시장보고서
상품코드
1808371

치과용 3D 프린팅 시장 : 컴포넌트, 재료 형태, 기술, 용도, 최종사용자별 - 세계 예측(2025-2030년)

Dental 3D Printing Market by Component, Material Form, Technology, Application, End Users - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 187 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

치과용 3D 프린팅 시장은 2024년에는 37억 7,000만 달러로 평가되었습니다. 2025년에 43억 4,000만 달러에 이르고, CAGR 15.35%로 성장하여 2030년에는 89억 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 37억 7,000만 달러
추정 연도 : 2025년 43억 4,000만 달러
예측 연도 : 2030년 89억 달러
CAGR(%) 15.35%

첨단 3D 프린팅 혁신과 분야 간 기술 통합을 통해 치과 진료의 진화를 촉진하는 것의 중요성을 밝힙니다.

치과 산업은 적층 가공 기술의 발전에 힘입어 큰 기술적 변혁기를 맞이하고 있습니다. 보철물, 수술용 가이드, 교정장치에 대한 기존의 접근 방식은 전례 없는 속도와 정밀도로 제조되는 고도로 맞춤화된 솔루션으로 전환되고 있습니다. 디지털 워크플로우가 임상 전문 지식과 융합되면서 의료진과 검사실은 리드타임을 단축하고, 재료 낭비를 최소화하며, 환자 만족도를 높일 수 있는 새로운 기회를 발견하고 있습니다.

시장 역학 및 새로운 임상적 요구 속에서 치과용 3D 프린팅 생태계를 형성하는 패러다임을 바꾸는 변화를 그려봅니다.

디지털 기술이 임상 및 실험실 워크플로우의 모든 단계에 침투함에 따라 치과용 3D 프린팅의 상황은 패러다임의 전환을 맞이하고 있습니다. 초기에는 프로토타이핑을 위한 틈새 솔루션으로 여겨졌던 이 기술은 이제 주류 진료에 필수적인 기술로 자리 잡았으며, 이전에는 달성할 수 없었던 수준의 정밀도로 크라운, 브릿지, 수술용 가이드를 제작할 수 있게 되었습니다.

미국의 새로운 무역 관세가 2025년 치과용 적층제조 공급망에 미치는 종합적인 파급효과 평가

2025년 미국의 새로운 관세 도입은 치과용 적층 가공 산업 전체에 파문을 일으켜 공급망의 모든 연결 고리에 영향을 미치고 있습니다. 그동안 유리한 무역 조건으로 수입되던 프린터, 소프트웨어 라이선스 등의 부품은 이제 관세 강화에 직면하여 최대 두 자릿수까지 육지 비용이 상승할 수 있습니다. 이에 따라 검사실과 클리닉은 수익률 하락을 완화하기 위해 조달 전략을 재검토하고 있습니다.

치과용 3D 프린팅의 구성요소, 재료, 기술, 용도, 최종 사용자 측면을 파악할 수 있는 상세한 세분화 관점

시장 세분화를 자세히 살펴보면, 여러 차원에 걸친 미묘한 성과 촉진요인을 발견할 수 있습니다. 구성 요소의 상황을 분석하면 3D 프린터, 컨설팅, 유지보수, 교육 서비스, 설계, 시뮬레이션, 슬라이스 소프트웨어가 각각 고유한 가치 제안에 기여하고 있음을 알 수 있습니다. 서비스 수입의 지속적인 성장은 장비 가동 시간과 사용자 숙련도를 보장하는 애프터서비스 지원의 중요성을 강조하고 있습니다.

북미, 남미, 유럽, 중동 및 아프리카, 아시아태평양의 주요 지역 동향을 추출하고 치과 의료 혁신의 고유한 원동력을 파악합니다.

치과용 3D 프린팅의 도입 속도와 궤적을 형성하는 데 있어 지역 역학은 매우 중요한 역할을 합니다. 아메리카 대륙의 경우, 탄탄한 장비 제조업체 및 재료 공급업체 생태계가 확립된 상환 체계와 디지털 치과 혁신에 대한 강조에 힘입어 빠른 도입을 촉진하고 있습니다. 대형 연구소와 학술 센터는 새로운 워크플로우의 인큐베이터 역할을 수행하여 상용화를 가속화하고 규모의 경제를 촉진하고 있습니다.

