서
상품코드
1808266

엣지 AI 소프트웨어 시장 : 제공 제품별, 데이터 유형별, 기술 유형별, 최종사용자별 - 세계 예측(2025-2030년)

Edge AI Software Market by Offering, Data Type, Technology Type, End-User - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 197 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

엣지 AI 소프트웨어 시장의 2024년 시장 규모는 20억 7,000만 달러로 평가되었습니다. 2025년에 25억 3,000만 달러에 이르고, CAGR 23.77%로 성장하여 2030년에는 74억 5,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 20억 7,000만 달러
추정 연도 : 2025년 25억 3,000만 달러
예측 연도 : 2030년 74억 5,000만 달러
CAGR(%) 23.77%

실시간 의사결정을 가속화하고 디지털 전환 이니셔티브의 혁신을 촉진하는 엣지 AI 소프트웨어의 중요한 역할에 대해 알아봅니다.

엣지 AI 소프트웨어는 중앙 집중식 클라우드 리소스에 의존하지 않고 연결된 디바이스에서 직접 분석을 실행할 수 있도록 함으로써 기업이 데이터를 처리하고 복잡한 워크로드를 실행하는 방식을 변화시키고 있습니다. 이 획기적인 접근 방식을 통해 기업은 대역폭 제약, 프라이버시 문제, 기존 클라우드 기반 분석에 따른 지연 문제 등의 제약을 극복할 수 있습니다.

엣지 AI 소프트웨어 채택을 재정의하고, 다양한 산업별 새로운 업무 효율을 이끌어내는 전략적 변곡점을 밝힙니다.

엣지 AI 소프트웨어 환경은 분산형 머신러닝, 고급 센서 통합, 커넥티드 엔드포인트의 급격한 증가로 인해 급격한 변화의 물결을 경험하고 있습니다. 기업들은 데이터 소스에 더 가까운 곳에서 인텔리전스를 제공함으로써 세밀한 제어, 대기 시간 단축, 보안 강화가 가능해져 새로운 운영 패러다임이 열릴 수 있다는 것을 인식하고 있습니다.

2025년을 향해 발표된 미국의 관세가 전 세계 엣지 AI 소프트웨어 공급망과 가격 체계에 미치는 영향에 대한 분석

2025년 수입 반도체, 특수 프로세서, 관련 하드웨어 부품에 대한 미국의 개정 관세 부과는 엣지 AI 소프트웨어 배포 비용 구조에 큰 영향을 미칠 것으로 보입니다. 해외산 고급 AI 가속기 및 센서 어레이에 크게 의존하는 조직은 전체 솔루션 가격 책정에 연쇄적으로 영향을 미치는 조달 비용 상승에 직면할 수 있습니다.

중요한 수요 패턴을 파악할 수 있는 제공 데이터 유형 기술 유형 및 최종 사용자용도별 시장 세분화에 대한 심층 조사.

시장 세분화를 자세히 조사하면 다면적인 수요를 형성하는 명확한 촉진요인이 드러납니다. 조직은 컨설팅 지원, 원활한 배포 및 통합, 지속적인 유지보수 서비스, 전용 하드웨어 키트로 보완되는 강력한 소프트웨어 플랫폼과 컨설팅 지원, 원활한 배포 및 통합, 지속적인 유지보수 서비스, 전용 하드웨어 키트의 균형을 평가합니다. 이러한 각 요소는 엣지 AI 솔루션이 엔터프라이즈급 신뢰성과 확장성 요구 사항을 충족하는 데 있어 매우 중요한 역할을 합니다.

미주, 유럽, 중동 및 아프리카, 아시아태평양의 엣지 AI 소프트웨어의 역동적인 성장 궤적 매핑

지역적 역학은 엣지 AI 소프트웨어의 혁신과 채택의 궤도를 형성하는 데 결정적인 역할을 합니다. 미주 지역에서는 스마트 인프라에 대한 활발한 투자, 활발한 스타트업 생태계, 정부 지원 이니셔티브가 솔루션 제공업체들이 배포 모델과 성능 벤치마킹을 빠르게 반복할 수 있는 경쟁 환경을 조성하고 있습니다.

