½ÃÀ庸°í¼­
»óǰÄÚµå
1808571

»ê¾÷¿ë ¸ðÅÍ ½ÃÀå : Á¦Ç°º°, Àü¾Ð Ŭ·¡½ºº°, Ãâ·Âº°, À§»ó À¯Çüº°, ¿ëµµº°, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°, À¯Åë ä³Îº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Industrial Motors Market by Product, Voltage Class, Power Output, Phase Type, Application, End-Use Industry, Distribution Channel - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 192 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

»ê¾÷¿ë ¸ðÅÍ ½ÃÀåÀº 2024³â¿¡´Â 253¾ï 5,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡ 265¾ï 7,000¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 5.02%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 340¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 253¾ï 5,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 265¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 340¾ï 2,000¸¸ ´Þ·¯
CAGR(%) 5.02%

»ê¾÷¿ë ¸ðÅÍ´Â Àü ¼¼°èÀÇ Áß¿äÇÑ ÀÎÇÁ¶ó¿¡ Àü·ÂÀ» °ø±ÞÇϰí Áö¼Ó °¡´ÉÇϰí Áö´ÉÀûÀÎ »ý»êÀ» Çü¼ºÇÏ¸ç °¢ ºÎ¹®ÀÇ È¿À²¼ºÀ» ÃËÁøÇÏ´Â µ¿½Ã¿¡ °¢ ºÎ¹®ÀÇ È¿À²¼ºÀ» ÃËÁøÇÕ´Ï´Ù.

»ê¾÷¿ë ¸ðÅÍ´Â Çö´ë »ê¾÷ÀÇ ±Ù°£À¸·Î Á¦Á¶¾÷ÀÇ Á¶¸³ ¶óÀκÎÅÍ ¿¡³ÊÁö ¹× °¡°ø ½Ã¼³ÀÇ Áß¿äÇÑ ÀÎÇÁ¶ó±îÁö ´Ù¾çÇÑ ¿ëµµ¿¡ Àü·ÂÀ» °ø±ÞÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿È­, È¿À²È­, Żź¼ÒÈ­¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ ¿ä±¸°¡ ³ô¾ÆÁö¸é¼­ °¢ ºÐ¾ßÀÇ ÀÌÇØ°ü°èÀÚµéÀº ¿îÀü ¼º´É°ú Áö¼Ó°¡´É¼ºÀ» ³ôÀ̱â À§ÇØ ¸ðÅÍ ±â¼ú°ú ÅëÇÕ °æ·Î¸¦ ÀçÆò°¡Çß½À´Ï´Ù.

»õ·Î¿î ±â¼ú Çõ½Å°ú Áö¼Ó°¡´É¼º Àǹ«È­·Î ÀÎÇØ »ê¾÷¿ë ¸ðÅÍÀÇ ¼º´ÉÀÌ Çõ½ÅµÇ°í ÀÖÀ¸¸ç, ¿î¿µ È¿À²¼ºÀÌ À籸¼ºµÇ°í ÀÖ½À´Ï´Ù.

ÃÖ±Ù ¸î ³â µ¿¾È ±â¼úÀû Çõ½Å°ú ȯ°æÀû ¿ä±¸°¡ À¶ÇÕµÇ¾î ¾÷°è »óȲÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ÷´Ü ¿µ±¸ ÀÚ¼® ¼ÒÀ縦 Ȱ¿ëÇÑ °íÈ¿À² ¼³°è·Î °øÁ¤ »ê¾÷ÀÇ ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀ̰í, ÀÓº£µðµå ¼¾¼­¿Í IoT ¿¬°áÀ» ÅëÇÕÇÏ¿© ½Ç½Ã°£ ¼º´É ¸ð´ÏÅ͸µ ¹× »óÅ ±â¹Ý °³ÀÔÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

¹Ì±¹ÀÇ °ü¼¼ Á¶Ä¡°¡ »ê¾÷¿ë ¸ðÅÍ °ø±Þ¸Á ÀÚÀç ºñ¿ë ¹× ¼¼°è Á¶´Þ Á¢±Ù ¹æ½Ä¿¡ ¹ÌÄ¡´Â ¿µÇâ Æò°¡

2025³â ¹Ì±¹ÀÇ »õ·Î¿î °ü¼¼ Á¶Ä¡ÀÇ µµÀÔÀº »ê¾÷¿ë ¸ðÅÍ »ýŰèÀÇ ±¹³»¿Ü ÀÌÇØ°ü°èÀڵ鿡°Ô Å« ¾Ð·ÂÀ» °¡Çß½À´Ï´Ù. ¼öÀÔ Ã¶°­, ±¸¸®, ÈñÅä·ù ¿ø¼Ò¿¡ ÀÇÁ¸ÇÏ´Â Á¦Á¶¾÷üµéÀº ÅõÀÔ ºñ¿ë »ó½Â¿¡ Á÷¸éÇÏ¿© ºÎǰ Á¶´Þ Àü·«°ú »ý»ê ¹ßÀÚ±¹À» ½Å¼ÓÇÏ°Ô Á¶Á¤ÇØ¾ß ÇÕ´Ï´Ù.