최첨단 치과용 3D 제작을 위한 재료, 소프트웨어, 서비스, 장비의 혁신을 주도하는 주요 업계 기업을 소개합니다.

치과용 3D 프린팅의 경쟁 환경은 잘 알려진 OEM, 전문 소프트웨어 개발자, 수직 통합형 서비스 제공업체가 혼재되어 있습니다. 주요 장비 제조업체들은 프린터의 속도, 해상도, 다중 재료 기능을 강화하기 위해 연구 개발 노력을 강화하는 한편, 독자적인 수지 및 분말 배합을 보장하기 위해 독점적인 재료 파트너십을 체결하고 있습니다.

치과용 적층 가공 분야에서 수익을 극대화하고 혁신을 촉진하기 위해 주요 조직에 전략적이고 실용적인 가이드를 제공합니다.

업계 리더들은 재료 혁신가들과 전략적 제휴를 맺고 차세대 생체적합성 수지 및 하이브리드 파우더를 공동 개발함으로써 성장 기회를 활용할 수 있습니다. 이러한 파트너십은 제품 개발 주기를 가속화할 뿐만 아니라, 지적재산권 포트폴리오를 강화하여 혼잡한 시장에서 차별화를 창출할 수 있습니다.

치과용 3D 프린팅 역학에 대한 종합적인 조사를 뒷받침하는 엄격한 조사 방법 및 분석 프레임워크에 대한 자세한 내용

본 보고서를 뒷받침하는 조사 방법은 1차 조사와 2차 조사를 결합한 체계적인 정보 수집을 기반으로 하고 있습니다. 주요 적층 가공 기업, 치과 기공소, 규제 전문가, 임상 분야의 KOL(Key Opinion Leader) 고위 경영진과의 심층 인터뷰를 통해 1차적인 통찰력을 얻었습니다. 이러한 대화를 통해 기술 채택의 장벽, 재료 성능에 대한 기대치, 서비스 요구사항에 대한 미묘한 관점을 얻을 수 있었습니다.

이해관계자들이 진화하는 치과용 3D 프린팅 환경을 자신 있게 탐색할 수 있도록 중요한 결론과 미래 전망을 정리했습니다.

주요 조사 결과를 요약하면, 치과용 3D 프린팅은 참신함의 제안에서 임상 정확성, 업무 민첩성 및 비용 효율성을 높이는 필수적인 도구로 전환되고 있음을 알 수 있습니다. 재료의 발전은 소프트웨어 강화 및 전략적 서비스 모델과 결합하여 임플란트에서 보철학에 이르기까지 다양한 임상 적용을 지원하는 일관된 생태계를 구축하고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 치과용 3D 프린팅 시장 : 컴포넌트별

  • 3D 프린터
  • 서비스
    • 컨설팅 서비스
    • 유지관리 서비스
    • 트레이닝 서비스
  • 소프트웨어
    • 설계 소프트웨어
    • 시뮬레이션 소프트웨어
    • 슬라이스 소프트웨어

제9장 치과용 3D 프린팅 시장 : 소재 형태별

  • 필라멘트
    • 아크릴로니트릴 부타디엔 스티렌(ABS)
    • 폴리유산(PLA)
  • 분말
    • 세라믹 파우더
    • 금속 분말
  • 수지
    • 캐스트 가능
    • 표준

제10장 치과용 3D 프린팅 시장 : 기술별

  • Digital Light Processing (DLP)
  • Fused Deposition Modeling (FDM)
  • Material Jetting
  • Selective Laser Sintering (SLS)
  • Stereolithography (SLA)

제11장 치과용 3D 프린팅 시장 : 용도별

  • 임플란트학
    • 골 증강술
    • 임플란트 모델
  • 악안면외과
    • 뼈 재건
    • 두개 재건
  • 교정 치과
    • 투명교정장치
    • 교정장치
  • 보철학
    • 브릿지
    • 크라운
    • 의치

