½ÃÀ庸°í¼­
»óǰÄÚµå
1808462

½º¸¶Æ® ½ÃƼ ½ÃÀå : ÄÄÆ÷³ÍÆ®, ¼Ö·ç¼Ç À¯Çü, ÃÖÁ¾»ç¿ëÀÚ, Àü°³ ¸ðµåº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Smart Cities Market by Component, Solution Type, End User, Deployment Mode - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 193 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

½º¸¶Æ® ½ÃƼ ½ÃÀåÀº 2024³â¿¡´Â 6,213¾ï 8,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡ 7,028¾ï 4,000¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 13.43%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 1Á¶ 3,237¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 6,213¾ï 8,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 7,028¾ï 4,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 1Á¶ 3,237¾ï 2,000¸¸ ´Þ·¯
CAGR(%) 13.43%

À¶ÇÕÇÏ´Â ±â¼ú, µ¥ÀÌÅÍ ºÐ¼®, ÁøÈ­ÇÏ´Â µµ½Ã ¼ö¿ä·Î ÀÎÇØ Àü ¼¼°èÀûÀ¸·Î ¿¬°áµÇ°í ź·ÂÀûÀÎ Â÷¼¼´ë ½º¸¶Æ®½ÃƼ°¡ ¾î¶»°Ô Çü¼ºµÉÁö »ìÆìº¾´Ï´Ù.

µðÁöÅÐ ±â¼úÀÇ ±Þ¼ÓÇÑ À¶ÇÕ, Àα¸ Åë°èÇÐÀû º¯È­, ÁøÈ­ÇÏ´Â ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â µµ½Ã ¿î¿µ°ú ÁֹΠ¼­ºñ½º ¹æ½Ä¿¡ Å« º¯È­¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. µµ½ÉÀº ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϸ鼭 È¿À²ÀûÀÎ ¼­ºñ½º¸¦ Á¦°øÇϰí, Ä¡¾ÈÀ» °³¼±Çϸç, °æÁ¦Àû ȸº¹·ÂÀ» Ű¿ö¾ß ÇÑ´Ù´Â ¿ä±¸°¡ Á¡Á¡ ´õ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹è°æ¿¡¼­ ½º¸¶Æ®½ÃƼÀÇ °³³äÀº ÁöÀÚü ¸®´õ¿Í ±â¼ú Á¦°ø¾÷ü ¸ðµÎ¿¡°Ô ¸Å¿ì Áß¿äÇÑ Àü·«À¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

µµ½Ã ÀÎÇÁ¶ó, °Å¹ö³Í½º, Áö¼Ó°¡´É¼º ½Çõ¿¡ ÆÐ·¯´ÙÀÓ ÀüȯÀ» °¡Á®¿À°í, ±Ùº»ÀûÀÎ ±â¼úÀû, »çȸÀû º¯È­¸¦ °ËÁõÇÕ´Ï´Ù.

Áö³­ 10³â°£ ÀÏ·ÃÀÇ Çõ½ÅÀû º¯È­°¡ ½º¸¶Æ®½ÃƼÀÇ Àü¸ÁÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ù°, »ç¹°ÀÎÅͳÝ(Internet of Things) ¼¾¼­ÀÇ º¸±ÞÀ¸·Î µµ½Ã ȯ°æÀº ±× ¾î´À ¶§º¸´Ù °èÃøÈ­µÇ¾î Á¤ÀûÀÎ ÀÎÇÁ¶ó°¡ µ¿ÀûÀ̰í ÀÚ°¡ ¸ð´ÏÅ͸µÀÌ °¡´ÉÇÑ »ýŰè·Î º¯È­Çϰí ÀÖ½À´Ï´Ù. µÑ°, ÀΰøÁö´É°ú ¸Ó½Å·¯´×ÀÇ ¹ßÀüÀ¸·Î ¼³¸íÀû ºÐ¼®¿¡¼­ ó¹æÀû, ¿¹ÃøÀû ºÐ¼®À¸·Î ÀüȯÇÏ¿© ÀÇ»ç°áÁ¤ÀÚ°¡ ¹®Á¦¸¦ ¿¹ÃøÇϰí Àû±ØÀûÀ¸·Î ÀÚ¿øÀ» ¹èÄ¡ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¹Ì±¹ÀÇ »õ·Î¿î °ü¼¼°¡ 2025³â ½º¸¶Æ®½ÃƼ ±â¼ú µµÀÔ, °ø±Þ¸Á ÀçÆí, Àü·«Àû Á¶´Þ ¸ðµ¨¿¡ ¹ÌÄ¡´Â ÁßÃþÀû ¿µÇ⠺м®

