시장보고서
상품코드
1808431

세계의 항공 연료 시장 예측 : 연료 유형, 항공기 유형, 연료 형태, 최종 사용자별(2025-2030년)

Aviation Fuel Market by Fuel Type, Aircraft Type, Fuel Form, End-User - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 195 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

항공 연료 시장은 2024년에는 2,515억 2,000만 달러로 평가되었고, 2025년에는 CAGR 7.16%로 2,690억 달러로 성장하고, 2030년에는 3,809억 3,000만 달러에 이를 것으로 예측되고 있습니다.

주요 시장 통계
기준연도 2024년 2,515억 2,000만 달러
추정년 2025년 2,690억 달러
예측연도 2030년 3,809억 3,000만 달러
CAGR(%) 7.16%

항공 연료의 기초, 공급망의 현실 및 오늘날 업계의 의사 결정을 형성하는 운영 및 지속가능성에 대한 긴장에 대한 전략적 방향

항공 연료를 둘러싼 상황은 수년간의 운항 요구 사항과 가속 환경, 지정학적 및 공급 측면의 압력이 교차하는 곳에 있습니다. 항공사, 연료 제조업체, 규제 당국은 신뢰성, 안전성, 비용 효율성과 탈탄소화, 무역 정책 및 원료 조달의 변화에 대응하는 요청과의 균형을 맞추면서 전환기를 극복하고 있습니다. 이러한 상황에서 본 문서는 기준이 되는 용어, 정제, 유통, 운항에 관련된 주요 이해관계자, 조달과 전개 결정에 영향을 미치는 요인에 대해 명확한 관점에서 설명합니다.

기술적, 규제적, 지정학적 힘의 수렴으로 항공 연료 공급, 인증 경로 및 조달 전략이 재조합되어 업계가 신속하게 적응할 수 있게 되었습니다.

항공연료의 정세는 기술적 성숙, 규제 강화, 지정학적 역학의 변화가 결합된 변혁적인 시프트 중에 있습니다. 지속가능한 항공 연료는 정책적 인센티브, 기업의 탈탄소화 약속, 항공사와의 오프테이크 계약 증가로 파일럿 프로젝트에서 상업적 규모의 경로로 전환하고 있습니다. 원료 처리 개선, 드롭 인 연료 인증 패스웨이, SAF 생산 능력에 대한 자본 투자 증가로 채용에 대한 기술적 장벽이 감소하고 있습니다.

미국의 2025년까지 누적 관세 변경으로 조달 경제성, 공급망 탄력성, 항공 연료 유통에 있어서 투자 우선순위가 어떻게 변화하고 있는가

2025년까지 제정 또는 조정된 미국 관세조치의 누적 효과는 반드시 연료 생산의 기술적 기초를 변화시키지 않고 항공 연료 에코시스템 전체의 비용 구조와 공급망 결정을 변화시키고 있습니다. 정화제품 및 주요 중간체에 대한 관세 인상은 일부 정유업자와 판매업체들에게 국경을 넘어서는 조달을 재평가하고 국내 또는 근해에서 조달 전략을 가속화시키는 동기부여가 되었습니다. 이러한 조정은 보다 장기적인 계약 패턴과 관세 변동의 영향을 받기 어려운 안정된 원료 스트림의 확보에 중점을 두는 형태로 나타납니다.

연료 등급, 항공기 운항, 연료 형태, 다양한 최종 사용자 프로파일을 실행 가능한 공급 및 배치 선택에 연결하는 부문 중심의 항공 연료에 대한 관점

세분화는 매크로 동향을 연료 포트폴리오 및 고객 기반 운영 행동에 반영하는 실용적인 렌즈를 제공합니다. 연료 유형에 따라 업계는 기존 연료와 지속 가능한 연료로 구별됩니다. 전통적인 카테고리 자체는 아가스, 제트 A, 제트 A-1, 제트 B를 포함한 여러 정제 제품으로 구성되며, 각각은 유통 네트워크와 급유 작업에 영향을 미치는 명확한 취급, 보관 및 사양 요구 사항을 가지고 있습니다. 최종 사용자와 운영자는 다양한 운영 프로파일에서 여러 연료 등급을 관리해야 하며 혼합 전략은 연료 계열에 따라 다르므로 이러한 구별이 중요합니다.