제12장 치과용 3D 프린팅 시장 : 최종사용자별

  • 학술연구기관
  • 치과의원 및 병원
  • 치과 기공소
  • 교정 치과 센터

제13장 아메리카의 치과용 3D 프린팅 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제14장 유럽, 중동 및 아프리카의 치과용 3D 프린팅 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제15장 아시아태평양의 치과용 3D 프린팅 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • 3D Systems, Inc.
    • Asiga
    • BASF SE
    • BEGO GmbH & Co. KG
    • Carbon, Inc.
    • DENTSPLY SIRONA Inc.
    • Desktop Metal, Inc. by Nano Dimension Ltd.
    • Detax GmbH
    • DWS S.r.l.
    • EOS GmbH
    • Evonik Industries AG
    • FormLabs Inc.
    • Henkel AG & Co. KGaA
    • HP Inc.
    • Keystone Industries
    • PHROZEN TECH CO., LTD.
    • Planmeca Oy
    • Prodways Group
    • Renishaw PLC
    • Roland DGA Corporation
    • SprintRay Inc. by Zhejiang Xunshi Technology Co.,Ltd.
    • Stratasys, Ltd.
    • Institut Straumann AG
    • TRUMPF SE+Co. KG
    • VOCO GmbH
    • Zortrax S.A.
    • Nikon SLM Solutions AG by Nikon Corporation

제17장 리서치 AI

제18장 리서치 통계

제19장 리서치 컨택트

제20장 리서치 기사

제21장 부록

LSH 25.09.19

The Dental 3D Printing Market was valued at USD 3.77 billion in 2024 and is projected to grow to USD 4.34 billion in 2025, with a CAGR of 15.35%, reaching USD 8.90 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 3.77 billion
Estimated Year [2025] USD 4.34 billion
Forecast Year [2030] USD 8.90 billion
CAGR (%) 15.35%

Unveiling the Imperatives Driving Dental Practice Evolution Through Advanced 3D Printing Innovations and Cross-Disciplinary Technological Integration

The dental industry is navigating a period of profound technological transformation driven by advances in additive manufacturing. Traditional approaches to prosthetics, surgical guides, and orthodontic devices are giving way to highly customized solutions produced with unprecedented speed and precision. As digital workflows merge with clinical expertise, practitioners and laboratories are discovering new opportunities to reduce lead times, minimize material waste, and elevate patient satisfaction.

In this environment, three-dimensional printing has emerged as a cornerstone innovation that streamlines design and production processes. Dental professionals are embracing technologies that allow for rapid prototyping, on-demand fabrication, and seamless integration with computer-aided design platforms. This shift is not merely an incremental improvement on conventional methods; it represents a fundamental reimagining of how restorative and surgical devices are conceived and delivered.

Against this backdrop, the present report offers a comprehensive exploration of the forces shaping the dental 3D printing sector. Drawing on rigorous primary research, expert interviews, and an extensive review of secondary sources, the analysis delves into the key drivers, challenges, and emerging trends that define the market. Readers will gain a clear understanding of the competitive landscape, adoption barriers, and strategic imperatives required to thrive in the rapidly evolving dental additive manufacturing ecosystem.

Charting the Paradigm-Altering Shifts Reshaping the Dental 3D Printing Ecosystem Amidst Market Dynamics and Emerging Clinical Demands

The dental 3D printing landscape has undergone a paradigm shift as digital technologies penetrate every stage of the clinical and laboratory workflow. Initially viewed as a niche solution for prototyping, the technology is now integral to mainstream practice, enabling the production of crowns, bridges, and surgical guides with a level of accuracy previously unattainable.

Material science breakthroughs have also played a critical role in this evolution. From biocompatible resins that meet stringent regulatory requirements to high-strength ceramic and metal powders designed for end-use implants, manufacturers are continuously expanding the range of printable materials. This material diversity, coupled with the maturation of digital light processing and selective laser sintering technologies, is empowering clinicians to tailor treatments to individual patient anatomies, improving clinical outcomes and reducing the risk of postoperative complications.

Moreover, the rise of specialized software tools is reshaping how practitioners plan and simulate complex procedures. Design, simulation, and slicing software suites have become more intuitive, allowing less technically skilled users to harness advanced features and automate key steps. As a result, the integration of artificial intelligence and machine learning into design software is enhancing predictive modeling capabilities, further accelerating the adoption curve and driving down costs across the value chain.

Assessing the Comprehensive Ripple Effects of New U.S. Trade Tariffs on the Dental Additive Manufacturing Supply Chain in 2025

The introduction of new U.S. tariffs in 2025 has sent reverberations throughout the dental additive manufacturing industry, affecting every link in the supply chain. Components such as printers and software licenses, previously imported under favorable trade terms, now face enhanced duties that can increase landed costs by up to double digits. In turn, laboratories and clinics are reassessing procurement strategies to mitigate margin erosion.

