½ÃÀ庸°í¼­
»óǰÄÚµå
1808460

¼­º¸ ¸ðÅÍ ¹× µå¶óÀÌºê ½ÃÀå : Á¦°øº°, À¯Çüº°, Åë½Å À¯Çüº°, ¼³Ä¡ À¯Çüº°, µ¿ÀÛ À¯Çüº°, ÅäÅ© ¹üÀ§º°, Àü¾Ð ¹üÀ§º°, ºê·¹ÀÌÅ© ±â¼úº°, Ä«Å×°í¸®º°, ±¸Á¶Àç·áº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚ »ê¾÷º° - ¼¼°è ¿¹Ãø(2025-2030³â)

Servo Motors & Drives Market by Offering, Type, Communication Type, Mounting Type, Motion Type, Torque Range, Voltage Range, Brake Technology, Category, Material Of Construction, Application, End-User Industry - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 192 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¼­º¸ ¸ðÅÍ ¹× µå¶óÀÌºê ½ÃÀåÀº 2024³â¿¡´Â 133¾ï 7,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡ 142¾ï 1,000¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 6.44%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 194¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 133¾ï 7,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 142¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 194¾ï 5,000¸¸ ´Þ·¯
CAGR(%) 6.44%

Çö´ë »ê¾÷ ÀÚµ¿È­ »ýŰ迡¼­ ¼­º¸ ¸ðÅÍ ¹× µå¶óÀ̺êÀÇ ±â¼úÀû ¹× ¿î¿µ»óÀÇ Á߿伺, ¼­º¸ ¸ðÅÍ ¹× µå¶óÀ̺꿡 ´ëÇÑ ¼³µæ·Â ÀÖ´Â ¹æÇ⼺À» Á¦½ÃÇÕ´Ï´Ù.

¼­º¸ ¸ðÅÍ¿Í µå¶óÀ̺ê´Â Çö´ë ÀÚµ¿È­ ȯ°æ¿¡¼­ Á¤È®¼º, ¼Óµµ, Á¦¾î¼ºÀ» ½ÇÇöÇÏ´Â ±âÃÊÀûÀÎ Á¸ÀçÀ̸ç, ±× ¼º´ÉÀº ÷´Ü ±â°èÀÇ ¼º´É ¹üÀ§¸¦ Á¡Á¡ ´õ ¸¹ÀÌ Á¿ìÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¼Ò°³¿¡¼­´Â ¼­º¸ ½Ã½ºÅÛÀÌ ÀÛµ¿ÇÏ´Â ±â¼úÀû, »ó¾÷Àû ¹è°æÀ» ü°èÈ­Çϰí, °³º° Á¦Á¶, ·Îº¿ °øÇÐ, ¹ÝµµÃ¼ Á¦Á¶, ÀÇ·á±â±â ¹× ÆÐŰ¡ ÀÛ¾÷ Àü¹Ý¿¡ °ÉÄ£ ÅëÇÕ¿¡ ÃÊÁ¡À» ¸ÂÃâ °ÍÀÔ´Ï´Ù. Çϵå¿þ¾î¿Í ¼ÒÇÁÆ®¿þ¾îÀÇ ¾ç Ãø¸é¿¡ ÃÊÁ¡À» ¸ÂÃß¾î ¸ðµâÇü ÄÁÆ®·Ñ·¯, ÀüÀÚ ÁõÆø±â, ÀÎÄÚ´õ, ¼¾¼­, ¼­ºñ½º Á¦°ø µîÀÌ ¾î¶»°Ô ÅëÇյǾî Á¤È®¼º, ÀÀ´ä¼º, ½Å·Ú¼º¿¡ ´ëÇÑ ¾ö°ÝÇÑ ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â ÅÏŰ ¸ð¼Ç ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´ÂÁö¸¦ º¸¿©ÁÝ´Ï´Ù. ¾î¶»°Ô ÅëÇյǾî ÀÖ´ÂÁö¸¦ º¸¿©ÁÝ´Ï´Ù.

¼­º¸ »ýŰè Àü¹ÝÀÇ Á¦Ç° ¾ÆÅ°ÅØÃ³¿Í °ø±Þ¸Á Àü·«À» ÀçÁ¤ÀÇÇϰí, »õ·Î¿î ±â¼ú Æ®·»µå¿Í ¿ëµµ Áß½ÉÀÇ ¿ªÇÐÀ» ÀçÁ¤ÀÇÇÕ´Ï´Ù.

¼­º¸ ¸ðÅÍ¿Í µå¶óÀ̺긦 µÑ·¯½Ñ ȯ°æÀº µðÁöÅÐ Á¦¾î, ÷´Ü ¼ÒÀç, ÁøÈ­ÇÏ´Â ¿ëµµ ¿ä±¸»çÇ×ÀÇ ¼ö·Å¿¡ µû¶ó º¯È­Çϰí ÀÖ½À´Ï´Ù. ù°, ¾Æ³¯·Î±× Á¦¾î ¾ÆÅ°ÅØÃ³¿¡¼­ µðÁöÅÐ Á¦¾î ¾ÆÅ°ÅØÃ³·ÎÀÇ ÀüȯÀº º¸´Ù ±ä¹ÐÇÑ ·çÇÁ Á¦¾î¿Í dzºÎÇÑ Áø´ÜÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ´õ ÀÛ°í È¿À²ÀûÀÎ ÀüÀÚ ÁõÆø±â ¹× ÄÁÆ®·Ñ·¯ ¸ðµâÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ´õ ³ôÀº ´ë¿ªÆøÀÇ Åë½Å ÀÎÅÍÆäÀ̽º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í »ê¾÷¿ë ÀÌ´õ³Ý ¹× Çʵå¹ö½º ±â¹Ý ÇÁ·ÎÅäÄÝÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÏ´Â ¹Ý¸é, ¹«¼± Åë½ÅÀº ÀϺΠºñÇÙ½É ¿ëµµ°ú ¸ð´ÏÅ͸µ ¿ëµµ¸¦ À§ÇØ ¼º¼÷ÇØÁö±â ½ÃÀÛÇß½À´Ï´Ù. ½ÃÀ۵ǰí ÀÖ½À´Ï´Ù. ±× °á°ú, ½Ã½ºÅÛ ¼³°èÀÚµéÀº »óÈ£¿î¿ë¼º, °áÁ¤·ÐÀû ³×Æ®¿öÅ·, »çÀ̹ö º¸¾ÈÀ» ¼³°èÀÇ ÇÙ½É °í·Á»çÇ×À¸·Î ¿ì¼±¼øÀ§¸¦ µÎ°Ô µÇ¾ú½À´Ï´Ù.