시장 발전 및 가치사슬을 형성하는 주요 엣지 AI 소프트웨어 공급자의 전략적 포지셔닝과 경쟁 차별화 요소에 대한 이해

엣지 AI 소프트웨어 분야의 주요 개발 업체들은 전략적 제휴, 타겟팅된 인수, 독자적인 모델 개발에 대한 투자를 통해 차별화를 꾀하고 있습니다. 반도체 제조업체 및 디바이스 OEM과의 파트너십을 통해 소프트웨어 벤더는 초기 실리콘 반복 및 최적화된 런타임에 대한 특권적 접근을 확보하여 최신 하드웨어 플랫폼에서 우수한 성능을 보장합니다.

2025년까지 엣지 AI 소프트웨어 통합을 가속화하여 운영 민첩성을 높이고 경쟁 우위를 유지하기 위한 업계 리더들의 전략적 로드맵

엣지 AI 소프트웨어를 활용하고자 하는 업계 리더들은 먼저 기존 기술 스택을 종합적으로 평가하고 온디바이스 인텔리전스로 확장할 수 있는 레거시 시스템을 파악하여 즉각적인 운영상의 이점을 얻을 수 있도록 해야 합니다. 영향력 있는 이용 사례에 대한 시범 도입으로 시작하는 단계적 접근 방식은 기업 전반으로 확대하기 전에 성능 향상을 검증하고 조직의 신뢰를 구축하는 데 도움이 됩니다.

엣지 AI 소프트웨어의 도입이 비즈니스의 미래를 보장하고 업계 전반의 지속적인 혁신을 촉진하는 데 필수적임을 강조하는 결론적 통찰력

엣지 AI 소프트웨어는 기술 발전의 새로운 물결의 최전선에 서서 조직이 전례 없는 속도, 보안, 상황 인식으로 실시간 인텔리전스를 활용할 수 있도록 돕습니다. 최적화된 하드웨어 가속기, 고급 머신러닝 프레임워크, 유비쿼터스 커넥티비티가 결합되어 제조업에서 금융업에 이르기까지 산업 전반을 변화시킬 수 있는 용도의 무대가 마련되었습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 엣지 AI 소프트웨어 시장 : 제공별

  • 서비스
    • 컨설팅 서비스
    • 도입 및 통합 서비스
    • 지원 및 유지관리 서비스
  • 솔루션
    • 엣지 AI 하드웨어
    • 엣지 AI 소프트웨어 플랫폼

제9장 엣지 AI 소프트웨어 시장 : 데이터 유형별

  • 오디오 데이터
  • 생체인식 데이터
  • 모바일 데이터
  • 센서 데이터
  • 음성 인식
  • 비디오 및 영상 인식

제10장 엣지 AI 소프트웨어 시장 : 기술 유형별

  • 컴퓨터 비전
    • 얼굴 인식
    • 영상 인식
    • 비디오 분석
  • 머신러닝 알고리즘
    • 강화 학습
    • 지도 학습
    • 비지도 학습
  • 자연언어처리
    • 감정 분석
    • 음성 인식
    • 텍스트 분석

제11장 엣지 AI 소프트웨어 시장 : 최종사용자별

  • 자동차
  • 파이낸싱
    • 알고리즘 트레이딩
    • 부정행위 감지
    • 리스크 관리
  • 헬스케어
    • 진단 영상
    • 헬스케어 관리 시스템
    • 환자 모니터링
  • 제조업
    • 산업 자동화
    • 예지보전
    • 품질관리
  • 소매
    • 고객 분석
    • 재고 관리
    • 맞춤형 마케팅