As a result, some suppliers have redirected production to local facilities or sought tariff-averse sourcing alternatives in regions with complementary trade agreements. These shifts have accelerated investments in domestic manufacturing capabilities and intensified partnerships between material producers and printer OEMs to localize critical inputs. While such reshoring efforts bolster supply chain resilience, they also entail significant capital expenditure and long-term planning.

At the same time, the tariff environment has inspired consolidation among distributors seeking to offset higher import costs through scale efficiencies. Companies with robust service networks are extending maintenance and consulting offerings to preserve customer loyalty, while end users are exploring recurring service agreements as a hedge against unexpected price hikes. In this context, the ability to navigate complex regulatory frameworks and optimize cross-border logistics has become a key competitive differentiator in the dental 3D printing market.

Revealing In-Depth Segmentation Perspectives That Illuminate Component, Material, Technology, Application, and End User Dimensions of Dental 3D Printing

A closer examination of market segmentation reveals nuanced performance drivers across multiple dimensions. When dissecting the component landscape, it becomes clear that 3D printers, consulting, maintenance, and training services, alongside design, simulation, and slicing software, each contribute distinct value propositions. Sustainable growth in service revenues underscores the importance of after-sales support in ensuring equipment uptime and user proficiency.

Turning to material form, the spectrum spans filaments-such as acrylonitrile butadiene styrene and polylactic acid-through powders, including ceramic and metal formulations, to castable and standard resins. Each category is evolving in response to clinical specifications, regulatory milestones, and the quest for biocompatible performance. The material selection process is increasingly guided by a balance of mechanical properties, printability, and cost considerations.

In terms of technology, the market is not monolithic: digital light processing, fused deposition modeling, material jetting, selective laser sintering, and stereolithography each occupy distinct niches based on resolution requirements, throughput, and application contexts. Meanwhile, end-use scenarios span implantology's bone augmentation and implant model production to maxillofacial surgery's bone and cranial reconstruction, orthodontics' aligners and braces, and prosthodontics' bridges, crowns, and dentures. These applications cater to diverse end users such as academic and research institutions, dental clinics and hospitals, dental laboratories, and orthodontic centers, each segment demanding tailored solutions to drive adoption and maximize clinical efficacy.

Distilling Critical Regional Trends Across the Americas, Europe, Middle East & Africa, and Asia-Pacific to Identify Unique Drivers of Dental Innovation

Regional dynamics play a pivotal role in shaping the pace and trajectory of dental 3D printing adoption. In the Americas, a robust ecosystem of equipment manufacturers and material suppliers has fostered rapid uptake, supported by well-established reimbursement frameworks and an emphasis on digital dentistry innovation. Leading laboratories and academic centers have served as incubators for new workflows, accelerating commercialization and driving economies of scale.

Europe, the Middle East, and Africa collectively exhibit a mosaic of regulatory and reimbursement landscapes, leading market participants to navigate a complex web of registration processes and quality standards. Nevertheless, major economies in Western Europe benefit from harmonized medical device directives and a preference for in-house laboratory solutions, while the Middle East and Africa show increasing investments in digital solutions to address rising demand for advanced dental care.

In the Asia-Pacific region, rapid urbanization, expanding private healthcare infrastructure, and intensified research initiatives have ignited growth. Emerging markets are witnessing government-backed programs to bolster domestic manufacturing, while leading economies continue to invest in next-generation materials and AI-driven design platforms. These regional tendencies point to a future where local innovation hubs collaborate to introduce cost-effective, high-performance solutions tailored to diverse clinical settings.

Highlighting Key Industry Players Driving Breakthroughs in Materials, Software, Services, and Equipment for State-of-the-Art Dental 3D Fabrication

The competitive landscape of dental 3D printing features a mix of established OEMs, specialized software developers, and vertically integrated service providers. Leading equipment manufacturers have intensified R&D efforts to enhance printer speed, resolution, and multi-material capabilities, while forging exclusive material partnerships to secure proprietary resin and powder formulations.

Software companies, leveraging AI and cloud connectivity, are expanding platform functionalities to enable seamless case planning, simulation, and remote collaboration. At the same time, service-oriented firms are bundling consulting, maintenance, and training offerings to deliver end-to-end solutions that reduce barriers to entry for smaller clinics and labs. Strategic collaborations have emerged as a prominent theme, with alliances formed between printer vendors and dental laboratories to co-develop customized workflows and certification programs.