ÃÖ±Ù °ü¼¼ Á¶Ä¡¿¡ µû¶ó ¼­º¸ ºÎǰ °ø±Þ¸Á Àüü¿¡¼­ Á¶´Þ Àü·«ÀÌ ¾î¶»°Ô º¯È­Çϰí ÀÖÀ¸¸ç, ¼³°è ¹× Á¶´Þ¿¡ ´ëÇÑ ÀûÀÀÀÌ ¾î¶»°Ô ¿ä±¸µÇ°í Àִ°¡?

¹Ì±¹ÀÇ 2025³â°ü¼¼ ȯ°æÀº ¼­º¸ ¸ðÅÍ ¹× µå¶óÀ̺êÀÇ Á¶´Þ, Á¦Á¶ ¹× Á¶´Þ ÀÇ»ç °áÁ¤¿¡ ÆÄ±ÞµÇ´Â ÀÏ·ÃÀÇ º¹ÇÕÀûÀÎ ¾Ð·ÂÀ» µµÀÔÇß½À´Ï´Ù. ÀÌ·¯ÇÑ °ü¼¼ Á¶Ä¡´Â ÄÁÆ®·Ñ·¯, ÀÎÄÚ´õ, ÀüÀÚ ÁõÆø±â µî ÇÙ½É ºÎǰÀÇ ¼öÀÔ °æÁ¦¼º¿¡ ¿µÇâÀ» ¹ÌÄ¡°í, ±¸¸ÅÀÚ¿Í °ø±Þ¾÷ü´Â °ø±Þ¾÷ü Æ÷Æ®Æú¸®¿À¸¦ ÀçÆò°¡ÇÏ°í ´Ï¾î¼î¾î¸µ ¶Ç´Â ÀÌÁß ¼Ò½ÌÀ» °í·ÁÇϵµ·Ï Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¸¹Àº °Å·¡Ã³ »óÇ¥ Á¦Ç° Á¦Á¶¾÷ü¿Í À¯Åë¾÷üµéÀº °ø±Þ¸Á ´Ùº¯È­¸¦ À§ÇÑ ³ë·ÂÀ» °¡¼ÓÈ­Çϰí ÀÖÀ¸¸ç, °ü¼¼·Î ÀÎÇÑ ºñ¿ë º¯µ¿¿¡ µû¸¥ ¿µÇâÀ» ÁÙÀ̸鼭 ǰÁú°ú ¸®µåŸÀÓ ¿ä°ÇÀ» ÃæÁ·½Ãų ¼ö ÀÖ´Â Áö¿ª °ø±Þ¾÷ü¸¦ ã°í ÀÖ½À´Ï´Ù.

¼¼ºÐÈ­¿¡ ±â¹ÝÇÑ Á¾ÇÕÀûÀÎ °üÁ¡Àº Á¦Ç° ¾ÆÅ°ÅØÃ³¸¦ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ßÀÇ ¿ëµµ ¿ä±¸»çÇ×°ú ¾ÖÇÁÅ͸¶ÄÏ ¼­ºñ½º ±â´ëÄ¡¿¡ ¸Â°Ô Á¶Á¤ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

¼¼ºÐÈ­¸¦ ÀÚ¼¼È÷ Àо¸é ´Ù¾çÇÑ ÃÖÁ¾ »ç¿ëÀÚÀÇ ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ Á¦Ç° °³¹ß, ½ÃÀå °³Ã´ Àü¼ú, ¼­ºñ½º ¸ðµ¨¿¡¼­ Àϰü¼ºÀÌ ÇÊ¿äÇÑ ºÎºÐÀÌ ¾îµðÀÎÁö ¾Ë ¼ö ÀÖ½À´Ï´Ù. Á¦Ç° Á¦°øÀÇ °üÁ¡¿¡¼­ º¼ ¶§, Á¦Ç° Æ÷Æ®Æú¸®¿À´Â ¿Ïº®ÇÑ ¸ð¼Ç ¼Ö·ç¼ÇÀ» Á¦°øÇϱâ À§ÇØ ÄÁÆ®·Ñ·¯ ¸ðµâ, ÀüÀÚ ÁõÆø±â, ÀÎÄÚ´õ, ¼¾¼­¿Í °°Àº Çϵå¿þ¾î ¿ä¼Ò¿Í ¼³Ä¡, À¯Áöº¸¼ö, ½Ã½ºÅÛ ÅëÇÕ°ú °°Àº ¼ÒÇÁÆ®¿þ¾î ¹× ¼­ºñ½º¿ÍÀÇ ±ÕÇüÀ» À¯ÁöÇØ¾ß ÇÕ´Ï´Ù. ±ÕÇüÀ» ÀÌ·ç¾î¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕµÈ °üÁ¡Àº ½Ã¿îÀü ½Ã°£À» ´ÜÃàÇÏ°í ¼­ºñ½º °è¾àÀ» ÅëÇÑ ¶óÀÌÇÁ»çÀÌŬ ¼öÀÍ Ã¢ÃâÀ» °¡´ÉÇÏ°Ô ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

Á¶´Þ ¼±È£µµ °áÁ¤, ¼¼°è ½ÃÀå ÀüüÀÇ Á¦Ç° ¹× ¼­ºñ½º ÅõÀÚ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â Áö¿ªÀû ¿ì¼±¼øÀ§ ¹× »ó¾÷Àû ¿ªÇÐ