제12장 아메리카의 엣지 AI 소프트웨어 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제13장 유럽, 중동 및 아프리카의 엣지 AI 소프트웨어 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제14장 아시아태평양의 엣지 AI 소프트웨어 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Alef Edge, Inc.
    • Amazon Web Services, Inc.
    • Anagog Ltd. by Intent Hq Holdings Limited
    • Atos SE
    • Azion Technologies, Inc.
    • Blaize, Inc.
    • byteLAKE s.c.
    • ClearBlade, Inc.
    • Ekinops S.A.
    • Eurotech S.p.A.
    • Google LLC by Alphabet, Inc.
    • Gorilla Technology Group Inc.
    • Hailo Technologies Ltd.
    • Infineon Technologies AG
    • Intel Corporation
    • International Business Machines Corporation
    • Johnson Controls International PLC
    • Kinara Inc.
    • Kneron, Inc.
    • Mavenir Systems, Inc.
    • Microsoft Corporation
    • Numurus LLC
    • Nutanix, Inc.
    • NVIDIA Corporation
    • Synaptics Incorporated
    • Tata Elxsi Limited
    • Veea Inc.
    • VMWare, Inc.
    • ZEDEDA, Inc.

제16장 리서치 AI

제17장 리서치 통계

제18장 리서치 컨택트

제19장 리서치 기사

제20장 부록

LSH 25.09.18

The Edge AI Software Market was valued at USD 2.07 billion in 2024 and is projected to grow to USD 2.53 billion in 2025, with a CAGR of 23.77%, reaching USD 7.45 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 2.07 billion
Estimated Year [2025] USD 2.53 billion
Forecast Year [2030] USD 7.45 billion
CAGR (%) 23.77%

Exploring the Critical Role of Edge AI Software in Accelerating Real-Time Decision Making and Driving Innovation Across Digital Transformation Initiatives

Edge AI software is transforming the way enterprises process data and execute complex workloads by enabling analytics to occur directly on connected devices rather than relying on centralized cloud resources. This revolutionary approach empowers organizations to overcome the limitations of bandwidth constraints, privacy concerns, and latency issues associated with traditional cloud-based analytics.

By embedding intelligence at the network edge, businesses can uncover real-time insights from sensor data streams, mobile interactions, and biometric signals. The ability to perform inference locally on devices ranging from industrial controllers to smart cameras accelerates decision making and drives operational efficiencies across manufacturing, retail, and smart city applications.

As competition intensifies, pioneering adoption of edge AI software has become a critical differentiator. Companies are leveraging machine learning algorithms and computer vision models to enhance quality control on production lines, enable predictive maintenance on mission-critical equipment, and support adaptive user experiences in connected vehicles. Seamless orchestration between on-device intelligence and centralized management platforms lays the foundation for resilient, scalable, and secure IoT ecosystems.

In the sections that follow, we explore the strategic shifts reshaping the edge AI landscape, the influence of recent tariff policies, granular segmentation insights, and targeted recommendations to help organizations harness the full potential of edge AI software.

Uncovering the Strategic Inflection Points Redefining Edge AI Software Adoption and Unlocking New Operational Efficiencies in Diverse Industry Verticals

The edge AI software landscape is experiencing a wave of rapid transformation driven by breakthroughs in distributed machine learning, advanced sensor integration, and the proliferation of connected endpoints. Companies are increasingly recognizing that delivering intelligence closer to data sources unlocks new operational paradigms, enabling granular control, reduced latency, and enhanced security.

Emerging developments in microarchitecture design coupled with optimized inference engines have significantly shrunk the computational footprint required to run sophisticated deep learning models at the edge. As a result, next-generation devices can now support computer vision tasks such as facial recognition, image classification, and real-time video analytics without reliance on centralized servers.

Meanwhile, the convergence of multimodal data processing capabilities has expanded the range of viable applications to include speech recognition, sentiment analysis, and biometric authentication in scenarios ranging from autonomous vehicles to industrial robotics. This trend is further amplified by platform providers offering unified orchestration layers that streamline model deployment, lifecycle management, and performance monitoring across heterogeneous devices.

