시장보고서
상품코드
1808340

머신 비전 시장 : 컴포넌트, 제품 유형, 용도, 최종 이용 산업별 - 세계 예측(2025-2030년)

Machine Vision Market by Component, Product Types, Application, End Use Industry - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 182 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

머신 비전 시장은 2024년에는 170억 7,000만 달러로 평가되었습니다. 2025년에 190억 4,000만 달러에 이르고, CAGR 11.92%로 성장하여 2030년에는 335억 7,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 170억 7,000만 달러
추정 연도 : 2025년 190억 4,000만 달러
예측 연도 : 2030년 335억 7,000만 달러
CAGR(%) 11.92%

품질, 효율성, 자동화를 미래로 이끄는 머신비전 기술과 디지털 전환의 핵심 접점을 밝혀내다.

컴퓨터 비전, 인공지능, 첨단 이미지 처리 하드웨어의 융합으로 머신비전은 특수 실험용 도구에서 현대 자동화의 필수적인 기초로 승화되었습니다. 제조, 물류, 의료, 농업 등 각 분야에서 품질 보증 강화, 프로세스 가속화, 실용적인 데이터 실시간 수집 등 지능형 비전 시스템에 대한 의존도가 높아지고 있습니다. 생산 라인이 상호 연결됨에 따라 부품 검사, 공정 모니터링 및 로봇을 정확하게 유도하는 능력은 중요한 차별화 요소가 되고 있습니다.

스마트 제조 및 지능형 품질 관리 용도를 재정의하는 AI 지원 비전 시스템과 융합 기술의 부상을 그립니다.

인공지능과 센서 소형화의 비약적인 발전으로 머신비전의 상황은 크게 변화하고 있으며, 전례 없는 높은 정밀도와 빠른 처리량을 구현하는 솔루션이 등장하고 있습니다. 딥러닝 기술을 통해 비전 시스템은 복잡한 패턴을 인식하고 대규모 재프로그래밍 없이도 진화하는 생산 공차에 적응할 수 있어 기존의 규칙 기반 검사 방식과 차별화됩니다.

미국의 새로운 관세 조치가 2025년까지 공급망 안정성, 부품 조달, 세계 경쟁력에 미치는 복합적인 영향 평가

최근 미국의 무역 정책으로 도입된 새로운 관세 조치는 주요 부품의 비용 구조를 변화시키고 세계 공급망을 재구성함으로써 머신비전 생태계에 누적 영향을 미치고 있습니다. 이미지 센서 및 반도체 제조에 대한 부과금 부과로 카메라, 프로세서, 특수 광학 부품의 조달 비용이 상승하여 시스템 통합사업자와 디바이스 제조업체는 조달 전략을 재검토하고 해외 공급업체와의 협상 조건을 재검토해야 하는 상황에 처했습니다.

머신비전 시장을 부품, 제품 유형, 용도, 최종 사용 산업별로 세분화하여 기술 혁신과 투자를 촉진합니다.

시장 세분화에 대한 종합적인 이해를 통해 머신비전 솔루션이 어떻게 구성되고 배포되는지 알 수 있습니다. 구성 요소에 따라 시장은 하드웨어, 서비스, 소프트웨어에 걸쳐 조사됩니다. 하드웨어에는 카메라, 프레임 그래버 및 프로세서, 조명, 광학, 센서 등이 포함됩니다. 카메라에는 3D 카메라, 영역 스캔 카메라, 라인 스캔 카메라가 포함됩니다. 조명은 다시 형광등, LED, 석영 할로겐 광원으로 나뉩니다. 광학계는 필터, 일루미네이터, 렌즈로 구성되며, 센서는 CCD와 CMOS를 모두 포함합니다. 서비스는 매니지드 서비스와 전문 서비스로 구분되며, 전문 서비스는 컨설팅, 배포 및 통합, 유지보수 및 지원으로 나뉩니다. 소프트웨어는 영상처리 소프트웨어와 머신러닝 소프트웨어로 분류됩니다.

미주, EMEA, 아시아태평양 시장에서의 머신비전 수요와 기술 도입의 지역적 차이를 살펴봅니다.