Market leaders are also pursuing geographic expansion, targeting underpenetrated regions through localized distribution channels and joint ventures. Mergers and acquisitions activity has picked up as larger players seek to acquire niche software capabilities or specialized material lines. These moves underscore a broader trend toward ecosystem convergence, where hardware, software, and services coalesce into comprehensive digital dentistry solutions that address a wide array of clinical and operational challenges.

Providing Strategic and Actionable Guidance for Leading Organizations to Maximize Returns and Propel Innovation in the Dental Additive Manufacturing Space

Industry leaders can capitalize on growth opportunities by forging strategic alliances with material innovators to co-create next-generation biocompatible resins and hybrid powders. Such partnerships not only accelerate product development cycles but also fortify intellectual property portfolios and create differentiation in a crowded market.

Simultaneously, investing in advanced analytics and AI-driven software enhancements will enable deeper insights into patient-specific anatomies, treatment planning efficiencies, and predictive maintenance for hardware. Integrating these capabilities into unified solutions can improve clinical outcomes, reduce trial-and-error workflows, and decrease operational overhead for end users.

To address evolving regulatory requirements and mitigate trade-related uncertainties, organizations should establish cross-functional teams that engage proactively with standards bodies, certification agencies, and supply chain stakeholders. This collaborative approach fosters regulatory agility and ensures uninterrupted access to critical components.

Finally, enhancing service delivery models through subscription-based maintenance, remote monitoring, and immersive training programs can bolster customer loyalty and generate recurring revenue streams. By elevating after-sales experiences, industry participants can secure long-term contracts and reinforce their position as trusted partners in the digital dentistry revolution.

Detailing the Rigorous Methodological Approach and Analytical Framework Underpinning the Comprehensive Study of Dental 3D Printing Dynamics

The research methodology underpinning this report is founded on a systematic mix of primary and secondary intelligence gathering. Primary insights were obtained through in-depth interviews with senior executives from leading additive manufacturing firms, dental laboratories, regulatory experts, and key opinion leaders in clinical practice. These conversations provided nuanced perspectives on technological adoption barriers, material performance expectations, and service requirements.

Secondary research encompassed a thorough review of industry white papers, regulatory databases, published patents, and academic journals, ensuring that data points related to technology trends and material innovations were validated against publicly available evidence. Market mapping exercises identified critical value chain participants, while comparative analysis of financial disclosures highlighted strategic investments and partnership activity.

Quantitative estimates were derived through data triangulation techniques, reconciling information from supply chain reports, procurement records, and expert feedback. The segmentation framework was developed iteratively to capture component, material form, technology, application, and end-user dimensions, with each category subjected to rigorous validation through multiple data sources.

Finally, the report employs a qualitative SWOT assessment to contextualize market opportunities and challenges, and leverages scenario planning to outline potential future trajectories based on evolving regulatory policies, tariff environments, and technological breakthroughs.

Synthesizing Critical Conclusions and Future Outlook to Guide Stakeholders in Navigating the Evolving Dental 3D Printing Environment with Confidence

Drawing together the key findings, it is evident that dental 3D printing is transitioning from a proposition of novelty to an indispensable tool that enhances clinical precision, operational agility, and cost efficiency. Material advancements, coupled with software enhancements and strategic service models, have created a cohesive ecosystem that supports diverse clinical applications from implantology to prosthodontics.

Despite headwinds such as evolving trade policies and complex regulatory landscapes, the collective response of industry participants through localization, alliances, and vertical integration has strengthened supply chain resilience. Moreover, the maturation of digital workflows and the integration of AI-driven planning tools will continue to drive adoption across regions, particularly as emerging markets invest in domestic manufacturing capabilities.