Consequently, the edge AI ecosystem is evolving from proof-of-concept pilots to full-scale production deployments. Stakeholders must remain agile in adopting these transformative shifts, as early movers are positioned to capture substantial productivity gains while establishing new benchmarks for innovation within their respective industries.

Analyzing the Far-Reaching Effects of United States Tariffs Announced for 2025 on Edge AI Software Supply Chains and Pricing Structures Globally

In 2025, the imposition of revised United States tariffs on imported semiconductors, specialized processors, and associated hardware components will exert considerable influence on the cost structure of edge AI software deployment. Organizations that rely heavily on advanced AI accelerators and sensor arrays manufactured abroad may face elevated procurement expenses that cascade into overall solution pricing.

These heightened tariffs not only affect capital expenditure for device procurement but also reshape the dynamics of vendor relationships and supply chain resilience. Companies are reevaluating their partner ecosystems to mitigate exposure to tariff-induced cost escalation by diversifying sourcing strategies or investing in domestic manufacturing capabilities. Strategic partnerships with regional hardware vendors are emerging as a key tactic to navigate evolving trade policies.

Additionally, the shifting regulatory environment has prompted software providers to explore subscription-based and usage-based licensing models that absorb a portion of the cost volatility, thereby offering more predictable budgeting for end users. In parallel, some vendors are advancing modular software architectures that can adapt to varying hardware configurations, allowing customers to select lower-cost computing modules without sacrificing critical AI capabilities.

As these tariff measures take effect, stakeholders must balance the imperative of maintaining technical performance with prudent cost management. Organizations that proactively integrate these considerations into their procurement and deployment strategies will be better positioned to sustain growth and competitive differentiation in an increasingly complex trade landscape.

In-Depth Examination of Market Segmentation by Offering Data Type Technology Type and End-User Applications Revealing Critical Demand Patterns

An in-depth exploration of market segmentation reveals the distinct drivers shaping demand across multiple dimensions. By offering, organizations evaluate the balance between consulting support, seamless deployment and integration, ongoing maintenance services, and robust software platforms complemented by dedicated hardware kits. Each of these components plays a pivotal role in ensuring that edge AI solutions align with enterprise-grade reliability and scalability requirements.

From a data type perspective, the breadth of information sources-from audio and sensor data streams to biometric scans, mobile interactions, and advanced image recognition feeds-dictates the complexity of model training, data preprocessing, and real-time inference frameworks. Use cases dependent on video analytics for surveillance, for instance, impose different performance benchmarks compared to sentiment analysis on speech recognition modules in customer service scenarios.

The underlying technology type further refines the landscape, as computer vision, machine learning algorithms, and natural language processing each demand unique architectural optimizations. Whether tuning convolutional neural networks for facial recognition, training reinforcement learning agents for autonomous navigation, or deploying sentiment analysis pipelines for text analytics, providers must offer specialized toolchains and APIs that cater to each domain's computational profile.

End-user applications round out the segmentation picture, with verticals such as automotive leveraging driver assistance systems and in-vehicle entertainment, finance deploying algorithmic trading engines and fraud detection modules, healthcare implementing diagnostic imaging and patient monitoring solutions, manufacturing harnessing predictive maintenance and industrial automation capabilities, and retail adopting customer analytics and personalized marketing strategies. Understanding how these segments intersect enables stakeholders to prioritize investment in the most impactful technology-service bundles for their target markets.

Mapping the Dynamic Growth Trajectories of Edge AI Software Across the Americas Europe Middle East Africa and Asia-Pacific Regions

Regional dynamics play a decisive role in shaping the trajectory of edge AI software innovation and adoption. In the Americas, robust investment in smart infrastructure, a thriving startup ecosystem, and supportive government initiatives foster a competitive environment where solution providers rapidly iterate on deployment models and performance benchmarks.