공급 전략과 경쟁적 위치 결정을 결정하는 아메리카, 유럽, 중동 및 아프리카, 아시아태평양 역학 및 인프라 현실

이 지역은 항공연료 이해관계자를 위한 사업 운영상의 현실과 전략적 기회를 모두 형성합니다. 아메리카에서는 확립된 정유소 인프라와 지속가능한 항공 연료에 대한 항공사의 강한 헌신이 원료 혁신과 지역 공급망 최적화를 위한 역동적인 환경을 창출하고 있습니다. 남북 공급 사슬과 내륙 물류의 과제는 정유업자와 유통업체가 저장 허브와 파이프라인 연결을 어떻게 설계하는지에 영향을 미칩니다.

항공 연료 생산, 유통 및 지속 가능한 연료 개발에서 리더십을 정의하는 경쟁 포지셔닝, 파트너십 모델 및 업무 능력에 대한 고찰

항공 연료의 경쟁력은 레거시 리파이너, 종합 에너지 기업, SAF 전문 제조업체, 물류 공급자, 공항 급유 운영자를 결합한 생태계에 의해 형성됩니다. 주요 기업은 SAF 생산 능력에 대한 선택적 투자를 수행하고 항공사와의 인수 계약을 개발하고 자본 집약적 프로젝트의 위험을 줄이기 위해 컨소시엄을 형성합니다. 원료 공급업체와 생산업체, 항공사와 연료 인수업체 간의 파트너십은 금액을 확보하고, 기술적 위험을 공유하며, 밸류체인 전반의 인센티브를 조정하기 위해 점점 더 보편화되고 있습니다.

지속가능한 항공연료의 규모를 높이기 위해 공급의 탄력성, 인프라 준비, 전략적 투자의 균형을 유지하기 위해 경영진이 취해야 할 실행 가능한 제안

업계 지도자들은 단기적인 운영 회복력과 지속 가능한 경로에 대한 계획적인 투자의 균형을 이루는 이중립 전략을 채택해야 합니다. 첫째, 원료 공급원을 다양화하고, 주요 공항 허브에서의 저장 유연성을 강화하고, 관세 및 무역 이동에 대응하여 적응적인 조달을 가능하게 하는 계약 조항을 통합함으로써 공급망의 탄력성을 강화합니다. 둘째, 오프테이크 계약, 합작사업, 자본참여를 통해 SAF 생산자와의 통합을 가속화하고, 저탄소량에 대한 액세스를 확보하고, 인센티브 프로그램이ㅇㅇㅇㅇㅇ나 컴플라이언스 메커니즘의 적용을 받을 자격을 얻는다.

이해 관계자 인터뷰, 정책 분석, 공급망 매핑을 결합한 조사 기법의 투명성과 다중 소스 검증을 통해 확고한 결론과 제안을 지원합니다.

본 요약의 기초가 되는 조사 통합은 기능적 횡단적 출처와 혼합 기법 접근법을 통합하여 강력하고 재현성 있는 결론을 보장합니다. 1차 입력에는 정유소 경영자, 항공사 연료 조달 팀, 물류 공급자, 인증 기관에 대한 구조화된 인터뷰 및 브리핑이 포함되어 업무상의 제약과 현실의 의사결정 휴리스틱스를 부각시켰습니다. 2차 분석에서는 공공 정책 발표, 기술 표준 문서, 무역 데이터를 활용하여 공급망 동향과 관세 변화를 밝혔습니다.