2025³â, ±â¼ú ºÎǰ ¹× ¼­ºñ½º¿¡ ´ëÇÑ ¹Ì±¹ÀÇ »õ·Î¿î °ü¼¼ ºÎ°ú·Î ÀÎÇØ ½º¸¶Æ®½ÃƼ ÇÁ·ÎÁ§Æ®¸¦ Áö¿øÇÏ´Â ¼¼°è °ø±Þ¸Á¿¡ »õ·Î¿î º¹À⼺À» °¡Á®¿Ô½À´Ï´Ù. ÀÌ·¯ÇÑ Á¶Ä¡´Â ´©ÀûÀûÀÎ È¿°ú¸¦ °¡Á®¿Í ³×Æ®¿öÅ· ÀåÄ¡ ¹× ȯ°æ ¼¾¼­¿Í °°Àº ÁÖ¿ä Çϵå¿þ¾î ¿ä¼ÒÀÇ ºñ¿ëÀ» »ó½Â½Ã۰í ÀÖ½À´Ï´Ù. Á¦Á¶¾÷ü¿Í ½Ã½ºÅÛ ÅëÇÕ»ç¾÷ÀÚµéÀº ÅõÀÔ °¡°Ý »ó½Â¿¡ Á÷¸éÇÏ¿© ¿¹»êÀ» ÀçºÐ¹èÇϰí ÃѼÒÀ¯ºñ¿ë ¸ðµ¨À» ÀçÆò°¡Çß½À´Ï´Ù.

Çϵå¿þ¾î, ¼­ºñ½º, ¼ÒÇÁÆ®¿þ¾î, ¼Ö·ç¼Ç À¯Çü, ÃÖÁ¾ »ç¿ëÀÚ, µµÀÔ ¸ðµ¨¿¡ ´ëÇÑ Áß¿äÇÑ ÅëÂû·ÂÀ» ÅëÇØ º¸´Ù ½º¸¶Æ®ÇÑ µµ½Ã ÅõÀÚ Àü·«À» ¼ö¸³ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½º¸¶Æ®½ÃƼ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ°¡ ±¸¼º¿ä¼Ò, ¼Ö·ç¼Ç À¯Çü, ÃÖÁ¾ »ç¿ëÀÚ, ¹èÆ÷ ¸ðµå µî °¢ Â÷¿øº°·Î ¾îµð¿¡, ¾î¶»°Ô ÅõÀڵǴÂÁö ÀÌÇØÇϱâ À§Çؼ­´Â ¸íÈ®ÇÑ ¼¼ºÐÈ­ ÇÁ·¹ÀÓ¿öÅ©°¡ ÇʼöÀûÀÔ´Ï´Ù. ±¸¼º ¿ä¼ÒÀÇ °üÁ¡¿¡¼­ º¼ ¶§, ÀÌ ½ÃÀå¿¡´Â ³×Æ®¿öÅ· ÀåÄ¡ ¹× ¼¾¼­(ȯ°æ ¼¾¼­, ±¸Á¶Àû °ÇÀü¼º ¼¾¼­, ºñµð¿À Ä«¸Þ¶ó µî)¿Í ÇÔ²² ÄÁÆ®·Ñ·¯ ¹× °ÔÀÌÆ®¿þÀ̰¡ Æ÷ÇԵ˴ϴÙ. Çϵå¿þ¾î¸¦ º¸¿ÏÇÏ´Â ¼­ºñ½º·Î´Â ÄÁ¼³ÆÃ, ½Ã½ºÅÛ ÅëÇÕ, Áö¼ÓÀûÀÎ Áö¿ø ¹× À¯Áöº¸¼ö µîÀÇ ¼­ºñ½º°¡ ÀÖÀ¸¸ç, ¼ÒÇÁÆ®¿þ¾î´Â ºÐ¼®°ú ½Ã°¢È­¸¦ ¾Æ¿ì¸£´Â ¿ëµµ°ú µ¥ÀÌÅÍ °ü¸® ¹× »ç¹°ÀÎÅÍ³Ý ¿ÀÄɽºÆ®·¹À̼ÇÀ» ¾Æ¿ì¸£´Â Ç÷§Æû ¼ÒÇÁÆ®¿þ¾î·Î ³ª´¹´Ï´Ù. ¿ÀÄɽºÆ®·¹À̼ÇÀ» ´Ù·ç´Â Ç÷§Æû ¼ÒÇÁÆ®¿þ¾î·Î ±¸ºÐµË´Ï´Ù.

¹ÌÁÖ, À¯·´-Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀå¿¡¼­ÀÇ ½º¸¶Æ®½ÃƼ µµÀÔÀÇ Áö¿ªÀû ¿ªÇÐ, ±ÔÁ¦ ÃËÁø¿äÀÎ, ÅõÀÚ ÆÐÅÏ ºÐ¼®

½º¸¶Æ®½ÃƼ µµÀÔÀÇ Áö¿ªÀû ¿ªµ¿¼ºÀº ±ÔÁ¦ ȯ°æ, ÀÎÇÁ¶ó ¼º¼÷µµ, ÀÚ±ÝÁ¶´Þ ¸ÞÄ¿´ÏÁòÀÌ ´Ù¸£´Ù´Â °ÍÀ» ¹Ý¿µÇÕ´Ï´Ù. ¹ÌÁÖ Áö¿ª¿¡¼­´Â ÁöÀÚüµéÀÌ ¹Î°£ ºÎ¹®°úÀÇ °­·ÂÇÑ ÆÄÆ®³Ê½Ê°ú źźÇÑ ÀÚº» ½ÃÀåÀ» Ȱ¿ëÇÏ¿© È®Àå °¡´ÉÇÑ ¸ðºô¸®Æ¼ ¹× ¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¸¦ ½Ã¹üÀûÀ¸·Î µµÀÔÇϰí ÀÖÀ¸¸ç, ½Ç½Ã°£ µµ½Ã »ç°í °ü¸®¸¦ À§ÇØ °í±Þ ºÐ¼® Ç÷§ÆûÀ» ÅëÇÕÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ½Ç½Ã°£ µµ½Ã »ç°í °ü¸®¸¦ À§ÇØ °í±Þ ºÐ¼® Ç÷§ÆûÀ» ÅëÇÕÇÏ´Â °æ¿ìµµ ¸¹½À´Ï´Ù. ƯÈ÷ ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ µµ½ÃµéÀº ±Þ¼ÓÇÑ µµ½ÃÈ­¿Í ÀÎÇÁ¶ó ºÎÁ·¿¡ ´ëÀÀÇϱâ À§ÇØ ÀÌ·¯ÇÑ ±â¼úÀ» Àû¿ëÇϰí ÀÖÀ¸¸ç, âÀÇÀûÀÎ °ø°ø-¹Î°£ ÀÚ±Ý Á¶´Þ ±¸Á¶¸¦ À°¼ºÇϰí ÀÖ½À´Ï´Ù.