¸ðÅÍ À¯Çü, Àü¾Ð µî±Þ, Àü·Â Ãâ·Â, À§»ó ±¸¼º, ¿ëµµ, ÃÖÁ¾ »ç¿ë »ê¾÷º°·Î ¼¼ºÐÈ­µÈ ½ÉÃþÀûÀÎ ÅëÂû·ÂÀ¸·Î Àü·«Àû ¸íÈ®¼ºÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

»ó¼¼ÇÑ ¼¼ºÐÈ­ ·»Áî´Â »ê¾÷¿ë ¸ðÅÍ ¼ö¿ä¿Í ÅõÀÚ °áÁ¤À» Çü¼ºÇÏ´Â ¹Ì¹¦ÇÑ ÃËÁø¿äÀÎÀ» ´ÙÃàÀ¸·Î µå·¯³À´Ï´Ù. Á¦Ç°À» ±âÁØÀ¸·Î ºÐ¼®Çϸé AC ¸ðÅÍ¿Í DC ¸ðÅÍ·Î ³ª´µ¸ç, ÀüÀÚ´Â À¯µµ ¸ðÅÍ¿Í µ¿±â ¸ðÅÍ·Î, ÈÄÀÚ´Â ºê·¯½Ã DC ¸ðÅÍ¿Í ºê·¯½¬¸®½º DC ¸ðÅÍ(BLDC)·Î ³ª´¹´Ï´Ù. Àü¾Ð µî±ÞÀº 6kV ÀÌ»óÀÇ °íÀü¾Ð, 2-6kVÀÇ ÁßÀü¾Ð, 2kV ÀÌÇÏÀÇ ÀúÀü¾ÐÀ¸·Î ±¸ºÐµÇ¸ç, °¢°¢ ¼³°è ¹× ÀÀ¿ë»óÀÇ °úÁ¦°¡ ÀÖ½À´Ï´Ù.

Áö¿ªº° ½ÃÀå ¿ªÇÐÀº ¹ÌÁÖ, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ °íÀ¯ÇÑ ¼ºÀå ÃËÁø¿äÀΰú ±ÔÁ¦ ¿µÇâ¿¡ µû¸¥ ½ÃÀå ¿ªÇÐÀ» º¸¿©ÁÝ´Ï´Ù.

ºÏ¹Ì¿Í ³²¹ÌÀÇ Áö¿ª ¿ªÇÐÀº ³ëÈÄÈ­µÈ ÀÎÇÁ¶óÀÇ Çö´ëÈ­¿¡ ÁßÁ¡À» µÎ°í, Á¦Á¶ °ÅÁ¡°ú ±Þ¼ºÀåÇÏ´Â Àç»ý ¿¡³ÊÁö ÇÁ·ÎÁ§Æ® ¸ðµÎ¿¡¼­ ¿¡³ÊÁö È¿À²ÀûÀÎ ¸ðÅÍ ½Ã½ºÅÛ¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖÀ½À» ¹Ý¿µÇÕ´Ï´Ù. ±ÔÁ¦ ÇýÅðú ¼ÛÀü¸ÁÀÇ Å»Åº¼ÒÈ­ ¸ñÇ¥°¡ ¾ö°ÝÇÑ È¿À² ±âÁØÀ» ÃæÁ·ÇÏ´Â ¸ðÅÍ¿¡ ´ëÇÑ ¼ö¿ä¸¦ °¡¼ÓÈ­Çϰí ÀÖÀ¸¸ç, Á¦Á¶¾÷üµéÀº ź¼Ò ¹èÃâ·®À» ÁÙÀÌ´Â ÃÖÁ¾ »ç¿ëÀÚ¸¦ Áö¿øÇϱâ À§ÇØ Áö¿ª ±â¹Ý ¼­ºñ½º ¼¾ÅÍ¿Í °³Á¶ ÇÁ·Î±×·¥ ¼³¸³À» ÃßÁøÇϰí ÀÖ½À´Ï´Ù.