장기 항공 섹터의 경쟁력으로 인해 운항의 탄력성과 지속 가능한 연료 투자가 상호 보완적인 역할을 수행한다는 것을 강조하는 결론의 종합적인 고려 사항

결론은 항공 연료 전략이 점차 다차원적이 되고, 조달, 운영, 지속가능성, 규제에 관여하는 협조적 행동을 필요로 하는 중앙 통찰력을 종합하는 것입니다. 관세 변동과 물류 제약으로 인해 일시적인 공급 위험이 발생하기 때문에 단기 운영의 민첩성은 여전히 필수적이지만 중기 궤도는 적극적인 투자와 협조적인 계약이 필요한 저탄소 연료 경로로 향하고 있다는 것은 의심의 여지가 없습니다. 성공적인 조직은 연료의 취급과 혼합에 있어서의 기술적 능력을, 원료나 생산에의 액세스를 확보하면서, 정책의 변화에도 적응할 수 있는 상업적 구조와 통합하는 조직일 것입니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

  • 세계 주요 항공사와 공항에서 지속 가능한 항공 연료 혼합 의무의 급속한 도입
  • 정제 공정의 효율과 지속가능성을 향상시키는 기술 혁신
  • 지속가능성 위험을 줄이기 위한 상업적 규모의 바이오연료 원료 다양화 프로젝트 확대
  • 새로운 탄소세와 배출량 거래 제도가 항공 연료 조달 전략에 미치는 영향
  • 지속가능한 공급 확대를 위한 석유 대기업과 항공사의 전략적 제휴
  • 수소와 전기 추진 조사에 대한 투자 동향이 장래 수요를 재구축
  • 투명성이 높은 공급 체인을 위한 블록체인 대응 추적 가능성 시스템의 구현

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025년

제8장 항공 연료 시장 : 연료 유형별

  • 기존 연료
    • 항공가스
    • 제트 A
    • 제트 A-1
    • 제트 B
  • 지속가능한 연료

제9장 항공 연료 시장 : 항공기 유형별

  • 고정날개
  • 회전날개

제10장 항공 연료 시장 : 연료 형태

  • 블렌드
  • 가스
  • 액체

제11장 항공 연료 시장 : 최종 사용자별

  • 상업용
  • 정부 및 공공 부문
  • 프라이빗

제12장 아메리카 항공 연료 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제13장 유럽·중동 및 아프리카 항공 연료 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제14장 아시아태평양 항공 연료 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제15장 경쟁 구도

  • 시장 점유율 분석, 2024년
  • FPNV 포지셔닝 매트릭스, 2024년
  • 경쟁 분석
    • Exxon Mobil Corporation
    • Shell Plc
    • Abu Dhabi National Oil Company
    • Aemetis, Inc.
    • Amyris, Inc.
    • Axens SA by IFP Energies nouvelles SA
    • BP PLC
    • Chevron Corporation
    • China National Petroleum Corporation
    • CleanJoule, Inc.
    • DGFuels, LLC
    • ENEOS Corporation
    • Enertrag SE
    • Eni SpA
    • Fulcrum BioEnergy, Inc.
    • Gevo, Inc.
    • HIF Global by Andes Mining & Energy SA
    • Honeywell International Inc.
    • Indian Oil Corporation Limited
    • INERATEC GmbH
    • KBR, Inc.
    • LanzaTech Global, Inc.
    • Linde PLC
    • Lummus Technology LLC
    • Maire Tecnimont SpA
    • Mitsubishi Chemical Corporation
    • Montana Renewables, LLC by Calumet Inc.
    • Neste Corporation

제16장 리서치 AI

제17장 리서치 통계

제18장 리서치 컨택

제19장 리서치 기사

제20장 부록

SHW 25.09.22

The Aviation Fuel Market was valued at USD 251.52 billion in 2024 and is projected to grow to USD 269.00 billion in 2025, with a CAGR of 7.16%, reaching USD 380.93 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 251.52 billion
Estimated Year [2025] USD 269.00 billion
Forecast Year [2030] USD 380.93 billion
CAGR (%) 7.16%