±âÁ¸ ÀÎÇÁ¶ó Á¦°ø¾÷ü, ¼ÒÇÁÆ®¿þ¾î Çõ½Å°¡, ¾ÖÀÚÀÏ ½ºÅ¸Æ®¾÷ÀÌ ¾î¶»°Ô Á¦ÈÞ¸¦ ¸Î°í ½º¸¶Æ®½ÃƼ ¼Ö·ç¼ÇÀ¸·Î °æÀï Â÷º°È­¸¦ ²ÒÇϰí ÀÖ´ÂÁö ¼Ò°³ÇÕ´Ï´Ù.

´ë±â¾÷°ú °ø°ø ºÎ¹®Àº À¯±âÀû Çõ½Å, M&A, Àü·«Àû Á¦ÈÞ¸¦ °áÇÕÇÏ¿© ±× ÀÔÁö¸¦ ´ÙÁö°í ÀÖ½À´Ï´Ù. À¯¸í ÀÎÇÁ¶ó ¹× ³×Æ®¿öÅ© Àåºñ Á¦°ø¾÷üµéÀº ±âÁ¸ Çϵå¿þ¾î Æ÷Æ®Æú¸®¿À¿¡ °í±Þ ºÐ¼® ¹× ÀΰøÁö´É ±â´ÉÀ» ÅëÇÕÇÏ¿© ½ÃÀå¿¡¼­ÀÇ ÀÔÁö¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù. ÀÌµé ±â¾÷Àº ¼ö½Ê³âµ¿¾È ½×¾Æ¿Â ¿î¿µ ±â¼ú Àü¹®¼ºÀ» ¹ÙÅÁÀ¸·Î ÇÁ·ÎÁ§Æ® µô¸®¹ö¸®¸¦ °£¼ÒÈ­ÇÏ°í »óÈ£¿î¿ë¼º ¸¶ÂûÀ» ÁÙÀÌ´Â ¼öÁ÷ ÅëÇÕ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù.

»ýÅÂ°è ÆÄÆ®³Ê½Ê, ¸ðµâÇü ¾ÆÅ°ÅØÃ³, Áö¼Ó°¡´É¼º ÅëÇÕ, ÀÎÀç°³¹ß¿¡ ´ëÇÑ Àü·«Àû Á¦¾È

¾÷°è ¸®´õµéÀº ±â¼ú Çõ½Å°ú °Å¹ö³Í½º ÇÁ·¹ÀÓ¿öÅ© ¹× Ä¿¹Â´ÏƼ Âü¿©ÀÇ ±ÕÇüÀ» ¸ÂÃß´Â ÃÑüÀûÀÎ »ýŰè Àü·«À» ¿ì¼±½ÃÇØ¾ß ÇÕ´Ï´Ù. ¿ì¼±, ÀÌÇØ°ü°èÀÚ°£ À§Çè°ú º¸»óÀ» ÀÏÄ¡½ÃŰ´Â ¹Î°ü ÆÄÆ®³Ê½ÊÀ» ±¸ÃàÇÔÀ¸·Î½á Ã¥ÀÓ°ú ¸ñÇ¥ÀÇ °øÀ¯¸¦ º¸ÀåÇÏ°í ´ë±Ô¸ð ÀÎÇÁ¶ó ÅõÀÚ¸¦ À§ÇÑ »õ·Î¿î ÀÚ±Ý Á¶´Þ ¼ö´ÜÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çù·Â °ü°è´Â Ÿ°ÙÆÃµÈ ÆÄÀÏ·µ ÇÁ·Î±×·¥À¸·Î º¸¿ÏµÇ¾î °³³äÀÇ ½Å¼ÓÇÑ °ËÁõ°ú ÅëÇÕ °ü·Ã °úÁ¦¸¦ Á¶±â¿¡ ¹ß°ßÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

Àü¹®°¡ ÀÎÅͺä, 2Â÷ Á¤º¸ ºÐ¼®, ½Å·Úµµ ³ôÀº µ¥ÀÌÅÍ »ï°¢Ãø·®º° È¥ÇÕ¹ý Á¶»ç ÇÁ·¹ÀÓ¿öÅ©ÀÇ ¼¼ºÎ »çÇ×