머신비전 기술이 어떻게 채택되고, 통합되고, 상용화되는지는 지역적 뉘앙스에 따라 크게 영향을 받습니다. 미국 대륙에서는 탄탄한 제조거점과 대규모 자동화 투자가 고정밀 검사 시스템과 로봇 통합을 위한 비옥한 환경을 조성하고 있습니다. 북미 기업들은 자동차 및 항공우주 분야의 엄격한 품질 기준을 충족하는 맞춤형 솔루션을 개발하기 위해 현지 엔지니어링 전문 지식을 활용하고 있습니다. 한편, 중남미 시장에서는 농업 관련 용도를 현대화하고 물류 업무를 간소화하기 위해 스마트 카메라의 도입이 점차 증가하고 있습니다.

시장의 진화와 업계 표준을 형성하는 머신비전 선도 벤더들의 경쟁 전략과 혁신의 궤적을 살펴봅니다.

주요 벤더들은 제품 혁신, 전략적 파트너십, 고도의 분석 통합을 결합하여 차별화를 꾀하고 있습니다. 많은 유명 카메라 및 센서 제조업체들은 신경망 프로세서를 비전 모듈에 직접 통합하여 중앙처리장치에 대한 의존도를 낮추는 온디바이스 추론을 가능하게 함으로써 포트폴리오를 확장하고 있습니다. 이 제품들은 사용자 정의 알고리즘에 대한 쉬운 교육과 MES 및 ERP 시스템과의 원활한 통합을 용이하게 하는 소프트웨어 플랫폼으로 보완됩니다.

전략적 로드맵과 모범 사례 도입을 통해 머신 비전 통합을 가속화하고, 운영 우수성을 강화하며, 지속 가능한 성장을 가속하는 전략적 로드맵과 모범 사례를 도입합니다.

업계 리더들은 실시간 의사결정을 실현하고 네트워크 대기 시간을 최소화하기 위해 비전 시스템에 엣지 AI 프로세서를 통합하는 것을 우선순위에 두어야 합니다. 센서 레벨에 인텔리전스를 통합함으로써 조직은 데이터 흐름을 간소화하고, 현지화된 처리를 통해 사이버 보안을 강화할 수 있습니다. 또한, 모듈식 광학 설계와 적응형 조명 모듈에 R&D 노력을 집중함으로써 많은 자본 지출 없이도 진화하는 검사 표준에 대응할 수 있도록 신속하게 재구성할 수 있습니다.

강력한 시장 분석을 위한 1차 조사, 2차 조사, 데이터 삼각측량을 통합한 엄격한 멀티 소스 조사 방법론의 개요

본 조사방법은 신뢰성과 타당성을 확보하기 위해 엄격하고 다층적인 조사방법을 활용하고 있습니다. 2차 조사는 오픈소스 간행물, 기술 저널, 특허 데이터베이스를 분석하여 이미지 양식의 기술적 상황과 역사적 진화를 매핑하는 방식으로 진행되었습니다. 이러한 통찰력을 업계 보고서 및 사례 연구와 상호 참조하여 주요 혁신 동인 및 응용 시나리오를 식별했습니다.

전략적 의사결정과 산업 혁신을 촉진하는 머신비전 도입에 대한 중요한 통찰력과 미래 전망 요약

머신비전은 전문 검사 도구로서의 초기 역할을 넘어 전 산업 분야의 디지털 전환 전략의 기반이 되는 요소로 자리 잡았습니다. AI 기반 알고리즘, 인텔리전트 엣지 아키텍처, 다양화되는 부품 생태계의 융합으로 고정밀 제조, 예지보전, 적응형 품질 관리에 대한 적용이 확대되고 있습니다. 기업이 처리량을 최적화하고 운영 리스크를 줄이기 위해 노력하는 가운데, 비전 시스템은 점점 더 프로세스 혁신의 핵심이 되고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 머신 비전 시장 : 컴포넌트별