A strategic orientation to aviation fuel fundamentals, supply chain realities, and the operational and sustainability tensions shaping industry decision-making today

The aviation fuel landscape sits at the intersection of long-standing operational requirements and accelerating environmental, geopolitical and supply-side pressures. Operators, fuel producers and regulators are navigating a transition that requires balancing reliability, safety and cost-efficiency with imperatives to decarbonize and to adapt to shifting trade policies and feedstock availability. In this context, a clear-eyed introduction establishes the baseline terminology, the principal stakeholders across refining, distribution and flight operations, and the levers that influence procurement and deployment decisions.

Over the past several years, technological advances in sustainable aviation fuels, evolving blending pathways and evolving regulatory expectations have reshaped strategic priorities across commercial, military and general aviation segments. Supply chain complexity remains a defining theme: crude feedstock variability, refinery throughput constraints and logistics bottlenecks influence fuel deliverability and quality assurance protocols. Understanding these dynamics is essential because they drive near-term procurement choices and longer-term investments in alternative fuels, storage, and handling infrastructure. The remainder of this summary sets out the most consequential shifts, the policy and trade implications that are crystallizing in 2025, and the segmentation and regional lenses that will determine where value and risk concentrate for industry leaders.

Converging technological, regulatory and geopolitical forces are reshaping aviation fuel supply, certification pathways, and procurement strategies for rapid industry adaptation

The aviation fuel landscape is undergoing transformative shifts that combine technological maturation, regulatory ambition and altered geopolitical dynamics. Sustainable aviation fuels have moved from pilot projects to commercial-scale pathways, driven by policy incentives, corporate decarbonization commitments and growing airline offtake agreements. Improvements in feedstock processing, certification pathways for drop-in fuels and increased capital investment in SAF production capacity are reducing technical barriers to adoption, while blending protocols and logistical integration continue to evolve.

Meanwhile, regulatory frameworks are aligning more tightly with climate targets, prompting carriers and fuel suppliers to reassess procurement, reporting and lifecycle accounting. Trade measures and tariff adjustments are influencing sourcing strategies, pushing some buyers to shorten supply chains or to diversify feedstocks. In parallel, digitalization in logistics and quality control is improving forecasting and inventory management, enabling more responsive fuel routing and tank farm operations. Together, these shifts are compressing time horizons for strategic decisions: operational teams must reconcile short-term fuel availability and quality with longer-term commitments to sustainable pathways, and enterprises that integrate procurement, sustainability and supply-chain analytics will gain competitive advantage.

How cumulative tariff changes in the United States through 2025 are reshaping procurement economics, supply chain resilience, and investment priorities in aviation fuel distribution

The cumulative effect of United States tariff measures enacted or adjusted through 2025 has altered cost structures and supply chain decisions across the aviation fuel ecosystem without necessarily changing the technical fundamentals of fuel production. Tariff layers on refined products and key intermediates have incentivized some refiners and distributors to re-evaluate cross-border procurement and to accelerate domestic or near-shore sourcing strategies. Those adjustments manifest in longer-term contracting patterns and in increased emphasis on securing stable feedstock streams that are less exposed to tariff volatility.

For fuel consumers and integrators, tariffs have raised the importance of contractual flexibility, with more parties seeking clauses that allow for alternate suppliers or price pass-through mechanisms. In response, some suppliers are reconfiguring logistics to consolidate loads, reduce transshipment points and prioritize routes that minimize tariff exposure. The policy environment has also increased the attractiveness of upstream investments that reduce reliance on imported intermediates, including co-processing and refinery upgrades to handle a broader spectrum of feedstocks. Importantly, tariffs have accelerated discussions about domestic SAF capacity development because locally produced sustainable fuels can mitigate trade friction and offer clearer compliance pathways under incentive programs. From a risk perspective, the combined effect of tariffs and associated trade policy shifts has elevated supply chain resilience as a primary driver of procurement and capital allocation decisions across both private and public sector stakeholders.