ÀÌ Á¶»ç´Â ¾÷°è ä¿ë µ¿Çâ¿¡ ´ëÇÑ Á¤·®Àû ºÐ¼®°ú ÇÔ²² ÁöÀÚü ÀÓ¿ø, ±â¼ú ±â¾÷ ÀÓ¿ø, Çаè Àü¹®°¡¸¦ ´ë»óÀ¸·Î ÇÑ Á¤¼ºÀû ÀÎÅͺ並 °áÇÕÇÑ ¾ö°ÝÇÑ È¥ÇÕ ¹æ¹ý·ÐÀû Á¢±Ù ¹æ½ÄÀ» äÅÃÇß½À´Ï´Ù. 2Â÷ Á¶»ç¿¡¼­´Â ÀϹݿ¡ °ø°³µÈ ¹é¼­, ±ÔÁ¦ ´ç±¹¿¡ Á¦ÃâµÈ ¼­·ù, ¼¼°è µµ½Ã Çõ½Å ÀÌ´Ï¼ÅÆ¼ºêÀÇ »ç·Ê ¿¬±¸ ¹®¼­ µîÀ» ±¤¹üÀ§ÇÏ°Ô Á¶»çÇß½À´Ï´Ù. 1Â÷ Á¶»ç´Â ´Ù¾çÇÑ Áö¿ª¿¡¼­ ½º¸¶Æ® ÀÎÇÁ¶ó µµÀÔÀ» °¨µ¶Çϰí ÀÖ´Â ÇÁ·ÎÁ§Æ® ¸®´õµé°úÀÇ ±¸Á¶È­µÈ Åä·ÐÀ» ÅëÇØ ÀÌ·ç¾îÁ³½À´Ï´Ù.

Áõ°Å ±â¹Ý Áö½ÄÀ» ÅëÇÕÇϰí, ÅëÇÕ ±â¼ú, Áö¿ª ¸ÂÃãÇü Á¢±Ù ¹æ½Ä, Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ÅëÇØ Â÷¼¼´ë ½º¸¶Æ®½ÃƼ¸¦ ¼º°øÀûÀ¸·Î À̲ø ¼ö ÀÖ´Â ¹æ¹ýÀ» Á¦½ÃÇÕ´Ï´Ù.

ÁÖ¿ä Á¶»ç °á°ú¸¦ Á¾ÇÕÇϸé, ½º¸¶Æ®½ÃƼÀÇ ¿òÁ÷ÀÓÀº ½ÇÇèÀûÀÎ ÆÄÀÏ·µ¿¡¼­ È¿À²¼º, Áö¼Ó°¡´É¼º, ½Ã¹Î ¸¸Á·µµ Ãø¸é¿¡¼­ ÃøÁ¤ °¡´ÉÇÑ ÀÌÀÍÀ» °¡Á®´ÙÁÖ´Â ÁÖ·ù µµ½Ã Àü·«À¸·Î ¼º¼÷Çϰí ÀÖÀ½À» ¾Ë ¼ö ÀÖ½À´Ï´Ù. ¼¾½Ì, Ä¿³ØÆ¼ºñƼ, µ¥ÀÌÅÍ ºÐ¼®ÀÇ ±â¼ú ¹ßÀüÀº º¸´Ù ¿¹ÃøÀûÀ̰í ó¹æÀûÀÎ ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô Çϰí, Çõ½ÅÀûÀÎ ÀÚ±Ý Á¶´Þ ¸ðµ¨°ú ¹Î°ü ÆÄÆ®³Ê½ÊÀº ´ë±Ô¸ð ¹èÄ¡ÀÇ À§ÇèÀ» ÁÙ¿©ÁÖ°í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ½º¸¶Æ® ½ÃƼ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
    • ÄÁÆ®·Ñ·¯ ¹× °ÔÀÌÆ®¿þÀÌ
    • ³×Æ®¿öÅ© µð¹ÙÀ̽º
    • ¼¾¼­
      • ȯ°æ ¼¾¼­
      • ±¸Á¶ Çコ ¼¾¼­
      • Ä·ÄÚ´õ
  • ¼­ºñ½º
    • ÄÁ¼³ÆÃ ¼­ºñ½º
    • ÅëÇÕ ¼­ºñ½º
    • Áö¿ø ¹× À¯Áö°ü¸®
  • ¼ÒÇÁÆ®¿þ¾î
    • ¾ÖÇø®ÄÉÀÌ¼Ç ¼ÒÇÁÆ®¿þ¾î
      • ºÐ¼® ¿ëµµ
      • ½Ã°¢È­ ¿ëµµ
    • Ç÷§Æû ¼ÒÇÁÆ®¿þ¾î
      • µ¥ÀÌÅÍ °ü¸® Ç÷§Æû
      • IoT Ç÷§Æû