Áö¿ªº°·Î ÅõÀÚ ¿ì¼±¼øÀ§, °ø±Þ¸Á ¹ßÀÚÃë, Çõ½Å »ýŰ踦 Çü¼ºÇÏ´Â ¿øµ¿·ÂÀÌ Áö¿ªº°·Î ¶Ñ·ÇÇÑ ¹æ½ÄÀ¸·Î Çü¼ºµÇ°í ÀÖÀ¸¸ç, ÀÌ´Â Áö¿ª °íÀ¯ÀÇ Àü·«À» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ¹ÝµµÃ¼ Àåºñ µîÀÇ »ê¾÷À» À§ÇØ ¸®¼î¾î¸µ, ±¹³» °ø±Þ¾÷ü °³¹ß, ¿ëµµ Áß½ÉÀÇ Ä¿½ºÅ͸¶ÀÌ¡ÀÌ °­Á¶µÇ°í ÀÖ½À´Ï´Ù. ªÀº ¸®µå ŸÀÓ°ú Áö¿ª ¹ÐÂøÇü ±â¼ú Áö¿øÀÌ °áÁ¤ÀûÀÎ ±¸¸Å ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó ÀÌ Áö¿ª Á¦Á¶¾÷üµéÀº °­·ÂÇÑ ¼­ºñ½º ³×Æ®¿öÅ©¿Í ¾ö°ÝÇÑ ¾ÈÀü ¹× ÃßÀû¼º Ç¥ÁØ Áؼö¸¦ ¿ì¼±½ÃÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù.

Ç÷§Æû ¸ðµâÈ­, ½Ã½ºÅÛ ÅëÇÕ ÆÄÆ®³Ê½Ê, °í°´ À¯Áö ¹× ¾ÖÇÁÅ͸¶ÄÏ °¡Ä¡¸¦ °­È­ÇÏ´Â ¼­ºñ½º Áß½ÉÀÇ »ó¾÷Àû ¸ðµ¨º° °æÀï Â÷º°È­¸¦ ÅëÇÑ °í°´ À¯Áö ¹× ¾ÖÇÁÅ͸¶ÄÏ °¡Ä¡ °­È­

¼­º¸ ¸ðÅÍ ¹× µå¶óÀÌºê ºÐ¾ß¿¡¼­ÀÇ °æÀï Æ÷Áö¼Å´×Àº ¿£Áö´Ï¾î¸µÀÇ ±íÀÌ, ä³ÎÀÇ È®Àå, ¼­ºñ½º ¼öÀÍÈ­ ´É·ÂÀÇ À¶ÇÕ¿¡ ´Þ·Á ÀÖ½À´Ï´Ù. ÁÖ¿ä °ø±Þ¾÷üµéÀº Ç÷§ÆûÀÇ ¸ðµâ¼ºÀ» ÅëÇØ Â÷º°È­¸¦ ²ÒÇϰí, ´Ù¾çÇÑ ¸ðÅÍ ÅäÆú·ÎÁö ¹× ÀåÂø ±¸¼ºÀ» Áö¿øÇÏ´Â ÄÁÆ®·Ñ·¯ ¸ðµâ ¹× ÁõÆø±â Á¦Ç°±ºÀ» Á¦°øÇÏ¿© OEMÀÇ ÅëÇÕÀ» °£¼ÒÈ­ÇÕ´Ï´Ù. Àü·«Àû Â÷º°È­´Â ÀÎÄÚ´õ ±â¼ú ¹× ¼¾¼­ À¶ÇÕÀ» ÅëÇØ Ŭ·ÎÁîµå ·çÇÁ ¼º´ÉÀ» °­È­ÇÏ°í ¿¹Áöº¸Àü ¹× ÀûÀÀÇü Á¦¾î¿Í °°Àº °íºÎ°¡°¡Ä¡ ±â´ÉÀ» ±¸ÇöÇÒ ¼ö ÀÖ´Â ´É·Â¿¡¼­ ºñ·ÔµË´Ï´Ù.

Á¦Ç° ¸ðµâ¼º, °ø±Þ¸Á °­Àμº, ¼­ºñ½º ¼öÀÍÈ­ °­È­, Áö¼Ó °¡´ÉÇÑ °æÀï ¿ìÀ§ ¹× °í°´ °¡Ä¡ Áõ´ë¸¦ À§ÇÑ ½ÇÇà °¡´ÉÇÑ Àü·«

¾÷°è ¸®´õ´Â ź·Â¼ºÀ» °­È­Çϰí, Á¦Ç° Çõ½ÅÀ» °¡¼ÓÈ­Çϰí, ¼­ºñ½º ¼öÀÍÈ­¸¦ È®´ëÇÏ´Â ÀÏ·ÃÀÇ ÇൿÀ» °øµ¿À¸·Î Ãß±¸ÇØ¾ß ÇÕ´Ï´Ù. ù°, µ¿ÀÏÇÑ ÄÁÆ®·Ñ·¯ ¾ÆÅ°ÅØÃ³¿¡¼­ ¿©·¯ ¸ðÅÍ À¯Çü°ú ÀåÂø ¿É¼ÇÀ» Áö¿øÇÏ´Â ¸ðµâ½Ä Ç÷§Æû ¼³°è¸¦ ¿ì¼±½ÃÇÏ¿© ½ÃÀå Ãâ½Ã ½Ã°£À» ´ÜÃàÇϰí Àç°í °ü¸®¸¦ °£¼ÒÈ­ÇÕ´Ï´Ù. ÀÌ Á¦Ç° Àü·«Àº ÀÎÄÚ´õÀÇ Á¤È®µµ¿Í ÁõÆø±â È¿À²¿¡ ´ëÇÑ ÅõÀÚ·Î º¸¿ÏµÇ¾î ÃÖÁ¾ »ç¿ëÀÚÀÇ ¶óÀÌÇÁ»çÀÌŬ ºñ¿ëÀ» ÁÙÀ̸鼭 ÅäÅ©¿Í Àü¾Ð ¹üÀ§¿¡ °ÉÃÄ ±â´ëµÇ´Â ¼º´ÉÀ» ÃæÁ·½Ãŵ´Ï´Ù.