Segment-driven perspectives on aviation fuel that connect fuel grades, aircraft operations, fuel forms and diverse end-user profiles to actionable supply and deployment choices

Segmentation provides a practical lens for translating macro trends into operational actions across fuel portfolios and customer bases. Based on fuel type, the industry is differentiated between Conventional Fuel and Sustainable Fuel, and the conventional category itself comprises several refined products including Avgas, Jet A, Jet A-1 and Jet B, each with distinct handling, storage and specification requirements that influence distribution networks and refueling operations. These distinctions matter because end users and operators must manage multiple fuel grades across diverse operational profiles, and blending strategies often differ by fuel family.

Based on aircraft type, the market divides between fixed wing and rotary wing platforms, with fixed wing operations dominating long-haul and scheduled passenger activity while rotary wing activity is characterized by shorter sorties, varied operating environments and different fuel handling constraints. These operational differences affect runway-side storage sizing, refueling turnaround expectations and quality control protocols. Based on fuel form, industry stakeholders work with blended fuels, gas phase fuels and liquid fuels, each presenting unique blending, metering and compatibility considerations for existing fleets and fueling infrastructure. Finally, based on end-user, the landscape spans commercial carriers, government and public sector operators, military users and private operators, and each class has different procurement cycles, regulatory obligations and risk tolerances. By viewing trends through these segmentation lenses, leaders can better align supply contracts, investment in storage and blending facilities, and certification efforts to the specific needs of the customers they serve.

Regional dynamics and infrastructure realities across the Americas, Europe Middle East & Africa, and Asia-Pacific that determine supply strategies and competitive positioning

Geography shapes both the operational realities and the strategic opportunities for aviation fuel stakeholders. In the Americas, established refinery infrastructure and strong airline commitments to sustainable aviation fuels have created a dynamic environment for feedstock innovation and regional supply-chain optimization, while trade policy and domestic incentives continue to shape the pace of SAF adoption and localized production investment. North-South supply linkages and inland logistics challenges also influence how refiners and distributors design storage hubs and pipeline connectivity.

Across Europe, Middle East & Africa, regulatory ambition and national decarbonization targets are prompting a patchwork of policy responses that affect certification, incentives and cross-border trade in fuels. Europe's coordinated sustainability frameworks and carbon pricing mechanisms tend to accelerate uptake of low-carbon pathways, whereas in parts of the Middle East and Africa, abundant feedstock potential and refining capacity create both export opportunities and local integration challenges. In the Asia-Pacific region, rapidly growing aviation demand intersects with diverse policy regimes and varying levels of refining sophistication; this region is a focal point for scaling SAF production through feedstock partnerships and for investments in bunkering and airport fueling innovations. Taken together, these regional dynamics mean that strategic sourcing, investment timing and partnership models must be tailored to local regulatory regimes, infrastructure maturity and the specific operational needs of carriers and government operators.

Insights into competitive positioning, partnership models and operational capabilities that define leadership in aviation fuel production, distribution and sustainable fuel development

Competitive dynamics in aviation fuel are shaped by an ecosystem that combines legacy refiners, integrated energy companies, specialized SAF producers, logistics providers and airport fueling operators. Leading companies are investing selectively in SAF capacity, developing offtake arrangements with airlines and forming consortiums to de-risk capital-intensive projects. Partnerships between feedstock suppliers and producers, as well as between airlines and fuel offtakers, are increasingly common because they secure volumes, share technological risk and align incentives across the value chain.

At the operational level, firms that excel in quality assurance, blending precision and logistics optimization deliver measurable advantages in availability and reliability. Meanwhile, downstream players are differentiating through services: flexible delivery contracts, on-site blending capability and digital platforms that improve fuel inventory visibility and forecasting. In regulatory and policy engagements, firms that participate in standard-setting and certification initiatives influence the pace and shape of SPI pathways and blending mandates. Overall, the competitive landscape rewards integrated approaches that combine technical capability, supply-chain resilience and an ability to form pragmatic partnerships with airlines, governments and downstream distributors.