ºü¸£°Ô ÁøÈ­ÇÏ´Â ½ÃÀå¿¡¼­ °æÀï ¿ìÀ§¸¦ È®º¸Çϱâ À§ÇÑ ÁÖ¿ä »ê¾÷¿ë ¸ðÅÍ Á¦Á¶¾÷üÀÇ Àü·«Àû Çõ½Å°ú ÆÄÆ®³Ê½Ê¿¡ ´ëÇÑ °æÀïÀû °íÂû.

»ê¾÷¿ë ¸ðÅͰæÀï ±¸µµ´Â ÀüÅëÀûÀÎ Àü¹®¼º°ú ¹Ì·¡ÁöÇâÀûÀÎ Çõ½Å Àü·«ÀÇ °áÇÕÀ¸·Î Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. ABB¿Í °°Àº ÀüÅëÀûÀÎ Á¦Á¶¾÷üµéÀº ½Ç½Ã°£ ºÐ¼®°ú ÀÚ»ê °ü¸® ¼Ö·ç¼ÇÀ» ÅëÇÕÇÑ µðÁöÅÐ ¼­ºñ½º Ç÷§Æû¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, Áö¸à½º´Â ÷´Ü ¼ÒÀç¿Í »óÅ ¸ð´ÏÅ͸µÀ» À§ÇÑ ÀÎÅÚ¸®Àü½º¸¦ ÅëÇÕÇÑ ¸ðÅÍ ¼³°è¸¦ ½ÃÇèÀûÀ¸·Î µµÀÔÇϰí ÀÖ½À´Ï´Ù.

»ê¾÷¿ë ¸ðÅÍ »ç¾÷¿¡¼­ µðÁöÅÐ Àüȯ °ø±Þ¸Á °­Àμº°ú Áö¼Ó°¡´É¼º ¹®Á¦¸¦ Ȱ¿ëÇϱâ À§ÇÑ ¾÷°è ¸®´õµéÀ» À§ÇÑ ½ÇÇà °¡´ÉÇÑ Àü·«

»õ·Î¿î ±âȸ¸¦ Ȱ¿ëÇϰíÀÚ ÇÏ´Â ¾÷°è ¸®´õµéÀº ¿ø°Ý ¸ð´ÏÅ͸µ°ú ¿¹Áöº¸ÀüÀ» °¡´ÉÇÏ°Ô ÇÏ´Â µðÁöÅÐ ¸®³ëº£ÀÌ¼Ç ÀÌ´Ï¼ÅÆ¼ºêÀÇ ÅëÇÕÀ» ¿ì¼±¼øÀ§¿¡ µÎ¾î¾ß ÇÕ´Ï´Ù. ±â¾÷Àº ¿§Áö ºÐ¼®°ú Ŭ¶ó¿ìµå ±â¹Ý ´ë½Ãº¸µå¸¦ µµÀÔÇÏ¿© °¡µ¿ ½Ã°£ °³¼±°ú ¿¡³ÊÁö ¼Òºñ ÃÖÀûÈ­¸¦ ÃßÁøÇϰí, ¿î¿µ µ¥ÀÌÅ͸¦ ½ÇÇà °¡´ÉÇÑ ÅëÂû·ÂÀ¸·Î ÀüȯÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü¹®°¡ ÀÎÅÍºä µ¥ÀÌÅÍÀÇ »ï°¢ Ãø·®°ú ¾ö°ÝÇÑ °ËÁõÀ» °áÇÕÇÑ Á¶»ç ¹æ¹ýÀ» ÅëÇØ ½Ç¿ëÀûÀÎ »ê¾÷¿ë ¸ðÅÍ ÀÎÅÚ¸®Àü½º¸¦ Á¦°øÇÕ´Ï´Ù.

º» Á¶»ç´Â ¾÷°è ÀÌÇØ°ü°èÀÚ¿ÍÀÇ Á÷Á¢ÀûÀÎ ¼ÒÅë°ú °ø°³ µ¥ÀÌÅÍ¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» °áÇÕÇÏ¿© źźÇÑ Áõ°Å±â¹ÝÀ» ±¸ÃàÇß½À´Ï´Ù. ¸ðÅÍ Á¦Á¶, ½Ã½ºÅÛ ÅëÇÕ, ¿¡³ÊÁö °ü¸® ºÐ¾ßÀÇ °íÀ§ °æ¿µÁø°úÀÇ ±¸Á¶È­µÈ ÀÎÅͺ並 ÅëÇØ ±â¼ú µµÀÔ, ¿î¿µ»óÀÇ ¾î·Á¿ò, ±ÔÁ¦ ¿µÇâ¿¡ ´ëÇÑ Àϼ± ÇöÀåÀÇ °üÁ¡À» ÆÄ¾ÇÇÏ¿© 1Â÷ÀûÀÎ ÅëÂû·ÂÀ» ¾ò¾ú½À´Ï´Ù.