ÀÌÇØ°ü°èÀÚ 1Â÷ ÀÎÅͺä, ±â¼ú °ËÁõ, °ø±Þ¸Á ¸ÅÇÎÀ» °áÇÕÇÑ ¾ö°ÝÇÑ Á¶»ç ÇÁ·¹ÀÓ¿öÅ©¸¦ ÅëÇØ ½Ç¿ëÀûÀÎ ½ÃÀå ÀλçÀÌÆ®¿Í Àü·«À» Á¦°øÇÕ´Ï´Ù.

º» ºÐ¼®À» µÞ¹ÞħÇÏ´Â Á¶»ç ¹æ¹ýÀº ±¸Á¶È­µÈ 1Â÷ Á¶»ç, ±â¼ú ¹®Çå °ËÅä, 2Â÷ Á¤º¸ÀÇ Ã¼°èÀûÀÎ »ï°¢Ãø·®À» °áÇÕÇÏ¿© °ËÁõ °¡´ÉÇÑ ÅëÂû·ÂÀ» º¸ÀåÇÕ´Ï´Ù. 1Â÷ Á¤º¸¿¡¼­´Â ¼³°è ¿£Áö´Ï¾î, ¼Ò½Ì °ü¸®ÀÚ, ½Ã½ºÅÛ ÅëÇÕÀÚ, ÃÖÁ¾ »ç¿ëÀÚÀÇ ¿î¿µ ¸®´õ¿ÍÀÇ ´ëÈ­¸¦ ÅëÇØ ¼º´É ¿ä±¸ »çÇ×, Á¶´Þ Á¦¾à, ¼­ºñ½º ±â´ëÄ¡¿¡ ´ëÇÑ ½Ç¹«Àû °üÁ¡À» ÆÄ¾ÇÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ç¹«ÀÚµéÀÇ ÀǰßÀº Á¦Ç° ¹®Çå, ¹é¼­, ¾÷°è Ç¥ÁØ, ±â¼ú µ¥ÀÌÅÍ½ÃÆ®¸¦ ÅëÇØ º¸¿ÏµÇ¾î ±¸¼º ¿ä¼Ò ¼öÁØÀÇ Æ¯¼º ¹× »óÈ£¿î¿ë¼º ¿ä±¸»çÇ×À» °ËÁõÇß½À´Ï´Ù.

±â¼ú Çõ½Å°ú °ø±Þ¸Á º¹¿ø·ÂÀÌ Àüü ¼­º¸ ¿ëµµÀÇ °æÀïÀû ¼º°ú¸¦ °áÁ¤ÇÏ´Â ¹æ¹ýÀ» ¹Ý¿µÇÏ´Â Àü·«Àû Çʼö ¿ä¼Ò.

°á·ÐÀûÀ¸·Î, ¼­º¸ ¸ðÅÍ¿Í µå¶óÀ̺ê´Â ¿©ÀüÈ÷ Çö´ë ÀÚµ¿È­ ½Ã½ºÅÛÀÇ ¼º´É°ú À¯¿¬¼ºÀÇ ÇÙ½ÉÀÌÁö¸¸, µðÁöÅÐ Á¦¾î ¾ÆÅ°ÅØÃ³, ¿ëµµÀÇ ´Ù¾çÈ­, °Å·¡ ¿ªÇÐÀÇ º¯È­·Î ÀÎÇØ ¼­º¸ ¸ðÅÍ¿Í µå¶óÀ̺ê´Â ±Þ¼ÓÇÑ ÁøÈ­ÀÇ ½Ã±â¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. Çϵå¿þ¾î Çõ½Å°ú ¼­ºñ½º È®ÀåÀÌ »óÈ£ ÀÛ¿ëÇÏ¿© Á¦Á¶¾÷ü°¡ °¡Ä¡¸¦ Á¦°øÇÏ´Â ¹æ½ÄÀ» ÀçÁ¤ÀÇÇϰí, ¸ðµâ½Ä Ç÷§Æû°ú ÅëÇÕ ¼ÒÇÁÆ®¿þ¾î°¡ °áÁ¤ÀûÀÎ Â÷º°È­ ¿ä¼Ò·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÇÑÆí, Á¤Ã¥ Àüȯ°ú °ü¼¼ °³¹ß·Î ÀÎÇØ °ø±Þ¸Á À籸ÃàÀÌ °¡¼ÓÈ­µÇ°í, Áö¿ª Á¦Á¶ ¹× °ø±Þ¾÷ü ´Ùº¯È­ÀÇ Á߿伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ¼­º¸ ¸ðÅÍ ¹× µå¶óÀÌºê ½ÃÀå : Á¦°øº°

  • Çϵå¿þ¾î
    • ÄÁÆ®·Ñ·¯ ¸ðµâ
    • ÀüÀÚ ¾ÚÇÁ
    • ÀÎÄÚ´õ
    • ¼¾¼­
  • ¼ÒÇÁÆ®¿þ¾î ¹× ¼­ºñ½º
    • ¼³Ä¡ ¹× À¯Áö°ü¸®
    • ½Ã½ºÅÛ ÅëÇÕ

Á¦9Àå ¼­º¸ ¸ðÅÍ ¹× µå¶óÀÌºê ½ÃÀå : À¯Çüº°

  • ¼­º¸ µå¶óÀ̺ê
    • AC ¼­º¸ µå¶óÀ̺ê
    • DC ¼­º¸ µå¶óÀ̺ê
  • ¼­º¸ ¸ðÅÍ
    • AC ¼­º¸ ¸ðÅÍ
      • »ó¿ë ȸÀü ¼­º¸ ¸ðÅÍ
      • ¼±Çü ¼­º¸ ¸ðÅÍ
      • À§Ä¡ ȸÀü ¼­º¸ ¸ðÅÍ
    • DC ¼­º¸ ¸ðÅÍ
      • ¿µ±¸ÀÚ¼® »ìÆ®¸ðŸ
      • ¼ÇÆ® Á¦¾î ¸ðÅÍ
      • ºÐÇÒ ½Ã¸®Áî ¼­º¸ ¸ðÅÍ