Á¦9Àå ½º¸¶Æ® ½ÃƼ ½ÃÀå : ¼Ö·ç¼Ç À¯Çüº°

  • ½º¸¶Æ® ºôµù
    • HVAC
    • Á¶¸í
    • º¸¾È
  • ½º¸¶Æ® ¿¡³ÊÁö
    • ¼ö¿ä¹ÝÀÀ
    • ¿¡³ÊÁö °ü¸® ½Ã½ºÅÛ
    • ½º¸¶Æ® ±×¸®µå
  • ½º¸¶Æ® Á¤ºÎ
    • E Governance
    • °ø°ø ¾ÈÀü
  • ½º¸¶Æ® ÇコÄɾî
    • ÀÚ»ê¿î¿ë °ü¸®
    • ¿ø°Ý ¸ð´ÏÅ͸µ
    • ¿ø°ÝÀÇ·á
  • ½º¸¶Æ® ÀÎÇÁ¶ó
    • ½º¸¶Æ® °¡·Îµî
    • Æó±â¹° °ü¸®
    • ¹°°ü¸®
  • ½º¸¶Æ® ±³Åë
    • ÀÚÀ²ÁÖÇàÂ÷
    • ÁÖÂ÷Àå °ü¸®
    • °ø°ø ±³Åë °ü¸®
    • ±³Åë °ü¸®

Á¦10Àå ½º¸¶Æ® ½ÃƼ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • »ó¾÷
  • Á¤ºÎ
  • »ê¾÷
  • ÁÖÅÃ

Á¦11Àå ½º¸¶Æ® ½ÃƼ ½ÃÀå : Àü°³ ¸ðµåº°

  • Ŭ¶ó¿ìµå
  • On-Premise

Á¦12Àå ¾Æ¸Þ¸®Ä«ÀÇ ½º¸¶Æ® ½ÃƼ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦13Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ½º¸¶Æ® ½ÃƼ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦14Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½º¸¶Æ® ½ÃƼ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦15Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Accenture PLC
    • bee smart city GmbH
    • Cisco Systems, Inc.
    • Cleverciti Systems GmbH
    • Beontag
    • Dell Technologies Inc.
    • Fujitsu Limited
    • Telefonica SA
    • HCL Technologies Limited
    • Hitachi Ltd.
    • Honeywell International Incorporated
    • Huawei Technologies Co., Ltd.
    • Intel Corporation
    • International Business Machines Corporation
    • KaaIoT Technologies, LLC
    • Microsoft Corporation
    • NEC Corporation
    • Oracle Corporation
    • Robert Bosch GmbH
    • SAP SE
    • Schneider Electric SE
    • SICE TYS Group
    • Siemens AG
    • Sierra Wireless S.A. by Semtech Corporation
    • Telefonaktiebolaget LM Ericsson
    • Verizon Communications Inc.
    • Wipro Limited

Á¦16Àå ¸®¼­Ä¡ AI

Á¦17Àå ¸®¼­Ä¡ Åë°è

Á¦18Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦19Àå ¸®¼­Ä¡ ±â»ç

Á¦20Àå ºÎ·Ï

LSH

The Smart Cities Market was valued at USD 621.38 billion in 2024 and is projected to grow to USD 702.84 billion in 2025, with a CAGR of 13.43%, reaching USD 1,323.72 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 621.38 billion
Estimated Year [2025] USD 702.84 billion
Forecast Year [2030] USD 1,323.72 billion
CAGR (%) 13.43%

Exploring How Converging Technologies, Data Analytics, and Evolving Urban Demands Are Shaping the Next Generation of Connected, Resilient Smart Cities Worldwide

The rapid convergence of digital technologies, shifting demographics, and evolving regulatory frameworks is catalyzing a profound transformation in how cities operate and serve their inhabitants. Urban centers are increasingly pressured to deliver efficient services, enhance public safety, and foster economic resilience, all while minimizing environmental impact. Against this backdrop, the concept of a smart city has emerged as a pivotal strategy for municipal leaders and technology providers alike.

At its core, a smart city leverages interconnected hardware, software, and service solutions to collect, analyze, and act upon data flows in real time. The resulting insights drive optimized resource allocation, predictive maintenance, and personalized citizen engagement. Recent breakthroughs in sensor miniaturization, edge computing, and artificial intelligence have accelerated the pace of deployment, allowing pilot projects to scale rapidly across transportation, energy distribution, waste management, and public safety domains.

In addition to technological enablers, citizen expectations are evolving in parallel. Residents demand seamless mobility, access to digital public services, and transparent governance, compelling municipalities to adopt data-driven approaches. As a result, cross-sector collaboration between government agencies, technology vendors, utilities, and academic institutions is becoming the default model for smart city initiatives. This report opens by examining the foundations of the smart city paradigm, framing its potential to redefine urban living in the years ahead.

Examining the Fundamental Technological and Societal Shifts That Are Driving a Paradigm Shift in Urban Infrastructure, Governance, and Sustainability Practices

Over the past decade, a series of transformative shifts has reconfigured the smart city landscape. First, the proliferation of Internet of Things sensors has made urban environments more instrumented than ever before, transforming static infrastructures into dynamic, self-monitoring ecosystems. Second, advances in artificial intelligence and machine learning have enabled the transition from descriptive to prescriptive and predictive analytics, empowering decision makers to anticipate challenges and proactively deploy resources.

Simultaneously, the democratization of cloud computing and the maturation of edge platforms have dispersed computational power closer to the data source. This hybrid architecture reduces latency for mission-critical applications such as traffic management and emergency response. Moreover, the emergence of open data initiatives has fostered greater transparency and community-driven innovation, allowing external developers to create value-added solutions that extend municipal capabilities.