Actionable recommendations for executives to balance supply resilience, infrastructure readiness and strategic investments in sustainable aviation fuel scale-up

Industry leaders should adopt a dual-track strategy that balances near-term operational resilience with deliberate investment in sustainable pathways. First, strengthen supply-chain resilience by diversifying feedstock sources, enhancing storage flexibility at key airport hubs and incorporating contractual clauses that allow adaptive sourcing in response to tariff or trade shifts. Second, accelerate integration with SAF producers through offtake agreements, joint ventures or equity participation to secure access to low-carbon volumes and to qualify for incentive programs and compliance mechanisms.

Operationally, invest in digital tools that enhance inventory visibility, blending controls and quality assurance checkpoints so that teams can respond quickly to disruptions and maintain specification compliance. Simultaneously, prioritize workforce training and retrofitting of refueling infrastructure where needed to handle blended fuels safely. From a governance perspective, engage proactively with regulators and standards bodies to shape certification pathways and to ensure that lifecycle accounting aligns with organizational sustainability targets. Finally, adopt a scenario-based investment framework that tests assumptions around tariffs, feedstock availability and demand-side adoption of SAF, thereby enabling leaders to pace capital commitments while preserving optionality for scale-up as supply economics evolve.

Methodological transparency and multi-source validation combining stakeholder interviews, policy analysis and supply-chain mapping to underpin robust conclusions and recommendations

The research synthesis underpinning this summary integrates cross-functional sources and a mixed-methods approach to ensure robust, reproducible conclusions. Primary inputs included structured interviews and briefings with refinery operators, airline fuel procurement teams, logistics providers and certification authorities to surface operational constraints and real-world decision heuristics. Secondary analysis drew on public policy announcements, technical standard documentation and trade data to contextualize supply-chain trends and tariff shifts.

Analytical methods combined qualitative thematic analysis with scenario planning and supply-chain mapping to identify critical nodes of vulnerability and opportunity. Validation steps included triangulation across independent stakeholders and iterative review by subject-matter experts in fuel chemistry, logistics and regulatory compliance. Throughout the process, data integrity checks focused on specification changes, blending protocols and certification timelines rather than on proprietary commercial volumes, ensuring that conclusions reflect operational reality and regulatory trajectories without relying on proprietary estimations.

Concluding synthesis highlighting the complementary roles of operational resilience and sustainable fuel investment for long-term aviation sector competitiveness

The conclusion synthesizes the central insight that aviation fuel strategy is increasingly multidimensional, requiring coordinated action across procurement, operations, sustainability and regulatory engagement. Short-term operational agility will remain essential as tariff dynamics and logistics constraints create episodic supply risks, but the medium-term trajectory is unmistakably toward lower-carbon fuel pathways that demand targeted investment and collaborative contracting. The organizations that succeed will be those that integrate technical capability in fuel handling and blending with commercial structures that secure feedstock and production access while remaining adaptable to policy shifts.

In practical terms, this means aligning capital allocation with phased scale-up plans for SAF, investing in digital and physical infrastructure to manage blended fuels, and engaging in partnerships that spread technological and market risk. Ultimately, a strategic orientation that treats supply resilience and sustainability as complementary - rather than competing - objectives will position operators and suppliers to thrive as the aviation sector navigates the next wave of transformation.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rapid adoption of sustainable aviation fuel blending mandates across major global airlines and airports
  • 5.2. Technological innovations improving efficiency and sustainability of aviation fuel refining processes
  • 5.3. Expansion of commercial scale biofuel feedstock diversification projects to reduce sustainability risks
  • 5.4. Impact of emerging carbon taxation and emissions trading schemes on aviation fuel sourcing strategies
  • 5.5. Strategic partnerships between oil majors and airline carriers to scale sustainable aviation fuel supply
  • 5.6. Investment trends in hydrogen and electric propulsion research reshaping future aviation fuel demand
  • 5.7. Implementation of blockchain-enabled traceability systems for transparent aviation fuel supply chains