Á¦10Àå ¼­º¸ ¸ðÅÍ ¹× µå¶óÀÌºê ½ÃÀå : Åë½Å À¯Çüº°

  • Çʵå¹ö½º ±â¹Ý Åë½Å
  • »ê¾÷¿ë ÀÌ´õ³Ý
  • ¹«¼±Åë½Å

Á¦11Àå ¼­º¸ ¸ðÅÍ ¹× µå¶óÀÌºê ½ÃÀå : ¼³Ä¡ À¯Çüº°

  • ÆäÀ̽º ¸¶¿îÆ®
  • Ç÷£Áö ¸¶¿îÆ®
  • Dz ¸¶¿îÆ®
  • Áß°ø »þÇÁÆ®

Á¦12Àå ¼­º¸ ¸ðÅÍ ¹× µå¶óÀÌºê ½ÃÀå : µ¿ÀÛ À¯Çüº°

  • ¼±Çü
  • ·ÎÅ͸®

Á¦13Àå ¼­º¸ ¸ðÅÍ ¹× µå¶óÀÌºê ½ÃÀå : ÅäÅ© ¹üÀ§º°

  • 0.1-10Nm
  • 10Nm ÀÌ»ó
  • 0.1Nm ÀÌÇÏ

Á¦14Àå ¼­º¸ ¸ðÅÍ ¹× µå¶óÀÌºê ½ÃÀå : Àü¾Ð ¹üÀ§º°

  • 60V-600V
  • 600V ÀÌ»ó
  • 60V ÀÌÇÏ

Á¦15Àå ¼­º¸ ¸ðÅÍ ¹× µå¶óÀÌºê ½ÃÀå : ºê·¹ÀÌÅ© ±â¼úº°

  • ¿µ±¸ÀÚ¼®
  • ½ºÇÁ¸µ

Á¦16Àå ¼­º¸ ¸ðÅÍ ¹× µå¶óÀÌºê ½ÃÀå : Ä«Å×°í¸®º°

  • ¾Æ³¯·Î±× ¼­º¸ ¸ðÅÍ ¹× µå¶óÀ̺ê
  • µðÁöÅÐ ¼­º¸ ¸ðÅÍ ¹× µå¶óÀ̺ê

Á¦17Àå ¼­º¸ ¸ðÅÍ ¹× µå¶óÀÌºê ½ÃÀå : ±¸Á¶Àç·áº°

  • ºñ½ºÅ×Àθ®½º ½ºÆ¿
  • ½ºÅ×Àθ®½º ½ºÆ¿

Á¦18Àå ¼­º¸ ¸ðÅÍ ¹× µå¶óÀÌºê ½ÃÀå : ¿ëµµº°

  • CNC ¸Ó½Å
  • ÀÇ·á±â±â
  • Æ÷Àå±â°è
  • ·Îº¸Æ½½º
  • ¹ÝµµÃ¼ Á¦Á¶ ÀåÄ¡

Á¦19Àå ¼­º¸ ¸ðÅÍ ¹× µå¶óÀÌºê ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚ ¾÷°èº°

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ÀÚµ¿Â÷
  • ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼
  • ½Äǰ ¹× À½·á
  • »ê¾÷ Á¦Á¶¾÷
  • Æ÷Àå
  • ÀǾàǰ ¹× ÀÇ·á

Á¦20Àå ¾Æ¸Þ¸®Ä«ÀÇ ¼­º¸ ¸ðÅÍ ¹× µå¶óÀÌºê ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦21Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¼­º¸ ¸ðÅÍ ¹× µå¶óÀÌºê ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦22Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼­º¸ ¸ðÅÍ ¹× µå¶óÀÌºê ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦23Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Robert Bosch GmbH
    • ABB Ltd.
    • Delta Electronics, Inc.
    • FANUC Corporation
    • Fuji Electric Co., Ltd.
    • Lenze SE
    • Mitsubishi Electric Corporation
    • Nidec Corporation
    • OMRON Corporation
    • Parker Hannifin Corporation
    • Schneider Electric SE
    • Siemens AG
    • Yaskawa Electric Corporation

Á¦24Àå ¸®¼­Ä¡ AI

Á¦25Àå ¸®¼­Ä¡ Åë°è

Á¦26Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦27Àå ¸®¼­Ä¡ ±â»ç

Á¦28Àå ºÎ·Ï

LSH

The Servo Motors & Drives Market was valued at USD 13.37 billion in 2024 and is projected to grow to USD 14.21 billion in 2025, with a CAGR of 6.44%, reaching USD 19.45 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 13.37 billion
Estimated Year [2025] USD 14.21 billion
Forecast Year [2030] USD 19.45 billion
CAGR (%) 6.44%

A compelling orientation to servo motors and drives that situates their technological and operational significance within contemporary industrial automation ecosystems

Servo motors and drives are foundational enablers of precision, speed, and controllability across modern automation environments, and their capabilities increasingly dictate the performance envelope of advanced machinery. This introduction frames the technological and commercial context in which servo systems operate, highlighting their integration across discrete manufacturing, robotics, semiconductor fabrication, medical instrumentation, and packaging operations. By focusing on both hardware and software dimensions, the report clarifies how modular controllers, electronic amplifiers, encoders, sensors, and service offerings converge to deliver turnkey motion solutions that meet stringent accuracy, responsiveness, and reliability requirements.

Throughout this narrative, emphasis is placed on the growing interplay between electromechanical design and digital orchestration. Controllers and amplifiers provide the immediate electromechanical interface driving torque and velocity, while encoders and sensors enable closed-loop feedback that assures positional integrity. Complementary software and services, encompassing installation, maintenance, and system integration, extend the value chain by reducing commissioning time, increasing uptime, and enabling adaptive control strategies. As automation architectures evolve toward higher levels of connectivity and intelligence, servo solutions are shifting from componentized commodities to integrated subsystems that deliver measurable operational advantages. This introduction therefore establishes the scope and relevance of the ensuing analysis, setting the stage for how supply chain dynamics, regulatory changes, and technology advancements are reshaping the competitive and operational landscape.