  • 하드웨어
    • 카메라
      • 3D 카메라
      • 에어리어 스캔 카메라
      • 라인 스캔 카메라
    • 프레임 그래버 및 프로세서
    • 라이트닝
      • 형광
      • LED
      • 쿼츠 할로겐
    • 광학
      • 필터
      • 조명기구
      • 렌즈
    • 센서
      • CCD 센서
      • CMOS 센서
  • 서비스
    • 매니지드 서비스
    • 전문 서비스
      • 상담
      • 전개 및 통합
      • 유지관리 및 지원
  • 소프트웨어
    • 영상 처리 소프트웨어
    • 머신러닝 소프트웨어

제9장 머신 비전 시장 : 제품 유형별

  • PC 기반 머신 비전 시스템
  • 스마트 카메라 기반 시스템

제10장 머신 비전 시장 : 용도별

  • 가이던스 및 포지셔닝
  • 식별 및 검증
  • 검사 및 품질관리
  • 측정 및 계측
  • 예지보전
  • 감시 및 보안

제11장 머신 비전 시장 : 최종 이용 산업별

  • 항공우주 및 방위
  • 농업
  • 자동차
  • 일렉트로닉스 및 반도체
  • 에너지 및 유틸리티
  • 식품 및 음료
  • 헬스케어 및 생명과학
  • 물류 및 소매
  • 제조업

제12장 아메리카의 머신 비전 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제13장 유럽, 중동 및 아프리카의 머신 비전 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제14장 아시아태평양의 머신 비전 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Allied Vision Technologies GmbH
    • Ametek Inc.
    • Basler AG
    • Baumer Holding AG
    • Cognex Corporation
    • Datalogic S.p.A.
    • Euresys SA
    • FLIR Systems, Inc.
    • IDS Imaging Development Systems GmbH
    • Intel Corporation
    • ISRA Vision AG
    • JAI A/S
    • Keyence Corporation
    • LMI Technologies Inc.
    • Machine Vision Products, Inc.
    • MVTec Software GmbH
    • National Instruments Corporation
    • Omron Corporation
    • Optotune AG
    • Sick AG
    • Sony Corporation
    • Stemmer Imaging AG
    • Teledyne Technologies Incorporated
    • The MathWorks, Inc.
    • Tordivel AS
    • Zivid Labs AS

제16장 리서치 AI

제17장 리서치 통계

제18장 리서치 컨택트

제19장 리서치 기사

제20장 부록

LSH 25.09.19

The Machine Vision Market was valued at USD 17.07 billion in 2024 and is projected to grow to USD 19.04 billion in 2025, with a CAGR of 11.92%, reaching USD 33.57 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 17.07 billion
Estimated Year [2025] USD 19.04 billion
Forecast Year [2030] USD 33.57 billion
CAGR (%) 11.92%

Unveiling the Critical Intersection of Machine Vision Technologies and Digital Transformation to Propel Quality, Efficiency, and Automation into the Future

The convergence of computer vision, artificial intelligence, and advanced imaging hardware has elevated machine vision from a specialized laboratory tool to an indispensable cornerstone of modern automation. Organizations across manufacturing, logistics, healthcare, and agriculture increasingly rely on intelligent vision systems to enhance quality assurance, accelerate processes, and collect actionable data in real time. As production lines become more interconnected, the ability to inspect components, monitor processes, and guide robotics with precision has become a critical differentiator.

Recent advancements in sensor technology, high-speed processing, and machine learning algorithms have expanded the scope of applications, enabling complex tasks such as defect detection at micron-level resolutions and 3D object reconstruction on the fly. These capabilities not only reduce error rates but also unlock new opportunities for predictive maintenance and adaptive quality control. Consequently, stakeholders are witnessing a paradigm shift in how visual information is captured, interpreted, and integrated into automated decision-making workflows.

Looking ahead, the intersection of edge computing and cloud-based analytics promises to further democratize access to machine vision, allowing distributed operations to leverage centralized insights while maintaining local processing speed. As the digital transformation agenda accelerates, an executive understanding of these foundational trends is essential for leveraging machine vision to drive operational efficiency, mitigate risk, and establish new standards of performance.