Across Europe, the Middle East, and Africa, regulatory frameworks emphasizing data privacy and cross-border data flows have catalyzed the development of on-premises edge AI deployments that limit reliance on external cloud environments. This focus on sovereignty and localized processing has sparked collaborations between technology vendors and regional system integrators to deliver compliant, low-latency applications for critical industries including energy, transportation, and public safety.

Asia-Pacific markets exhibit perhaps the most aggressive adoption curves, driven by large-scale smart city programs, expansive manufacturing modernization efforts, and the integration of AI capabilities into consumer electronics at mass scale. The proliferation of 5G networks in these regions further accelerates use cases that depend on high-bandwidth connectivity and ultra-low latency, such as autonomous logistics and real-time remote monitoring solutions.

Collectively, these geographic insights underscore the importance of tailoring go-to-market strategies and technology roadmaps to regional priorities, infrastructure maturity, and regulatory considerations to unlock maximum value from edge AI software investments.

Illuminating the Strategic Positioning and Competitive Differentiators of Leading Edge AI Software Providers Shaping Market Evolution and Value Chains

Leading providers in the edge AI software domain continue to differentiate themselves through strategic collaborations, targeted acquisitions, and investments in proprietary model development. By forging alliances with semiconductor manufacturers and device OEMs, software vendors gain privileged access to early silicon iterations and optimized runtimes, ensuring superior performance on the latest hardware platforms.

Some market frontrunners have reinforced their competitive position by acquiring specialized analytics startups that bring domain-specific expertise, such as advanced anomaly detection algorithms for industrial IoT or sentiment analysis modules for customer engagement applications. These acquisitions not only expand product portfolios but also accelerate time-to-market for integrated solutions.

In parallel, the most successful companies are establishing comprehensive developer ecosystems, offering extensive software development kits and pre-trained model repositories that lower the barrier to entry for enterprises seeking to pilot edge AI initiatives. By nurturing active communities and fostering open-source contributions, these organizations drive rapid innovation while simultaneously cultivating loyalty among technical audiences.

Moreover, an increasing number of vendors are leveraging data partnerships to enrich their platforms' capabilities, integrating third-party data feeds for enhanced contextual awareness, such as environmental sensor networks for smart buildings or financial market data streams for adaptive trading systems. Through these multifaceted strategies, leading companies are solidifying their positions at the nexus of hardware, software, and data, thereby defining the competitive contours of the edge AI software ecosystem.

Strategic Roadmap for Industry Leaders to Accelerate Edge AI Software Integration Enhance Operational Agility and Sustain Competitive Advantage in 2025

Industry leaders seeking to capitalize on edge AI software must first conduct a holistic evaluation of existing technology stacks, identifying legacy systems that can be augmented with on-device intelligence to unlock immediate operational benefits. A phased approach that begins with pilot deployments in high-impact use cases helps validate performance gains and build organizational confidence before scaling across the broader enterprise.

Furthermore, integrating edge AI platforms with enterprise data architectures enhances visibility into device-level telemetry, enabling advanced analytics that preemptively detect anomalies and optimize maintenance schedules. By establishing clear governance frameworks around data privacy and security at the point of capture, organizations can avert compliance risks while fostering stakeholder trust.

Investing in upskilling internal teams is equally critical; cross-functional training programs that bring together data scientists, DevOps engineers, and domain experts ensure that AI models are effectively calibrated, deployed, and monitored in real-world environments. Encouraging collaboration between these roles accelerates iterative improvements and streamlines the transition from proof-of-concept to production.

Finally, forging strategic alliances with hardware and connectivity providers mitigates supply chain uncertainties and unlocks access to the latest silicon innovations. Through these combined efforts, industry leaders can fast-track their edge AI software journey, achieve sustainable cost efficiencies, and maintain a clear path toward ongoing innovation.

This analysis draws upon a rigorous mixed-methods research framework that integrates qualitative and quantitative approaches to ensure comprehensive market coverage. Primary insights were gathered through structured interviews with industry veterans, including senior executives, solution architects, and end users, providing firsthand perspectives on adoption challenges, feature preferences, and strategic priorities.