»ê¾÷¿ë ¸ðÅÍ ½ÃÀå ¿ªÇÐ ¿ä¾à ±â¼ú µ¿Çâ°ú º¯È­ÇÏ´Â Á¤¼¼ ¼Ó¿¡¼­ »ì¾Æ³²±â À§ÇÑ ÀÌÇØ°ü°èÀÚÀÇ Àü·«Àû °úÁ¦µé

°á·ÐÀûÀ¸·Î, »ê¾÷¿ë ¸ðÅÍ ºÎ¹®Àº µðÁöÅÐ Çõ½Å, Áö¼Ó°¡´É¼ºÀÇ Çʿ伺, ÁöÁ¤ÇÐÀû º¯È­ÀÇ ±³Â÷Á¡¿¡ À§Ä¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ÃÑüÀûÀ¸·Î Çö´ëÀÇ °æÀï ȯ°æÀ» Á¤ÀÇÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® Á¦¾î, ÀÓº£µðµå ¼¾¼­, ¿¡³ÊÁö È¿À²ÀûÀÎ ¼ÒÀç µîÀÇ ±â¼ú ¹ßÀüÀº »õ·Î¿î ¼öÁØÀÇ ¼º´É°ú ½Å·Ú¼ºÀ» À̲ø¾î³»°í ÀÖÀ¸¸ç, ÁøÈ­ÇÏ´Â °ü¼¼ Á¦µµ¿Í Á¤Ã¥ ÇÁ·¹ÀÓ¿öÅ©´Â °ø±Þ¸Á Àü·«À» À籸¼ºÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå »ê¾÷¿ë ¸ðÅÍ ½ÃÀå : Á¦Ç°º°

  • AC ¸ðÅÍ
    • À¯µµ ¸ðÅÍ
    • µ¿±â ¸ðÅÍ
  • DC ¸ðÅÍ
    • ºê·¯½¬ DC ¸ðÅÍ
    • ºê·¯½¬¸®½º DC ¸ðÅÍ(BLDC)

Á¦9Àå »ê¾÷¿ë ¸ðÅÍ ½ÃÀå : Àü¾Ð Ŭ·¡½ºº°

  • °íÀü¾Ð(>6kV)
  • ÀúÀü¾Ð(<2kV)
  • ÁßÀü¾Ð(2-6kV)

Á¦10Àå »ê¾÷¿ë ¸ðÅÍ ½ÃÀå : Ãâ·Âº°

  • 51-200HP
  • 200HP ÀÌ»ó
  • 50HP ÀÌ»ó

Á¦11Àå »ê¾÷¿ë ¸ðÅÍ ½ÃÀå : À§»ó À¯Çüº°

  • ´Ü»ó ¸ðÅÍ
  • 3»ó ¸ðÅÍ
  • 2»ó¸ðÅÍ

Á¦12Àå »ê¾÷¿ë ¸ðÅÍ ½ÃÀå : ¿ëµµº°

  • ¾ÐÃà±â
  • ÄÁº£À̾î
  • ÆÒ ¹× ºí·Î¾î
  • HVAC ½Ã½ºÅÛ
  • ÆßÇÁ½º

Á¦13Àå »ê¾÷¿ë ¸ðÅÍ ½ÃÀå : ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°

  • È­ÇÐÁ¦Ç° ¹× ¼®À¯È­ÇÐÁ¦Ç°
  • ½Äǰ ¹× À½·á
  • Á¦Á¶¾÷
  • ±¤¾÷ ¹× ±Ý¼Ó
    • ±¤¹° ó¸®
    • ³ëõ ä±¼
    • ÁöÇÏ Ã¤±¼
  • ¼®À¯ ¹× °¡½º
  • ÀǾàǰ
  • ¹ßÀü
    • ¼ö·Â¹ßÀü¼Ò
    • ¿øÀڷ¹ßÀü¼Ò
    • Àç»ý¿¡³ÊÁö
    • È­·Â¹ßÀü¼Ò
  • ÆÞÇÁ ¹× Á¾ÀÌ
  • ¹° ¹× Æó¼ö