On the societal front, climate resilience and sustainability have ascended to the top of urban agendas. Cities worldwide are integrating green infrastructure, electrified transportation fleets, and demand response energy programs to meet ambitious carbon neutrality targets. Public-private partnerships have become the preferred vehicle for financing these large-scale endeavors, aligning private sector efficiencies with public sector goals.

Taken together, these shifts represent a paradigm departure from isolated technology pilots toward integrated, scalable citywide deployments. Municipalities are no longer merely testing smart solutions; they are embedding them into the core of urban governance models, setting the stage for a new era of data-driven, citizen-centric urban development.

Analyzing the Layered Effects of New United States Tariffs on Smart City Technology Adoption, Supply Chain Realignment, and Strategic Procurement Models in 2025

In 2025, a new wave of United States tariffs on technology components and services has introduced fresh complexity into global supply chains underpinning smart city projects. These measures have had a cumulative effect, increasing the cost of key hardware elements such as networking devices and environmental sensors. Manufacturers and system integrators are confronting higher input prices, prompting a reallocation of budgets and a reevaluation of total cost of ownership models.

To mitigate these pressures, many stakeholders have accelerated efforts to localize production of critical components, forming strategic alliances with domestic suppliers and exploring onshore assembly capabilities. Simultaneously, some software and platform providers are revisiting licensing structures to accommodate emerging tariff burdens, shifting from capital expense models to more flexible subscription-based offerings that spread costs over time.

Despite these headwinds, the underlying demand for smart city capabilities remains robust. Municipalities and utility operators continue to pursue digitalization initiatives, driven by long-term goals of operational efficiency and resilience. In response, technology vendors are enhancing modularity and interoperability in their product road maps, allowing customers to incrementally deploy solutions with lower upfront investment. This staged approach helps governments and enterprises navigate tariff-related uncertainties while maintaining momentum toward broader urban transformation objectives.

Uncovering Critical Insights Across Hardware, Services, Software, Solution Types, End Users, and Deployment Models to Inform Smarter Urban Investment Strategies

A clear segmentation framework is indispensable for understanding where and how investments in smart city solutions are being directed across component, solution type, end user, and deployment mode dimensions. From the component perspective, the market encompasses controllers and gateways alongside networking devices and sensors, which include environmental sensors, structural health sensors, and video cameras. Complementing hardware are services such as consulting, system integration, and ongoing support and maintenance, as well as a bifurcation of software into application offerings-spanning analytics and visualization-and platform software covering data management and Internet of Things orchestration.

Moving to solution type, smart urban portfolios span building-centric initiatives like HVAC optimization, advanced lighting control, and security systems, energetic schemes such as demand response, energy management, and smart grid technologies, and governance solutions focused on e-services and public safety infrastructures. Additionally, healthcare applications now include asset tracking, remote patient monitoring, and telemedicine platforms, while infrastructure segments cover smart street lighting, waste and water management, and transit solutions ranging from autonomous vehicles to parking, public transit, and traffic flow management.

End-user segmentation reveals diverse adoption patterns among commercial enterprises, government bodies, industrial operators, and residential communities, each with unique requirements for reliability, scalability, and cost efficiency. Finally, deployment modes oscillate between cloud-native architectures and on-premises installations, with hybrid configurations gaining traction as organizations seek to balance data sovereignty, performance, and security considerations. Together, these segmentation lenses deliver a comprehensive view of market priorities and investment trajectories across the smart city ecosystem.

Revealing Distinct Regional Dynamics, Regulatory Drivers, and Investment Patterns in Smart City Deployment Across the Americas, EMEA, and Asia-Pacific Markets

Regional dynamics in smart city adoption reflect divergent regulatory environments, infrastructure maturity, and funding mechanisms. In the Americas, municipalities are leveraging strong private sector partnerships and robust capital markets to pilot scalable mobility and energy projects, frequently integrating advanced analytics platforms for real-time urban incident management. Latin American cities, in particular, are adapting these technologies to address rapid urbanization and infrastructure deficits, fostering creative public-private financing structures.

Across Europe, the Middle East, and Africa, regulatory rigor around data privacy and sustainability shapes deployment priorities. European Union directives on climate neutrality and digital public administration have catalyzed extensive integration of smart governance solutions and renewable energy grids. Meanwhile, cities in the Gulf region are investing heavily in large-scale infrastructure projects that incorporate sensor-driven monitoring and predictive maintenance at unprecedented scales. In Sub-Saharan Africa, resource constraints are encouraging the adoption of low-power, scalable sensor networks paired with cloud-based services to optimize water and waste management.

In the Asia-Pacific region, rapid urban population growth and government-led digital transformation initiatives are fueling one of the highest rates of smart infrastructure investment globally. Major metropolitan areas are implementing comprehensive smart traffic management and autonomous transit systems, while smaller municipalities benefit from modular, cloud-based service offerings that reduce time-to-market. Cross-border collaboration among regional governments is further accelerating the harmonization of standards, enabling interoperable solutions and economies of scale across national boundaries.

Highlighting How Established Infrastructure Providers, Software Innovators, and Agile Startups Are Forming Alliances and Driving Competitive Differentiation in Smart City Solutions

Leading enterprises and public sector organizations are crystallizing their positions through a blend of organic innovation, mergers and acquisitions, and strategic alliances. A cohort of established infrastructure and networking equipment providers is deepening its presence in the market by embedding advanced analytics and artificial intelligence capabilities within existing hardware portfolios. These companies are leveraging decades of operational technology expertise to offer vertically integrated solutions that streamline project delivery and reduce interoperability friction.