Complementing these qualitative inputs, extensive secondary research was conducted, leveraging whitepapers, technical reports, regulatory filings, and data published by standards organizations to validate emerging trends and technology roadmaps. This triangulation of sources underpins the reliability of our findings and highlights real-world deployment case studies across multiple sectors.

Quantitative analysis methodologies incorporated statistical synthesis of investment patterns and historical deployment volumes, adjusted for regional variances and sector-specific demand drivers. By mapping these data points against key segmentation parameters-such as offering types, data modalities, technology categories, and end-user applications-the research delivers nuanced insights into market dynamics and growth trajectories.

Rigorous data validation protocols, including peer reviews and expert advisory board consultations, were employed to ensure the accuracy and relevance of all reported information. This methodological robustness guarantees that strategic recommendations are grounded in empirical evidence and tailored to address the evolving needs of stakeholders throughout the edge AI software ecosystem.

Concluding Insights Highlighting the Imperative of Edge AI Software Adoption for Future-Proofing Operations and Fostering Continued Innovation Across Industries

Edge AI software stands at the forefront of a new wave of technological advancement, enabling organizations to harness real-time intelligence with unprecedented speed, security, and contextual awareness. The convergence of optimized hardware accelerators, advanced machine learning frameworks, and ubiquitous connectivity has set the stage for transformative applications across industries ranging from manufacturing to finance.

The strategic insights presented underscore the necessity for firms to align their technology investments with evolving regulatory landscapes, supply chain considerations, and regional market priorities. Moreover, a deep understanding of segmentation variables-from offering models to data types and end-user scenarios-empowers decision makers to craft targeted strategies that drive measurable business outcomes.

Ultimately, success in the edge AI software arena will hinge on an organization's ability to foster collaboration among technical experts, streamline deployment pipelines, and maintain flexible partnerships across the hardware and data landscapes. By embracing these imperatives, enterprises can future-proof their operations, realize significant efficiency gains, and unlock new avenues for innovation in the digital era.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Development of edge AI platforms supporting multi-cloud and hybrid cloud environments for scalability
  • 5.2. Expansion of edge AI applications in healthcare for remote patient monitoring and diagnostics
  • 5.3. Adoption of edge AI software for real-time data processing and analytics in industrial automation
  • 5.4. Utilization of edge AI in IoT devices to improve security and data privacy at the edge
  • 5.5. Innovations in edge AI hardware accelerating on-device machine learning inference
  • 5.6. Expansion of edge AI applications in smart cities for traffic and resource management
  • 5.7. Rising demand for edge AI in industrial automation to optimize production
  • 5.8. Development of energy-efficient edge AI algorithms for IoT devices
  • 5.9. Growing adoption of edge AI software in autonomous vehicles for improved safety
  • 5.10. Advancements in edge AI software enhancing real-time data processing capabilities

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Edge AI Software Market, by Offering

  • 8.1. Introduction
  • 8.2. Services
    • 8.2.1. Consulting Services
    • 8.2.2. Deployment & Integration Services
    • 8.2.3. Support & Maintenance Services
  • 8.3. Solutions
    • 8.3.1. Edge AI Hardware
    • 8.3.2. Edge AI Software Platforms

9. Edge AI Software Market, by Data Type

  • 9.1. Introduction
  • 9.2. Audio Data
  • 9.3. Biometric Data
  • 9.4. Mobile Data
  • 9.5. Sensor Data
  • 9.6. Speech Recognition
  • 9.7. Video and Image Recognition

10. Edge AI Software Market, by Technology Type

  • 10.1. Introduction
  • 10.2. Computer Vision
    • 10.2.1. Facial Recognition
    • 10.2.2. Image Recognition
    • 10.2.3. Video Analytics
  • 10.3. Machine Learning Algorithms
    • 10.3.1. Reinforcement Learning
    • 10.3.2. Supervised Learning
    • 10.3.3. Unsupervised Learning
  • 10.4. Natural Language Processing
    • 10.4.1. Sentiment Analysis
    • 10.4.2. Speech Recognition
    • 10.4.3. Text Analytics