Á¦14Àå »ê¾÷¿ë ¸ðÅÍ ½ÃÀå : À¯Åë ä³Îº°

  • Á÷Á¢ ÆÇ¸Å
  • À¯Åë¾÷ü ¹× µµ¸Å¾÷ü

Á¦15Àå ¾Æ¸Þ¸®Ä«ÀÇ »ê¾÷¿ë ¸ðÅÍ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦16Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ »ê¾÷¿ë ¸ðÅÍ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦17Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ »ê¾÷¿ë ¸ðÅÍ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦18Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024³â
  • °æÀï ºÐ¼®
    • ABB Ltd.
    • Rockwell Automation, Inc.
    • Baldor Electric Company
    • Danfoss A/S
    • Emerson Electric Co.
    • Fuji Electric Co., Ltd.
    • General Electric Company
    • Godrej & Boyce Manufacturing Company Limited
    • Hitachi, Ltd.
    • Hyundai Electric & Energy Systems Co., Ltd.
    • Kirloskar Electric Company Ltd.
    • Lepu Motor
    • M.R. Enterprises
    • Marathon Electric LLC
    • Mitsubishi Electric Corporation
    • Nav Bharat Motor Manufacturing Company
    • Nidec Corporation
    • O.M.E. Motori Elettrici s.r.l.
    • Regal Beloit Corporation
    • Robert Bosch GmbH
    • SAINI HEAVY ELECTRICAL & ENGINEERING CO.PVT.LTD
    • Schneider Electric SE
    • Siemens AG
    • Toshiba Corporation
    • WEG S.A.
    • Yaskawa Electric Corporation

Á¦19Àå ¸®¼­Ä¡ AI

Á¦20Àå ¸®¼­Ä¡ Åë°è

Á¦21Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦22Àå ¸®¼­Ä¡ ±â»ç

Á¦23Àå ºÎ·Ï

LSH

The Industrial Motors Market was valued at USD 25.35 billion in 2024 and is projected to grow to USD 26.57 billion in 2025, with a CAGR of 5.02%, reaching USD 34.02 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 25.35 billion
Estimated Year [2025] USD 26.57 billion
Forecast Year [2030] USD 34.02 billion
CAGR (%) 5.02%

Industrial motors power critical infrastructure worldwide driving efficiency advancements across sectors while shaping sustainable and intelligent production

Industrial motors are foundational to modern industry, powering applications from manufacturing assembly lines to critical infrastructure in energy and processing facilities. As global demand for automation, efficiency, and decarbonization intensifies, stakeholders across sectors are re-evaluating motor technologies and integration pathways to drive operational performance and sustainability.

This introduction frames the significance of industrial motors in the context of emerging energy policies, digital transformation agendas, and shifting customer requirements. With electrification strategies accelerating in response to environmental mandates, motors have evolved beyond mechanical components into intelligent devices capable of adaptive control, remote monitoring, and predictive maintenance. Consequently, decision-makers must assess not only motor ratings and efficiencies but also the impact of connectivity and data integration on lifecycle costs and process reliability.

Moreover, global supply chain complexities and regulatory developments have elevated the importance of resilience and strategic sourcing. Navigating material tariffs, trade agreements, and regional compliance now sits alongside considerations of energy consumption and emissions. This section sets the stage for a detailed exploration of transformative trends, policy influences, segmentation insights, and actionable recommendations that will shape the competitive landscape of industrial motors today and tomorrow.

Emerging technological breakthroughs and sustainability mandates are revolutionizing industrial motor capabilities while reshaping operational efficiency

Recent years have witnessed a convergence of technological breakthroughs and environmental imperatives that are reshaping the industrial motor landscape. High-efficiency designs leveraging advanced permanent magnet materials are reducing energy consumption in process industries, while integration of embedded sensors and IoT connectivity is enabling real-time performance monitoring and condition-based interventions.

Meanwhile, software-driven control architectures and edge-computing capabilities are facilitating seamless integration with enterprise asset management systems, allowing operators to optimize motor load profiles in response to fluctuating demand. The rise of digital twins has also provided virtual replicas of motor systems, helping engineering teams simulate operational scenarios, identify potential failure modes, and accelerate time to insight.