Looking ahead, the convergence of multi-material printing, data-driven analytics, and immersive training platforms will define the next frontier of innovation. Stakeholders who proactively engage with regulatory bodies, foster collaborative partnerships, and prioritize end-user education are best positioned to capitalize on this momentum. Ultimately, the synthesis of technological prowess, strategic foresight, and operational excellence will determine leadership in the evolving dental additive manufacturing arena.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rising adoption of hybrid manufacturing combining 3D printing and milling for precision
  • 5.2. Increasing adoption of cost-effective 3D printed dental prosthetics driving dental tourism growth
  • 5.3. Development of modular multi-material 3D printers supporting simultaneous fabrication of crowns and bridges
  • 5.4. Adoption of biocompatible resin innovations driving precision in dental 3D printing workflows
  • 5.5. Collaboration among dental clinics and 3D printer makers fostering customized orthodontic appliance production
  • 5.6. Expansion of on-demand dental printing services reducing inventory costs for dental labs and clinics
  • 5.7. Integration of AI-driven design software optimizing surgical guide customization and fit
  • 5.8. Advancement in metal 3D printing enhancing subperiosteal implant osseointegration
  • 5.9. Development of customized bio-inks for regenerative dental therapies enabling fast healing
  • 5.10. Expansion of portable 3D printing units enabling on-site fabrication in remote locations

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Dental 3D Printing Market, by Component

  • 8.1. Introduction
  • 8.2. 3D Printers
  • 8.3. Services
    • 8.3.1. Consulting Services
    • 8.3.2. Maintenance Services
    • 8.3.3. Training Services
  • 8.4. Software
    • 8.4.1. Design Software
    • 8.4.2. Simulation Software
    • 8.4.3. Slicing Software

9. Dental 3D Printing Market, by Material Form

  • 9.1. Introduction
  • 9.2. Filaments
    • 9.2.1. Acrylonitrile Butadiene Styrene (ABS)
    • 9.2.2. Polylactic Acid (PLA)
  • 9.3. Powders
    • 9.3.1. Ceramic Powders
    • 9.3.2. Metal Powders
  • 9.4. Resins
    • 9.4.1. Castable
    • 9.4.2. Standard

10. Dental 3D Printing Market, by Technology

  • 10.1. Introduction
  • 10.2. Digital Light Processing (DLP)
  • 10.3. Fused Deposition Modeling (FDM)
  • 10.4. Material Jetting
  • 10.5. Selective Laser Sintering (SLS)
  • 10.6. Stereolithography (SLA)

11. Dental 3D Printing Market, by Application

  • 11.1. Introduction
  • 11.2. Implantology
    • 11.2.1. Bone Augmentation
    • 11.2.2. Implant Models
  • 11.3. Maxillofacial Surgery
    • 11.3.1. Bone Reconstruction
    • 11.3.2. Cranial Reconstruction
  • 11.4. Orthodontics
    • 11.4.1. Aligners
    • 11.4.2. Braces
  • 11.5. Prosthodontics
    • 11.5.1. Bridges
    • 11.5.2. Crowns
    • 11.5.3. Dentures

12. Dental 3D Printing Market, by End Users

  • 12.1. Introduction
  • 12.2. Academic & Research Institutions
  • 12.3. Dental Clinics & Hospitals
  • 12.4. Dental Laboratories
  • 12.5. Orthodontic Centers

13. Americas Dental 3D Printing Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Dental 3D Printing Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Dental 3D Printing Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. 3D Systems, Inc.
    • 16.3.2. Asiga
    • 16.3.3. BASF SE
    • 16.3.4. BEGO GmbH & Co. KG
    • 16.3.5. Carbon, Inc.
    • 16.3.6. DENTSPLY SIRONA Inc.
    • 16.3.7. Desktop Metal, Inc. by Nano Dimension Ltd.
    • 16.3.8. Detax GmbH
    • 16.3.9. DWS S.r.l.
    • 16.3.10. EOS GmbH
    • 16.3.11. Evonik Industries AG
    • 16.3.12. FormLabs Inc.
    • 16.3.13. Henkel AG & Co. KGaA
    • 16.3.14. HP Inc.
    • 16.3.15. Keystone Industries
    • 16.3.16. PHROZEN TECH CO., LTD.
    • 16.3.17. Planmeca Oy
    • 16.3.18. Prodways Group
    • 16.3.19. Renishaw PLC
    • 16.3.20. Roland DGA Corporation
    • 16.3.21. SprintRay Inc. by Zhejiang Xunshi Technology Co.,Ltd.
    • 16.3.22. Stratasys, Ltd.
    • 16.3.23. Institut Straumann AG
    • 16.3.24. TRUMPF SE + Co. KG
    • 16.3.25. VOCO GmbH
    • 16.3.26. Zortrax S.A.
    • 16.3.27. Nikon SLM Solutions AG by Nikon Corporation

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제