Charting the Rise of AI-Enabled Vision Systems and Converging Technologies Redefining Smart Manufacturing and Intelligent Quality Control Applications

The machine vision landscape is undergoing transformative shifts fueled by breakthroughs in artificial intelligence and sensor miniaturization, resulting in solutions that deliver higher accuracy and faster throughput than ever before. Deep learning techniques now enable vision systems to recognize complex patterns and adapt to evolving production tolerances without extensive reprogramming, marking a departure from traditional rule-based inspection methods.

Simultaneously, edge computing architectures are reshaping deployment models by embedding AI-enabled processors within cameras and vision modules. This decentralization of intelligence reduces latency, bolsters cybersecurity, and supports real-time adaptive control, particularly in high-speed manufacturing environments. The integration of 3D vision and multispectral imaging further extends capabilities beyond the visible spectrum, empowering quality managers to detect subsurface defects and material inconsistencies that were previously imperceptible.

Additionally, the rise of collaborative robots equipped with integrated vision sensors is expanding the horizon of human-machine interaction. By enabling intuitive guidance and safety monitoring, these cobots facilitate seamless collaboration with operators and pave the way for flexible production cells. Together, these converging technologies are redefining smart manufacturing, streamlining workflows, and opening new avenues for cost-effective automation across diverse industries.

Evaluating the Compounded Effects of Emerging US Tariff Measures on Supply Chain Stability, Component Sourcing, and Global Competitive Dynamics through 2025

Emerging tariff measures introduced in recent U.S. trade policy have had a cumulative impact on the machine vision ecosystem by altering the cost structure of key components and reshaping global supply chains. Levies on imaging sensors and semiconductor fabrication have increased the landed cost of cameras, processors, and specialized optics, prompting system integrators and device manufacturers to revisit sourcing strategies and negotiate revised terms with overseas suppliers.

This shift has accelerated a trend toward nearshoring and regional diversification, as companies seek to mitigate exposure to tariff-related risk. Several organizations have initiated strategic partnerships with North American and European component manufacturers to ensure continuity of supply and reduce lead times. At the same time, research teams are exploring alternative sensor technologies that fall outside tariff classifications, thereby preserving performance while maintaining budget targets.

Moreover, these policy changes are reinforcing the importance of supply chain transparency and inventory optimization. Businesses are leveraging predictive analytics to balance inventory holding costs against potential tariff fluctuations, and they are investing in collaborative forecasting platforms to align orders with shifting trade regulations. Ultimately, the evolving tariff landscape is driving a holistic reevaluation of procurement, production planning, and risk management practices within the machine vision sector.

Dissecting Machine Vision Market Segmentation by Component, Product Type, Application, and End Use Industry to Drive Targeted Innovation and Investment

A comprehensive understanding of market segmentation reveals the multiple dimensions through which machine vision solutions are structured and deployed. Based on component, the market is studied across hardware, services, and software. Hardware encompasses camera, frame grabbers and processors, lighting, optics, and sensors. Within camera the study covers 3D cameras, area scan cameras, and line scan cameras. Lighting is further divided into fluorescent, LED, and quartz halogen sources. Optics consists of filters, illuminators, and lenses, while sensors include both CCD and CMOS types. Services are segmented into managed services and professional services, with professional services detailed across consultation, deployment and integration, and maintenance and support. Software is categorized into image processing software and machine learning software.

In parallel, the market is analyzed by product type, distinguishing between PC-based machine vision systems and smart camera-based solutions. This bifurcation highlights the choice between centralized processing power and embedded intelligence at the edge, aligning with distinct application requirements and infrastructure considerations. From an application standpoint, the market spans guidance and positioning, identification and verification, inspection and quality control, measurement and gauging, predictive maintenance, and surveillance and security, each reflecting the diverse operational objectives driving adoption.

End-use industry segmentation further contextualizes demand patterns, covering aerospace and defense, agriculture, automotive, electronics and semiconductor, energy and utilities, food and beverage, healthcare and life sciences, logistics and retail, and manufacturing environments. This layered segmentation framework enables stakeholders to prioritize investment, tailor solution architectures, and forecast technology adoption across specialized verticals.