11. Edge AI Software Market, by End-User

  • 11.1. Introduction
  • 11.2. Automotive
  • 11.3. Finance
    • 11.3.1. Algorithmic Trading
    • 11.3.2. Fraud Detection
    • 11.3.3. Risk Management
  • 11.4. Healthcare
    • 11.4.1. Diagnostic Imaging
    • 11.4.2. Healthcare Management Systems
    • 11.4.3. Patient Monitoring
  • 11.5. Manufacturing
    • 11.5.1. Industrial Automation
    • 11.5.2. Predictive Maintenance
    • 11.5.3. Quality Control
  • 11.6. Retail
    • 11.6.1. Customer Analytics
    • 11.6.2. Inventory Management
    • 11.6.3. Personalized Marketing

12. Americas Edge AI Software Market

  • 12.1. Introduction
  • 12.2. United States
  • 12.3. Canada
  • 12.4. Mexico
  • 12.5. Brazil
  • 12.6. Argentina

13. Europe, Middle East & Africa Edge AI Software Market

  • 13.1. Introduction
  • 13.2. United Kingdom
  • 13.3. Germany
  • 13.4. France
  • 13.5. Russia
  • 13.6. Italy
  • 13.7. Spain
  • 13.8. United Arab Emirates
  • 13.9. Saudi Arabia
  • 13.10. South Africa
  • 13.11. Denmark
  • 13.12. Netherlands
  • 13.13. Qatar
  • 13.14. Finland
  • 13.15. Sweden
  • 13.16. Nigeria
  • 13.17. Egypt
  • 13.18. Turkey
  • 13.19. Israel
  • 13.20. Norway
  • 13.21. Poland
  • 13.22. Switzerland

14. Asia-Pacific Edge AI Software Market

  • 14.1. Introduction
  • 14.2. China
  • 14.3. India
  • 14.4. Japan
  • 14.5. Australia
  • 14.6. South Korea
  • 14.7. Indonesia
  • 14.8. Thailand
  • 14.9. Philippines
  • 14.10. Malaysia
  • 14.11. Singapore
  • 14.12. Vietnam
  • 14.13. Taiwan

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Alef Edge, Inc.
    • 15.3.2. Amazon Web Services, Inc.
    • 15.3.3. Anagog Ltd. by Intent Hq Holdings Limited
    • 15.3.4. Atos SE
    • 15.3.5. Azion Technologies, Inc.
    • 15.3.6. Blaize, Inc.
    • 15.3.7. byteLAKE s.c.
    • 15.3.8. ClearBlade, Inc.
    • 15.3.9. Ekinops S.A.
    • 15.3.10. Eurotech S.p.A.
    • 15.3.11. Google LLC by Alphabet, Inc.
    • 15.3.12. Gorilla Technology Group Inc.
    • 15.3.13. Hailo Technologies Ltd.
    • 15.3.14. Infineon Technologies AG
    • 15.3.15. Intel Corporation
    • 15.3.16. International Business Machines Corporation
    • 15.3.17. Johnson Controls International PLC
    • 15.3.18. Kinara Inc.
    • 15.3.19. Kneron, Inc.
    • 15.3.20. Mavenir Systems, Inc.
    • 15.3.21. Microsoft Corporation
    • 15.3.22. Numurus LLC
    • 15.3.23. Nutanix, Inc.
    • 15.3.24. NVIDIA Corporation
    • 15.3.25. Synaptics Incorporated
    • 15.3.26. Tata Elxsi Limited
    • 15.3.27. Veea Inc.
    • 15.3.28. VMWare, Inc.
    • 15.3.29. ZEDEDA, Inc.

16. ResearchAI

17. ResearchStatistics

18. ResearchContacts

19. ResearchArticles

20. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제