Emerging technological currents and application-driven dynamics that are redefining product architectures and supply chain strategies across the servo ecosystem

The servo motors and drives landscape is undergoing transformative shifts driven by the convergence of digital control, advanced materials, and evolving application demands. First, the transition from analog to digital control architectures has accelerated the adoption of smaller, more efficient electronic amplifiers and controller modules that enable tighter loop control and richer diagnostics. This trajectory has been reinforced by growing demand for higher bandwidth communication interfaces, which has increased the adoption of Industrial Ethernet and fieldbus-based protocols, while wireless communication has begun to mature for select non-critical or monitoring applications. Consequently, system designers are prioritizing interoperability, deterministic networking, and cybersecurity as core design considerations.

Second, the proliferation of robotics and flexible automation has created differentiated requirements across motion types and mounting configurations. Applications that demand linear motion or hollow-shaft mounting are influencing form factor innovation, while new materials and brake technologies respond to stringent hygienic or high-reliability environments. At the same time, finer torque segmentation-from sub-0.1 Nm micro-actuators to high-torque modules-has driven specialization in both AC and DC motor topologies, while the development of continuous rotation and positional rotation variants supports diverse use cases in packaging, CNC, and semiconductor processing. Third, the role of software and services has become strategic; system integration, predictive maintenance, and installation services increasingly determine total lifecycle value, reducing time-to-performance and enabling service-driven revenue models. Taken together, these shifts are compelling manufacturers and integrators to re-architect product roadmaps and to invest in modular platforms that can be scaled across voltage and torque ranges, communication types, and mounting options.

How recent tariff measures have reshaped sourcing strategies and compelled design and procurement adaptations across servo component supply chains

The 2025 tariff environment in the United States has introduced a compound set of pressures that ripple through sourcing, manufacturing, and procurement decisions for servo motors and drives. These tariff measures have affected the economics of importing core components such as controllers, encoders, and electronic amplifiers, prompting buyers and suppliers to reassess supplier portfolios and to consider nearshoring or dual-sourcing arrangements. In response, many original equipment manufacturers and distributors have accelerated efforts to diversify their supply chains, seeking regional suppliers capable of meeting quality and lead-time requirements while mitigating exposure to tariff-induced cost volatility.

Beyond immediate cost implications, tariffs have catalyzed changes in product architecture and procurement behavior. Manufacturers are increasingly evaluating component standardization and modularization to reduce dependency on specialized imported parts that are subject to duty escalation. This shift has also elevated the role of software and services as a buffer against hardware price variability, since enhanced integration, predictive maintenance, and service contracts can preserve margins while offering customers measurable uptime benefits. Furthermore, the tariff environment has affected inventory strategies, with firms rebalancing between lean inventory models and strategic stockpiling to hedge against tariff-related supply interruptions.

Policy-driven uncertainty has also influenced long-term investment decisions, encouraging capital allocation toward regional manufacturing capabilities, testing facilities, and local supplier development. These strategic responses aim to shorten lead times for critical components and to ensure regulatory compliance while maintaining product performance across torque and voltage segments. In aggregate, the tariffs have accelerated structural change across procurement, design, and go-to-market models, and have placed a premium on supply chain transparency and agility for companies operating in sensitive industrial segments such as aerospace, semiconductor manufacturing, and medical devices.

A comprehensive segmentation-driven perspective that aligns product architecture with application requirements and aftermarket service expectations across diverse industrial domains

A granular read of segmentation reveals where product development, go-to-market tactics, and service models must align to meet diverse end-user demands. When viewed through the lens of offering, product portfolios must balance hardware elements-controller modules, electronic amplifiers, encoders, and sensors-with software and services such as installation, maintenance, and system integration to deliver complete motion solutions. This integrated perspective is essential for reducing commissioning times and enabling lifecycle revenue from service contracts.

Examining product families by type highlights the necessity of a bifurcated strategy for drives and motors. Servo drives, differentiating between AC and DC topologies, require distinct thermal management and control algorithms, while servo motors split into AC and DC categories that further subdivide into continuous rotation, linear, and positional variants for AC units and multiple DC motor topologies for legacy or specialized use cases. These technical distinctions influence design investments, aftermarket support capabilities, and channel training programs. Communication type segmentation indicates that investments in Industrial Ethernet and fieldbus compatibility will remain critical for determinism and system integration, even as wireless communication becomes viable for non-critical telemetry and remote diagnostics. Mounting type considerations-face mount, flange mount, foot mount, and hollow shaft-affect mechanical integration and serviceability, driving bespoke mounting kits and standardized mechanical interfaces.

Motion type, whether linear or rotary, steers actuator selection and control strategies and thereby influences encoder resolution and amplifier bandwidth requirements. Torque and voltage ranges impose bounds on motor selection, power electronics, and thermal designs, necessitating a broad engineering toolkit to address markets that span micro-torque automation to heavy industrial drives. Brake technology choices between permanent magnet and spring systems are often dictated by safety and restart requirements, whereas the distinction between analog and digital categories drives software feature sets and compatibility considerations. Material of construction, from stainless to non-stainless steel, is a critical determinant in regulated sectors or corrosive environments. Finally, application and end-user segmentation-CNC machines, medical devices, packaging machinery, robotics, and semiconductor equipment across industries such as aerospace, automotive, electronics, food and beverage, industrial manufacturing, packaging, and pharmaceutical and medical-require tailored performance, certification, and service protocols. Synthesizing these segment overlays enables targeted R&D prioritization, channel specialization, and the design of service propositions that align with specific operational constraints and regulatory environments.

Regional priorities and commercial dynamics that determine procurement preferences and influence product and service investments across global markets

Regional dynamics are shaping investment priorities, supply chain footprints, and innovation ecosystems in distinct ways that demand region-specific strategies. In the Americas, emphasis is placed on reshoring, domestic supplier development, and application-driven customization for industries such as aerospace, automotive, and semiconductor equipment. Lead-time reduction and localized technical support are decisive purchasing factors, and as a result manufacturers catering to this region often prioritize robust service networks and compliance with stringent safety and traceability standards.