Exploring Regional Nuances in Machine Vision Demand and Technological Adoption across the Americas, EMEA, and Asia-Pacific Markets

Regional nuances have a significant influence on how machine vision technologies are adopted, integrated, and commercialized. In the Americas, a robust manufacturing base combined with substantial automation investments has created a fertile environment for high-precision inspection systems and robotics integration. North American enterprises are increasingly leveraging local engineering expertise to develop custom solutions that address stringent quality standards in automotive and aerospace sectors. Meanwhile, Latin American markets are gradually embracing smart camera deployments to modernize agritech applications and streamline logistics operations.

Europe, Middle East, and Africa present a mosaic of advanced manufacturing hubs and emerging industrial players. Western European countries benefit from a mature industrial ecosystem that prioritizes sustainability and digital twin initiatives, fostering adoption of multisensor vision systems for predictive maintenance and energy efficiency. At the same time, manufacturers in emerging European markets are focusing on cost-effective, modular vision solutions to upgrade legacy production lines. In the Middle East and Africa, infrastructure investments and regulatory support for food safety inspections are catalyzing the uptake of portable vision devices and remote monitoring platforms.

The Asia-Pacific region, driven by leading electronics and semiconductor clusters, continues to push the envelope on throughput and miniaturization. Japan and South Korea are pioneering 3D imaging and deep learning implementations in semiconductor wafer inspection, while China is rapidly expanding its installed base of AI-enabled cameras in logistics centers and smart factories. Southeast Asian economies are also increasing their automation budgets, adopting vision-guided robotic systems to enhance precision agriculture and packaging operations.

Uncovering Competitive Strategies and Innovation Trajectories of Leading Machine Vision Vendors Shaping Market Evolution and Industry Standards

Leading vendors are differentiating through a combination of product innovation, strategic partnerships, and integration of advanced analytics. A number of established camera and sensor manufacturers have extended their portfolios by embedding neural network processors directly into vision modules, thereby enabling on-device inferencing that reduces reliance on central processing units. These offerings are complemented by software platforms that facilitate easy training of custom algorithms and seamless integration with MES and ERP systems.

System integrators and software providers are also leveraging open standards and collaborative ecosystems to accelerate time to deployment. By forming alliances with robotics OEMs and cloud analytics firms, they are delivering turnkey solutions that address vertical-specific requirements, such as high-speed sorting in food processing or precise component alignment in electronics assembly. This trend is underscored by a wave of M&A activity, as companies seek to fill capability gaps in AI, edge computing, and hyperspectral imaging.

Furthermore, several firms are investing in user-centric design and developer communities, equipping engineers with intuitive configuration tools, simulation environments, and application libraries. This focus on lowering the barrier to entry is broadening the addressable market to smaller enterprises that historically lacked the in-house expertise to implement advanced vision applications. Collectively, these competitive dynamics are driving continuous improvements in performance, usability, and total cost of ownership.

Implementing Strategic Roadmaps and Best Practices to Accelerate Machine Vision Integration, Enhance Operational Excellence, and Foster Sustainable Growth

Industry leaders should prioritize integration of edge AI processors within vision systems to achieve real-time decision making and minimize network latency. By embedding intelligence at the sensor level, organizations can streamline data flows and enhance cybersecurity through localized processing. Furthermore, focusing R&D efforts on modular optical designs and adaptable lighting modules will allow rapid reconfiguration to address evolving inspection criteria without significant capital expenditure.

Collaboration with machine learning experts and academia is essential to stay ahead of algorithmic breakthroughs. Establishing joint innovation labs and sponsoring research initiatives can accelerate development of specialized neural network architectures tailored to industrial workloads. At the same time, investing in workforce training programs ensures that operators and engineers possess the skills to configure, optimize, and maintain advanced vision solutions, fostering a culture of continuous improvement.

Finally, embedding sustainability considerations into solution roadmaps will not only meet regulatory requirements but also open new markets. Selecting energy-efficient hardware, adopting recyclable optics materials, and leveraging predictive maintenance to extend equipment life cycles all contribute to more responsible operations. By aligning technology deployment with broader environmental, social, and governance objectives, companies can strengthen their brand reputation and secure long-term stakeholder support.