On the sustainability front, stringent energy efficiency regulations and carbon neutrality targets are driving manufacturers to develop motors that meet or exceed global IE standards. Lifecycle assessments are becoming a standard part of procurement processes, prompting suppliers to offer end-to-end service models that include energy audits, refurbishment programs, and end-of-life recycling solutions.

Together, these transformative shifts are elevating the role of industrial motors from static components to dynamic enablers of process optimization, cost reduction, and environmental stewardship. As capabilities and expectations evolve, companies must align technology investments with broader digitalization and sustainability agendas to maintain competitive advantage.

Assessing the implications of United States tariff measures on industrial motor supply chains material costs and global procurement approaches

The introduction of new United States tariff measures in 2025 has exerted significant pressure on both domestic and international stakeholders in the industrial motor ecosystem. Manufacturers reliant on imported steel, copper, and rare earth elements have faced higher input costs, prompting rapid adjustments to component sourcing strategies and production footprints.

With material tariffs applied across several supply chain tiers, procurement teams have accelerated diversification efforts, exploring alternative suppliers in cost-advantaged regions while negotiating longer-term contracts to mitigate price volatility. At the same time, some end users have shifted toward higher-efficiency units to offset escalating acquisition costs through lower energy consumption over the equipment's operational life.

These policy changes have also influenced trade flows, with certain manufacturers relocating assembly operations closer to end markets to avoid customs duties. In parallel, distributors have restructured inventory holdings and revised distribution agreements to maintain service levels amid shifting lead times. The cumulative impact of these measures underscores the interconnected nature of global motor supply chains and the need for agile procurement and risk-management frameworks.

Looking ahead, companies are assessing the interplay between tariff regimes, energy efficiency incentives, and localization initiatives to optimize total cost of ownership. The ability to adapt quickly to regulatory shifts will be a defining factor in sustaining competitiveness under evolving trade environments.

Deep segmentation insights across motor types voltage classes power outputs phase configurations applications and end-use industries for strategic clarity

A detailed segmentation lens reveals the nuanced drivers shaping demand and investment decisions for industrial motors across multiple axes. An analysis based on product divides the landscape into AC motors and DC motors, with the former further categorized into induction motors and synchronous motors, while the latter encompasses brushed DC motors and brushless DC motors (BLDC). Voltage class considerations segment offerings into high voltage exceeding 6 kV, medium voltage spanning 2-6 kV, and low voltage below 2 kV, each presenting unique design and application challenges.

Power output segmentation identifies systems above 50 horsepower, including intermediate ranges of 51-200 HP and larger units exceeding 200 HP, driving tailored specification requirements for heavy machinery or precision control. The evaluation of phase type brings into focus single-phase, two-phase, and three-phase configurations, influencing motor performance in residential, commercial, and industrial contexts.

Application-oriented segmentation examines usage across compressors, conveyors, fans and blowers, HVAC systems, and pumps, highlighting the interplay between duty cycles, environmental factors, and reliability criteria. End-use industry segmentation spans chemicals and petrochemicals, food and beverage, manufacturing, mining and metals, oil and gas, pharmaceuticals, power generation, pulp and paper, and water and wastewater. Within mining and metals, the landscape further differentiates mineral processing, surface mining, and underground mining, while power generation segments into hydro power plants, nuclear power plants, renewable energy, and thermal power plants. Distribution channel insights distinguish direct sales from distributor and wholesaler networks, illuminating pathways for go-to-market strategies.

This comprehensive segmentation framework uncovers how each axis shapes procurement priorities, aftermarket service models, and technology adoption, providing a strategic guide for aligning product portfolios with evolving customer demands.

Regional market dynamics reveal unique opportunities growth drivers and regulatory influences across Americas Europe Middle East Africa and Asia-Pacific

Regional dynamics in the Americas reflect a focus on modernization of ageing infrastructure and a growing emphasis on energy-efficient motor systems in both manufacturing hubs and burgeoning renewable energy projects. Regulatory incentives and grid decarbonization targets have accelerated demand for motors that comply with stringent efficiency standards, driving manufacturers to establish localized service centers and retrofit programs to support end users in reducing carbon footprints.

In Europe, Middle East and Africa, evolving regulatory landscapes and diverse market maturity levels have given rise to a dual focus on high-performance industrial applications and cost-optimized solutions. Developed economies in Western Europe emphasize regulatory compliance and digital integration, while emerging markets across the Middle East and Africa pursue infrastructure expansion and power generation initiatives, presenting unique growth paths for modular and scalable motor systems.