Across Europe, the Middle East & Africa, regulatory harmonization, sustainability mandates, and advanced manufacturing adoption influence demand patterns. Buyers in this region increasingly value energy-efficient AC drive systems and stainless steel constructions for hygienic processing environments, while system integrators pursue cross-border partnerships to address complex industrial projects. These regional priorities encourage product lines that emphasize eco-efficiency, materials resilience, and modular integration to meet multinational deployment requirements.

In the Asia-Pacific region, diverse end-market growth trajectories and variable supply chain maturity create opportunities for scale and specialization. High-volume manufacturing hubs continue to drive demand for cost-efficient DC and AC servo platforms, while advanced economies within the region push for higher-precision solutions in robotics and semiconductor manufacturing. Rapid technology adoption, skilled labor pools, and established component ecosystems make the region a focal point for both manufacturing and R&D investment, but success depends on navigating local procurement practices, regulatory standards, and service expectations.

Competitive differentiation driven by platform modularity, system integration partnerships, and service-led commercial models that reinforce customer retention and aftermarket value

Competitive positioning in the servo motors and drives sector hinges on a blend of engineering depth, channel reach, and the ability to monetize services. Leading providers differentiate through platform modularity, offering families of controller modules and amplifiers that support multiple motor topologies and mounting configurations, thereby simplifying integration for OEMs. Strategic differentiation also emerges from capabilities in encoder technology and sensor fusion, which enhance closed-loop performance and enable higher-value features such as predictive maintenance and adaptive control.

Partnerships between component manufacturers, software providers, and systems integrators are increasingly common, reflecting the necessity of end-to-end solutions that reduce time-to-market for equipment builders. Companies that cultivate strong relationships with integrators and provide comprehensive installation and maintenance frameworks gain advantages in sectors where uptime and regulatory compliance are paramount. Additionally, players that invest in digital tools for diagnostics, remote commissioning, and firmware over-the-air updates create additional touchpoints for recurring revenue and customer retention. Finally, firms that align product portfolios to specific application needs-such as medical-grade motors with specialized material construction or high-torque drives for heavy industrial applications-improve win rates by reducing customization cycles and accelerating certification timelines. The net effect is a competitive landscape where multidisciplinary capabilities and service-oriented commercial models determine long-term customer loyalty.

Actionable strategies to strengthen product modularity, supply chain resilience, and service monetization that drive sustainable competitive advantage and customer value

Industry leaders should pursue a coordinated set of actions that enhance resilience, accelerate product innovation, and expand service monetization. First, prioritize modular platform designs that allow the same controller architecture to support multiple motor types and mounting options, thus reducing time-to-market and simplifying inventory management. Complement this product strategy with investments in encoder precision and amplifier efficiency to meet performance expectations across torque and voltage ranges while reducing lifecycle costs for end users.

Second, strengthen regional supply chain resilience through targeted nearshoring, dual-sourcing of critical components, and strategic supplier development programs. These measures should be paired with enhanced inventory analytics and scenario planning to mitigate tariff-related disruptions and to maintain service-level agreements for high-priority customers. Third, expand software and services offerings by packaging installation, commissioning, and predictive maintenance into subscription-based models that deliver quantifiable uptime improvements and recurring revenue. To support this, invest in diagnostic toolchains, remote support capabilities, and training programs for channel partners.

Fourth, cultivate deeper collaboration with system integrators and end users to co-develop application-specific solutions, particularly for sectors with stringent regulatory or performance requirements. Finally, commit to sustainable design practices and materials selection, as customers increasingly factor energy efficiency and material durability into procurement decisions. Collectively, these actions will position firms to capture both immediate efficiency gains and long-term strategic advantages in an evolving market.

A rigorous research framework blending primary stakeholder interviews, technical validation, and supply chain mapping to underpin actionable market insights and strategies

The research methodology underpinning this analysis combines structured primary interviews, technical literature review, and systematic triangulation of secondary sources to ensure robust, verifiable insights. Primary engagement involved conversations with design engineers, sourcing managers, system integrators, and end-user operational leaders to capture practical perspectives on performance requirements, procurement constraints, and service expectations. These practitioner inputs were supplemented by product literature, white papers, industry standards, and technical datasheets to validate component-level characteristics and interoperability requirements.

Quantitative and qualitative inputs were synthesized through a triangulation process that reconciles supplier disclosures, integrator feedback, and equipment builder requirements. Where applicable, case studies of recent deployments and integration projects were analyzed to extract lessons on installation timelines, commissioning complexity, and maintenance outcomes. The research also incorporated supply chain mapping to identify critical nodes, single-sourced components, and regional manufacturing capacities, which informed assessments of tariff vulnerability and mitigation strategies. To maintain methodological rigor, findings were cross-checked against multiple independent sources and subject-matter experts to confirm technical accuracy and relevance to current industry practices.

A concise synthesis of strategic imperatives reflecting how technological innovation and supply chain resilience determine competitive outcomes across servo applications

In conclusion, servo motors and drives remain central to the performance and flexibility of modern automation systems, yet they are experiencing a period of rapid evolution driven by digital control architectures, application diversification, and shifting trade dynamics. The interplay of hardware innovation and services expansion is redefining how manufacturers deliver value, with modular platforms and integrated software becoming decisive differentiators. Meanwhile, policy shifts and tariff developments have accelerated supply chain reconfiguration and heightened the importance of regional manufacturing and supplier diversification.