Outlining Rigorous Multi-Source Research Methodology Integrating Primary Interviews, Secondary Research, and Data Triangulation for Robust Market Analysis

This research leverages a rigorous, multi-layered methodology to ensure reliability and validity. Secondary research was conducted by analyzing open-source publications, technical journals, and patent databases to map the technological landscape and historical evolution of imaging modalities. These insights were cross-referenced with industry reports and case studies to identify key innovation drivers and application scenarios.

Primary research involved structured interviews with machine vision experts, system integrators, end users, and component suppliers. These dialogues provided qualitative perspectives on deployment challenges, procurement strategies, and emerging use cases. Quantitative data was gathered through facility tours and performance benchmarks, enabling objective comparison of system capabilities under real-world conditions.

All data points underwent a triangulation process, where findings from disparate sources were reconciled to resolve inconsistencies and reinforce conclusions. Hypotheses were tested against multiple data sets to validate trend projections and ensure a balanced, unbiased interpretation. Quality controls, including peer reviews and methodological audits, were applied throughout the research lifecycle to maintain the highest analytical standards.

Summarizing Key Insights and Future Perspectives on Machine Vision Adoption to Empower Strategic Decision Making and Industry Transformation

Machine vision has transcended its early role as a specialized inspection tool to become a foundational element of digital transformation strategies across industries. The confluence of AI-driven algorithms, intelligent edge architectures, and diversified component ecosystems has expanded the technology's applicability to high-precision manufacturing, predictive maintenance, and adaptive quality control. As organizations seek to optimize throughput and reduce operational risk, vision systems are increasingly at the core of process innovation.

The evolving regulatory environment and shifting trade policies underscore the importance of flexible sourcing and supply chain resilience. Companies that proactively adapt their procurement frameworks and invest in alternative imaging technologies will be better positioned to navigate disruption. Meanwhile, regional market nuances demand tailored approaches, with localized partnerships and compliance strategies required to capture emerging opportunities in the Americas, EMEA, and Asia-Pacific.

Looking forward, the next wave of growth will be driven by seamless integration of vision with robotics, augmented reality, and enterprise analytics platforms. Stakeholders who embrace collaborative innovation, prioritize talent development, and align technology deployment with sustainability objectives will set the pace for industry transformation and secure long-term competitive advantage.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of deep learning algorithms for real-time surface defect detection in electronics manufacturing
  • 5.2. Deployment of hyperspectral imaging systems for chemical composition analysis in pharmaceutical production
  • 5.3. Adoption of edge computing-enabled vision sensors for predictive maintenance in heavy machinery operations
  • 5.4. Fusion of LiDAR and stereo camera data for enhanced obstacle recognition in autonomous warehouse robots
  • 5.5. Development of cloud-based vision analytics platforms for global quality inspection workflows
  • 5.6. Implementation of explainable AI techniques in vision systems for transparent decision support in medical imaging
  • 5.7. Utilization of high-speed 3D vision scanners for automated dimensional measurement in aerospace component fabrication
  • 5.8. Use of ultraviolet and infrared multispectral cameras for contamination monitoring in semiconductor wafer processing
  • 5.9. Integration of vision-guided cobots with adaptive gripping mechanisms for flexible assembly line operations
  • 5.10. Application of generative adversarial networks for synthetic training data generation in vision-based defect classification

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Machine Vision Market, by Component

  • 8.1. Introduction
  • 8.2. Hardware
    • 8.2.1. Camera
      • 8.2.1.1. 3D Cameras
      • 8.2.1.2. Area Scan Cameras
      • 8.2.1.3. Line Scan Cameras
    • 8.2.2. Frame Grabbers & Processors
    • 8.2.3. Lightning
      • 8.2.3.1. Fluorescent
      • 8.2.3.2. LED
      • 8.2.3.3. Quartz Halogen
    • 8.2.4. Optics
      • 8.2.4.1. Filters
      • 8.2.4.2. Illuminators
      • 8.2.4.3. Lenses
    • 8.2.5. Sensors
      • 8.2.5.1. CCD Sensors
      • 8.2.5.2. CMOS Sensors
  • 8.3. Services
    • 8.3.1. Managed Services
    • 8.3.2. Professional Services
      • 8.3.2.1. Consultation
      • 8.3.2.2. Deployment & Integration
      • 8.3.2.3. Maintenance & Support
  • 8.4. Software
    • 8.4.1. Image Processing Software
    • 8.4.2. Machine Learning Software