The Asia-Pacific region continues to be characterized by rapid industrialization, robust capital investments in manufacturing, and flourishing renewable energy capacities. Countries with large-scale production facilities are increasingly adopting smart motor systems as part of digital transformation roadmaps, and the high demand for medium and high-voltage motors in heavy industries underscores the region's strategic importance in global supply chains.

Understanding these distinct regional profiles enables stakeholders to tailor market entry strategies, prioritize technology partnerships, and align service offerings with local requirements and growth drivers.

Insights into leading industrial motor manufacturers strategies innovations and partnerships driving competitive advantage in a rapidly evolving market

The competitive landscape of industrial motors is shaped by a blend of legacy expertise and forward-looking innovation strategies. Established manufacturers such as ABB have invested heavily in digital service platforms that integrate real-time analytics with asset management solutions, while Siemens has piloted motor designs featuring advanced materials and embedded intelligence for condition monitoring.

Meanwhile, WEG has focused on expanding its global manufacturing footprint to support rapid delivery and local service capabilities, and Toshiba has pursued partnerships to accelerate the development of high-efficiency synchronous reluctance motors. Nidec's research and development efforts into ultra-compact brushless DC technologies have opened new avenues for energy savings in critical applications, and Regal's aftermarket networks enhance lifecycle support through predictive maintenance programs.

These leading companies continuously refine their value propositions through strategic alliances, targeted acquisitions, and diversified portfolios that cater to emerging requirements such as decarbonization, automation, and supply chain resilience. Their approaches underscore the importance of technology roadmaps, end-user collaboration, and services-led business models in maintaining differentiation.

For stakeholders evaluating partnership or procurement decisions, insights into these companies' innovation trajectories, production capacities, and service networks provide a crucial benchmark for comparison and strategic alignment.

Actionable strategies for industry leaders to harness digital transformation supply chain resilience and sustainability agendas in industrial motor operations

Industry leaders seeking to capitalize on emerging opportunities should prioritize the integration of digital retrofit initiatives that enable remote monitoring and predictive maintenance. By deploying edge analytics and cloud-based dashboards, organizations can drive uptime improvements and optimize energy consumption, converting operational data into actionable insights.

Supply chain resilience must also be elevated as a strategic imperative. Diversifying supplier networks, negotiating framework agreements to secure raw material access, and building regional assembly capabilities can mitigate the impact of tariff fluctuations and logistical disruptions. Engaging in collaborative forecasting with key suppliers and leveraging advanced procurement platforms will further strengthen risk management.

Simultaneously, aligning product development with sustainability agendas-such as adopting low-global-warming-potential refrigerants in HVAC-driven motor applications or selecting IE4+ efficiency classes-will position companies favorably under tightening environmental regulations. Establishing lifecycle service offerings that include energy audits, refurbishment, and end-of-life recycling programs can transform motors from one-time assets into recurring-revenue opportunities.

Finally, fostering cross-functional capabilities through training programs in advanced control systems, data analytics, and regulatory compliance will ensure that teams are equipped to manage the evolving complexity of motor infrastructures. A holistic strategy that integrates technology, supply chain agility, sustainability, and talent development will serve as the foundation for sustained competitive advantage.

Research methodology combining expert interviews data triangulation and rigorous validation to deliver actionable industrial motor intelligence

This research combines direct engagement with industry stakeholders and comprehensive analysis of publicly available data to construct a robust evidence base. Primary insights were obtained through structured interviews with senior executives in motor manufacturing, system integration, and energy management, capturing frontline perspectives on technology adoption, operational challenges, and regulatory impacts.

Secondary research encompassed an exhaustive review of technical standards, patent filings, industry whitepapers, and trade publications to map the evolution of motor efficiencies, material innovations, and digitalization trends. Each data point underwent rigorous triangulation across multiple sources to validate accuracy and contextual relevance.

Quantitative and qualitative findings were synthesized through a multi-layered validation process involving cross-functional domain experts, ensuring that interpretations reflect current market realities and emerging inflection points. Scenario analysis was applied to examine the interplay between tariff policies, energy mandates, and regional growth trajectories, while case studies illustrated successful applications of advanced motor technologies in diverse industrial settings.

This methodology underscores the study's commitment to depth and reliability, offering decision-makers a clear, evidence-based foundation for strategy development and investment planning in the industrial motor sector.