Concurrently, pure-play software firms are forging partnerships with system integrators to bundle application suites-ranging from visualization tools to IoT orchestration platforms-into turnkey offerings. This collaboration accelerates deployment cycles and ensures consistent performance benchmarks. Meanwhile, specialized service providers focusing on consulting and support are expanding their geographical footprint to meet rising demand for local implementation and maintenance expertise.

Venture-backed startups are also reshaping competitive dynamics by introducing niche innovations in edge computing, cybersecurity, and citizen engagement platforms. These emerging players often adopt a platform-agnostic approach, making their solutions compatible with a broad spectrum of hardware and legacy systems. As a result, incumbents are investing in incubator programs to access new intellectual property and to remain agile in a rapidly shifting technology landscape.

Providing Strategic Recommendations on Ecosystem Partnerships, Modular Architectures, Sustainability Integration, and Workforce Development for Maximizing Smart City Impact

Industry leaders should prioritize holistic ecosystem strategies that balance technological innovation with governance frameworks and community engagement. First, forging public-private partnerships that align risk and reward across stakeholders can unlock new funding avenues for large-scale infrastructure investments while ensuring accountability and shared objectives. Complementing these collaborations with targeted pilot programs enables rapid proof of concept and early identification of integration challenges.

Second, adopting a modular technology architecture grounded in open standards can future-proof deployments against evolving regulatory requirements and security threats. By selecting interoperable components and embracing API-driven platforms, municipalities and enterprises can avoid vendor lock-in, accelerate innovation cycles, and monetize data through third-party applications.

Third, embedding sustainability metrics and resilience planning into project road maps will drive long-term value creation. Leaders must integrate renewable energy sources, circular economy principles, and climate risk modeling into their smart city blueprints. This approach not only meets stakeholder expectations for environmental stewardship but also strengthens infrastructure resilience against extreme weather events.

Finally, cultivating a data-competent workforce through targeted training and knowledge-sharing initiatives is essential to maximize the return on smart city investments. Equipping personnel with the skills to manage analytics platforms, cybersecurity protocols, and stakeholder communications fosters a culture of continuous improvement and innovation.

Detailing a Mixed-Method Research Framework with Expert Interviews, Secondary Source Analysis, and Robust Data Triangulation to Ensure Credible Smart City Insights

This research employs a rigorous mixed-method approach, combining qualitative interviews with leading municipal officials, technology executives, and academic experts, alongside quantitative analysis of industry adoption trends. Secondary research included an extensive review of publicly available white papers, regulatory filings, and case study documentation from global urban innovation initiatives. Primary insights were gathered through structured discussions with project leaders overseeing smart infrastructure deployments across diverse geographies.

Data triangulation techniques were applied to validate findings, cross-referencing interview observations with market intelligence databases and technology performance benchmarks. Geographic representativeness was ensured by selecting reference cities spanning advanced economies and emerging markets, each offering unique regulatory contexts and urban challenges. The research methodology also incorporated scenario analysis to assess the potential impacts of policy shifts, economic headwinds, and evolving technology road maps.

Finally, the study was peer-reviewed by an independent panel of subject matter experts in urban planning, data science, and sustainability. This multi-layered validation process reinforces the credibility and relevance of the insights presented, providing decision makers with a robust foundation for strategic planning.

Synthesizing Evidence-Based Findings to Illuminate How Integrated Technologies, Tailored Regional Approaches, and Strategic Partnerships Will Drive Next-Generation Smart City Success

In synthesizing the key findings, it is evident that the smart city movement has matured from experimental pilots to mainstream urban strategies that deliver measurable benefits in efficiency, sustainability, and citizen satisfaction. Technological advancements in sensing, connectivity, and data analytics are enabling more predictive and prescriptive decision-making, while innovative funding models and public-private partnerships are de-risking large-scale deployments.

Regional dynamics highlight that no single approach fits all contexts; tailored solutions that account for local regulatory frameworks, infrastructure readiness, and cultural norms are essential for successful implementation. The cumulative effect of new tariffs underscores the importance of supply chain agility and modular procurement strategies, allowing organizations to adapt to cost fluctuations without derailing long-term digitalization goals.

Looking ahead, the integration of edge computing with cloud-based orchestration, seamless interoperability across vendor ecosystems, and the embedding of sustainability metrics into core operational dashboards will define the next wave of smart city leadership. Cross-disciplinary collaboration, continuous skill development, and open innovation models will empower cities and enterprises to navigate uncertainty and build resilient, inclusive urban environments.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of AI-driven predictive traffic management systems to reduce urban congestion
  • 5.2. Implementation of solar-powered smart street lighting networks with adaptive brightness controls
  • 5.3. Deployment of 5G-enabled edge computing networks powering real-time IoT applications
  • 5.4. Expansion of hyperlocal air quality monitoring using low-cost sensor networks
  • 5.5. Adoption of digital twin technology for proactive infrastructure monitoring and maintenance
  • 5.6. Use of blockchain-based platforms for secure municipal data sharing and citizen services
  • 5.7. Growing integration of autonomous public transit solutions in urban mobility ecosystems
  • 5.8. Development of citizen engagement platforms for participatory budgeting and urban planning
  • 5.9. Incorporation of battery storage microgrids alongside renewable energy sources in city planning
  • 5.10. Scaling up smart waste management systems with AI-optimized collection and recycling routing