9. Machine Vision Market, by Product Types

  • 9.1. Introduction
  • 9.2. PC-Based Machine Vision Systems
  • 9.3. Smart Camera-Based Systems

10. Machine Vision Market, by Application

  • 10.1. Introduction
  • 10.2. Guidance & Positioning
  • 10.3. Identification & Verification
  • 10.4. Inspection & Quality Control
  • 10.5. Measurement & Gauging
  • 10.6. Predictive Maintenance
  • 10.7. Surveillance & Security

11. Machine Vision Market, by End Use Industry

  • 11.1. Introduction
  • 11.2. Aerospace & Defense
  • 11.3. Agriculture
  • 11.4. Automotive
  • 11.5. Electronics & Semiconductor
  • 11.6. Energy & Utilities
  • 11.7. Food & Beverage
  • 11.8. Healthcare & Life Sciences
  • 11.9. Logistics & Retail
  • 11.10. Manufacturing

12. Americas Machine Vision Market

  • 12.1. Introduction
  • 12.2. United States
  • 12.3. Canada
  • 12.4. Mexico
  • 12.5. Brazil
  • 12.6. Argentina

13. Europe, Middle East & Africa Machine Vision Market

  • 13.1. Introduction
  • 13.2. United Kingdom
  • 13.3. Germany
  • 13.4. France
  • 13.5. Russia
  • 13.6. Italy
  • 13.7. Spain
  • 13.8. United Arab Emirates
  • 13.9. Saudi Arabia
  • 13.10. South Africa
  • 13.11. Denmark
  • 13.12. Netherlands
  • 13.13. Qatar
  • 13.14. Finland
  • 13.15. Sweden
  • 13.16. Nigeria
  • 13.17. Egypt
  • 13.18. Turkey
  • 13.19. Israel
  • 13.20. Norway
  • 13.21. Poland
  • 13.22. Switzerland

14. Asia-Pacific Machine Vision Market

  • 14.1. Introduction
  • 14.2. China
  • 14.3. India
  • 14.4. Japan
  • 14.5. Australia
  • 14.6. South Korea
  • 14.7. Indonesia
  • 14.8. Thailand
  • 14.9. Philippines
  • 14.10. Malaysia
  • 14.11. Singapore
  • 14.12. Vietnam
  • 14.13. Taiwan

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Allied Vision Technologies GmbH
    • 15.3.2. Ametek Inc.
    • 15.3.3. Basler AG
    • 15.3.4. Baumer Holding AG
    • 15.3.5. Cognex Corporation
    • 15.3.6. Datalogic S.p.A.
    • 15.3.7. Euresys SA
    • 15.3.8. FLIR Systems, Inc.
    • 15.3.9. IDS Imaging Development Systems GmbH
    • 15.3.10. Intel Corporation
    • 15.3.11. ISRA Vision AG
    • 15.3.12. JAI A/S
    • 15.3.13. Keyence Corporation
    • 15.3.14. LMI Technologies Inc.
    • 15.3.15. Machine Vision Products, Inc.
    • 15.3.16. MVTec Software GmbH
    • 15.3.17. National Instruments Corporation
    • 15.3.18. Omron Corporation
    • 15.3.19. Optotune AG
    • 15.3.20. Sick AG
    • 15.3.21. Sony Corporation
    • 15.3.22. Stemmer Imaging AG
    • 15.3.23. Teledyne Technologies Incorporated
    • 15.3.24. The MathWorks, Inc.
    • 15.3.25. Tordivel AS
    • 15.3.26. Zivid Labs AS

16. ResearchAI

17. ResearchStatistics

18. ResearchContacts

19. ResearchArticles

20. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제