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Aviation Fuel Market, by Fuel Type

  • 8.1. Introduction
  • 8.2. Conventional Fuel
    • 8.2.1. Avgas
    • 8.2.2. Jet A
    • 8.2.3. Jet A-1
    • 8.2.4. Jet B
  • 8.3. Sustainable Fuel

9. Aviation Fuel Market, by Aircraft Type

  • 9.1. Introduction
  • 9.2. Fixed Wing
  • 9.3. Rotary Wing

10. Aviation Fuel Market, by Fuel Form

  • 10.1. Introduction
  • 10.2. Blended
  • 10.3. Gas
  • 10.4. Liquid

11. Aviation Fuel Market, by End-User

  • 11.1. Introduction
  • 11.2. Commercial
  • 11.3. Government & Public Sector
  • 11.4. Military
  • 11.5. Private

12. Americas Aviation Fuel Market

  • 12.1. Introduction
  • 12.2. United States
  • 12.3. Canada
  • 12.4. Mexico
  • 12.5. Brazil
  • 12.6. Argentina

13. Europe, Middle East & Africa Aviation Fuel Market

  • 13.1. Introduction
  • 13.2. United Kingdom
  • 13.3. Germany
  • 13.4. France
  • 13.5. Russia
  • 13.6. Italy
  • 13.7. Spain
  • 13.8. United Arab Emirates
  • 13.9. Saudi Arabia
  • 13.10. South Africa
  • 13.11. Denmark
  • 13.12. Netherlands
  • 13.13. Qatar
  • 13.14. Finland
  • 13.15. Sweden
  • 13.16. Nigeria
  • 13.17. Egypt
  • 13.18. Turkey
  • 13.19. Israel
  • 13.20. Norway
  • 13.21. Poland
  • 13.22. Switzerland

14. Asia-Pacific Aviation Fuel Market

  • 14.1. Introduction
  • 14.2. China
  • 14.3. India
  • 14.4. Japan
  • 14.5. Australia
  • 14.6. South Korea
  • 14.7. Indonesia
  • 14.8. Thailand
  • 14.9. Philippines
  • 14.10. Malaysia
  • 14.11. Singapore
  • 14.12. Vietnam
  • 14.13. Taiwan

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Exxon Mobil Corporation
    • 15.3.2. Shell Plc
    • 15.3.3. Abu Dhabi National Oil Company
    • 15.3.4. Aemetis, Inc.
    • 15.3.5. Amyris, Inc.
    • 15.3.6. Axens SA by IFP Energies nouvelles SA
    • 15.3.7. BP PLC
    • 15.3.8. Chevron Corporation
    • 15.3.9. China National Petroleum Corporation
    • 15.3.10. CleanJoule, Inc.
    • 15.3.11. DGFuels, LLC
    • 15.3.12. ENEOS Corporation
    • 15.3.13. Enertrag SE
    • 15.3.14. Eni S.p.A.
    • 15.3.15. Fulcrum BioEnergy, Inc.
    • 15.3.16. Gevo, Inc.
    • 15.3.17. HIF Global by Andes Mining & Energy S.A.
    • 15.3.18. Honeywell International Inc.
    • 15.3.19. Indian Oil Corporation Limited
    • 15.3.20. INERATEC GmbH
    • 15.3.21. KBR, Inc.
    • 15.3.22. LanzaTech Global, Inc.
    • 15.3.23. Linde PLC
    • 15.3.24. Lummus Technology LLC
    • 15.3.25. Maire Tecnimont S.p.A.
    • 15.3.26. Mitsubishi Chemical Corporation
    • 15.3.27. Montana Renewables, LLC by Calumet Inc.
    • 15.3.28. Neste Corporation

16. ResearchAI

17. ResearchStatistics

18. ResearchContacts

19. ResearchArticles

20. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제