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Smart Cities Market, by Component

  • 8.1. Introduction
  • 8.2. Hardware
    • 8.2.1. Controllers & Gateways
    • 8.2.2. Networking Devices
    • 8.2.3. Sensors
      • 8.2.3.1. Environmental Sensors
      • 8.2.3.2. Structural Health Sensors
      • 8.2.3.3. Video Cameras
  • 8.3. Services
    • 8.3.1. Consulting Services
    • 8.3.2. Integration Services
    • 8.3.3. Support & Maintenance
  • 8.4. Software
    • 8.4.1. Application Software
      • 8.4.1.1. Analytics Applications
      • 8.4.1.2. Visualization Applications
    • 8.4.2. Platform Software
      • 8.4.2.1. Data Management Platforms
      • 8.4.2.2. IoT Platforms

9. Smart Cities Market, by Solution Type

  • 9.1. Introduction
  • 9.2. Smart Building
    • 9.2.1. Hvac
    • 9.2.2. Lighting
    • 9.2.3. Security
  • 9.3. Smart Energy
    • 9.3.1. Demand Response
    • 9.3.2. Energy Management Systems
    • 9.3.3. Smart Grid
  • 9.4. Smart Governance
    • 9.4.1. E Governance
    • 9.4.2. Public Safety
  • 9.5. Smart Healthcare
    • 9.5.1. Asset Management
    • 9.5.2. Remote Monitoring
    • 9.5.3. Telemedicine
  • 9.6. Smart Infrastructure
    • 9.6.1. Smart Street Lighting
    • 9.6.2. Waste Management
    • 9.6.3. Water Management
  • 9.7. Smart Transportation
    • 9.7.1. Autonomous Vehicles
    • 9.7.2. Parking Management
    • 9.7.3. Public Transit Management
    • 9.7.4. Traffic Management

10. Smart Cities Market, by End User

  • 10.1. Introduction
  • 10.2. Commercial
  • 10.3. Government
  • 10.4. Industrial
  • 10.5. Residential

11. Smart Cities Market, by Deployment Mode

  • 11.1. Introduction
  • 11.2. Cloud
  • 11.3. On Premises

12. Americas Smart Cities Market

  • 12.1. Introduction
  • 12.2. United States
  • 12.3. Canada
  • 12.4. Mexico
  • 12.5. Brazil
  • 12.6. Argentina

13. Europe, Middle East & Africa Smart Cities Market

  • 13.1. Introduction
  • 13.2. United Kingdom
  • 13.3. Germany
  • 13.4. France
  • 13.5. Russia
  • 13.6. Italy
  • 13.7. Spain
  • 13.8. United Arab Emirates
  • 13.9. Saudi Arabia
  • 13.10. South Africa
  • 13.11. Denmark
  • 13.12. Netherlands
  • 13.13. Qatar
  • 13.14. Finland
  • 13.15. Sweden
  • 13.16. Nigeria
  • 13.17. Egypt
  • 13.18. Turkey
  • 13.19. Israel
  • 13.20. Norway
  • 13.21. Poland
  • 13.22. Switzerland

14. Asia-Pacific Smart Cities Market

  • 14.1. Introduction
  • 14.2. China
  • 14.3. India
  • 14.4. Japan
  • 14.5. Australia
  • 14.6. South Korea
  • 14.7. Indonesia
  • 14.8. Thailand
  • 14.9. Philippines
  • 14.10. Malaysia
  • 14.11. Singapore
  • 14.12. Vietnam
  • 14.13. Taiwan

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Accenture PLC
    • 15.3.2. bee smart city GmbH
    • 15.3.3. Cisco Systems, Inc.
    • 15.3.4. Cleverciti Systems GmbH
    • 15.3.5. Beontag
    • 15.3.6. Dell Technologies Inc.
    • 15.3.7. Fujitsu Limited
    • 15.3.8. Telefonica SA
    • 15.3.9. HCL Technologies Limited
    • 15.3.10. Hitachi Ltd.
    • 15.3.11. Honeywell International Incorporated
    • 15.3.12. Huawei Technologies Co., Ltd.
    • 15.3.13. Intel Corporation
    • 15.3.14. International Business Machines Corporation
    • 15.3.15. KaaIoT Technologies, LLC
    • 15.3.16. Microsoft Corporation
    • 15.3.17. NEC Corporation
    • 15.3.18. Oracle Corporation
    • 15.3.19. Robert Bosch GmbH
    • 15.3.20. SAP SE
    • 15.3.21. Schneider Electric SE
    • 15.3.22. SICE TYS Group
    • 15.3.23. Siemens AG
    • 15.3.24. Sierra Wireless S.A. by Semtech Corporation
    • 15.3.25. Telefonaktiebolaget LM Ericsson
    • 15.3.26. Verizon Communications Inc.
    • 15.3.27. Wipro Limited

16. ResearchAI

17. ResearchStatistics

18. ResearchContacts

19. ResearchArticles

20. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