Looking ahead, companies that align engineering investments with clear segmentation strategies, that fortify supply chain resilience, and that monetize service capabilities will be best positioned to capture opportunity and mitigate risk. Transitioning from component sales to solution provision, supported by robust regional support networks and a focus on sustainable, energy-efficient designs, will enhance customer outcomes and ensure competitive durability. The insights presented here are intended to inform strategic decisions, prioritize R&D and supply chain initiatives, and guide commercial models that deliver measurable operational advantages across critical end markets.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rising demand for industrial automation across manufacturing, automotive, and logistics sectors globally
  • 5.2. Rapid adoption of smart factory solutions integrating servo systems with IoT and AI
  • 5.3. Growing preference for energy-efficient motors driven by environmental and regulatory mandates
  • 5.4. Increased use of robotics and CNC machines requiring precision servo motion control systems
  • 5.5. Miniaturization and compact servo designs enabling integration into smaller and smarter devices
  • 5.6. Shift from traditional motors to servo systems due to better precision and reliability
  • 5.7. Cloud-connected servo drives supporting remote diagnostics, updates, and predictive maintenance analytics
  • 5.8. Growth in linear servo motors for high-speed packaging, semiconductor, and printing applications
  • 5.9. Accelerated investments in industrial automation technologies increasing global servo system adoption

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Servo Motors & Drives Market, by Offering

  • 8.1. Introduction
  • 8.2. Hardware
    • 8.2.1. Controller Modules
    • 8.2.2. Electronic Amplifiers
    • 8.2.3. Encoders
    • 8.2.4. Sensors
  • 8.3. Software & Services
    • 8.3.1. Installation & Maintenance
    • 8.3.2. System Integration

9. Servo Motors & Drives Market, by Type

  • 9.1. Introduction
  • 9.2. Servo Drives
    • 9.2.1. AC Servo Drive
    • 9.2.2. DC Servo Drive
  • 9.3. Servo Motors
    • 9.3.1. AC Servo Motors
      • 9.3.1.1. Continuous Rotation Servo Motor
      • 9.3.1.2. Linear Servo Motor
      • 9.3.1.3. Positional Rotation Servo Motor
    • 9.3.2. DC Servo Motors
      • 9.3.2.1. Permanent Magnet Shunt Motor
      • 9.3.2.2. Shunt Control Motor
      • 9.3.2.3. Split Series Servo Motor

10. Servo Motors & Drives Market, by Communication Type

  • 10.1. Introduction
  • 10.2. Fieldbus-Based Communication
  • 10.3. Industrial Ethernet
  • 10.4. Wireless Communication

11. Servo Motors & Drives Market, by Mounting Type

  • 11.1. Introduction
  • 11.2. Face Mount
  • 11.3. Flange Mount
  • 11.4. Foot Mount
  • 11.5. Hollow Shaft

12. Servo Motors & Drives Market, by Motion Type

  • 12.1. Introduction
  • 12.2. Linear
  • 12.3. Rotary

13. Servo Motors & Drives Market, by Torque Range

  • 13.1. Introduction
  • 13.2. 0.1-10 Nm
  • 13.3. Above 10 Nm
  • 13.4. Below 0.1 Nm

14. Servo Motors & Drives Market, by Voltage Range

  • 14.1. Introduction
  • 14.2. 60V-600V
  • 14.3. Above 600V
  • 14.4. Below 60V

15. Servo Motors & Drives Market, by Brake Technology

  • 15.1. Introduction
  • 15.2. Permanent Magnet
  • 15.3. Spring

16. Servo Motors & Drives Market, by Category

  • 16.1. Introduction
  • 16.2. Analog Servo Motors & Drives
  • 16.3. Digital Servo Motors& Drives

17. Servo Motors & Drives Market, by Material Of Construction

  • 17.1. Introduction
  • 17.2. Non-Stainless Steel
  • 17.3. Stainless Steel

18. Servo Motors & Drives Market, by Application

  • 18.1. Introduction
  • 18.2. CNC Machines
  • 18.3. Medical Devices & Equipment
  • 18.4. Packaging Machinery
  • 18.5. Robotics
  • 18.6. Semiconductor Manufacturing Equipment

19. Servo Motors & Drives Market, by End-User Industry

  • 19.1. Introduction
  • 19.2. Aerospace & Defense
  • 19.3. Automotive
  • 19.4. Electronics & Semiconductor
  • 19.5. Food & Beverage
  • 19.6. Industrial Manufacturing
  • 19.7. Packaging
  • 19.8. Pharmaceutical & Medical

20. Americas Servo Motors & Drives Market

  • 20.1. Introduction
  • 20.2. United States
  • 20.3. Canada
  • 20.4. Mexico
  • 20.5. Brazil
  • 20.6. Argentina

21. Europe, Middle East & Africa Servo Motors & Drives Market

  • 21.1. Introduction
  • 21.2. United Kingdom
  • 21.3. Germany
  • 21.4. France
  • 21.5. Russia
  • 21.6. Italy
  • 21.7. Spain
  • 21.8. United Arab Emirates
  • 21.9. Saudi Arabia
  • 21.10. South Africa
  • 21.11. Denmark
  • 21.12. Netherlands
  • 21.13. Qatar
  • 21.14. Finland
  • 21.15. Sweden
  • 21.16. Nigeria
  • 21.17. Egypt
  • 21.18. Turkey
  • 21.19. Israel
  • 21.20. Norway
  • 21.21. Poland
  • 21.22. Switzerland

22. Asia-Pacific Servo Motors & Drives Market

  • 22.1. Introduction
  • 22.2. China
  • 22.3. India
  • 22.4. Japan
  • 22.5. Australia
  • 22.6. South Korea
  • 22.7. Indonesia
  • 22.8. Thailand
  • 22.9. Philippines
  • 22.10. Malaysia
  • 22.11. Singapore
  • 22.12. Vietnam
  • 22.13. Taiwan

23. Competitive Landscape

  • 23.1. Market Share Analysis, 2024
  • 23.2. FPNV Positioning Matrix, 2024
  • 23.3. Competitive Analysis
    • 23.3.1. Robert Bosch GmbH
    • 23.3.2. ABB Ltd.
    • 23.3.3. Delta Electronics, Inc.
    • 23.3.4. FANUC Corporation
    • 23.3.5. Fuji Electric Co., Ltd.
    • 23.3.6. Lenze SE
    • 23.3.7. Mitsubishi Electric Corporation
    • 23.3.8. Nidec Corporation
    • 23.3.9. OMRON Corporation
    • 23.3.10. Parker Hannifin Corporation
    • 23.3.11. Schneider Electric SE
    • 23.3.12. Siemens AG
    • 23.3.13. Yaskawa Electric Corporation

24. ResearchAI

25. ResearchStatistics

26. ResearchContacts

27. ResearchArticles

28. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