Concluding synthesis of industrial motor market dynamics technological trends and strategic imperatives for stakeholders navigating an evolving landscape

In conclusion, the industrial motor sector stands at the intersection of digital innovation, sustainability imperatives, and geopolitical shifts that collectively define the modern competitive landscape. Technological advancements in smart controls, embedded sensors, and energy-efficient materials are unlocking new levels of performance and reliability, while evolving tariff regimes and policy frameworks are reshaping supply chain strategies.

The multi-dimensional segmentation analysis highlights where investment and resource allocation can yield the greatest return, whether through targeted motor upgrades for critical applications or through service models that deliver lifecycle value. Regional perspectives reveal that a one-size-fits-all approach will fall short, as end users in different geographies respond to distinct regulatory and infrastructure drivers.

Leading companies demonstrate that success hinges on an integrated approach encompassing innovation partnerships, localized operational footprints, and service-led business models. For industry participants, the path forward involves embracing digital retrofit strategies, enhancing supply chain agility, and embedding sustainability into core value propositions.

By synthesizing these insights, this study equips stakeholders with the strategic clarity required to navigate ongoing disruptions and capitalize on emerging opportunities in the global industrial motor arena.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rising adoption of predictive maintenance solutions driven by IoT analytics in industrial motors
  • 5.2. Emergence of digital twin technology for enhanced lifecycle management and performance simulation of industrial motors
  • 5.3. Growing implementation of variable frequency drives to optimize energy consumption and motor speed control
  • 5.4. Increasing integration of smart sensors enabling real time performance monitoring and fault detection in motors
  • 5.5. Surge in demand for explosion proof motors propelled by stricter safety regulations in chemical and oil sectors
  • 5.6. Development of lightweight compact motor designs to support automation in space constrained manufacturing environments
  • 5.7. Advances in advanced materials and additive manufacturing improving motor thermal management and mechanical durability

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Industrial Motors Market, by Product

  • 8.1. Introduction
  • 8.2. AC Motor
    • 8.2.1. Induction Motors
    • 8.2.2. Synchronous Motors
  • 8.3. DC Motor
    • 8.3.1. Brushed DC Motors
    • 8.3.2. Brushless DC Motors (BLDC)

9. Industrial Motors Market, by Voltage Class

  • 9.1. Introduction
  • 9.2. High Voltage (>6 kV)
  • 9.3. Low Voltage (<2 kV)
  • 9.4. Medium Voltage (2-6 kV)

10. Industrial Motors Market, by Power Output

  • 10.1. Introduction
  • 10.2. 51-200 HP
  • 10.3. >200 HP
  • 10.4. >50 HP

11. Industrial Motors Market, by Phase Type

  • 11.1. Introduction
  • 11.2. Single-Phase Motors
  • 11.3. Three-Phase Motors
  • 11.4. Two-Phase Motors

12. Industrial Motors Market, by Application

  • 12.1. Introduction
  • 12.2. Compressors
  • 12.3. Conveyors
  • 12.4. Fans & Blowers
  • 12.5. HVAC Systems
  • 12.6. Pumps

13. Industrial Motors Market, by End-Use Industry

  • 13.1. Introduction
  • 13.2. Chemicals & Petrochemicals
  • 13.3. Food & Beverage
  • 13.4. Manufacturing
  • 13.5. Mining & Metals
    • 13.5.1. Mineral Processing
    • 13.5.2. Surface Mining
    • 13.5.3. Underground Mining
  • 13.6. Oil & Gas
  • 13.7. Pharmaceuticals
  • 13.8. Power Generation
    • 13.8.1. Hydro Power Plants
    • 13.8.2. Nuclear Power Plants
    • 13.8.3. Renewable Energy
    • 13.8.4. Thermal Power Plants
  • 13.9. Pulp & Paper
  • 13.10. Water & Wastewater

14. Industrial Motors Market, by Distribution Channel

  • 14.1. Introduction
  • 14.2. Direct Sales
  • 14.3. Distributor/Wholesaler

15. Americas Industrial Motors Market

  • 15.1. Introduction
  • 15.2. United States
  • 15.3. Canada
  • 15.4. Mexico
  • 15.5. Brazil
  • 15.6. Argentina

16. Europe, Middle East & Africa Industrial Motors Market

  • 16.1. Introduction
  • 16.2. United Kingdom
  • 16.3. Germany
  • 16.4. France
  • 16.5. Russia
  • 16.6. Italy
  • 16.7. Spain
  • 16.8. United Arab Emirates
  • 16.9. Saudi Arabia
  • 16.10. South Africa
  • 16.11. Denmark
  • 16.12. Netherlands
  • 16.13. Qatar
  • 16.14. Finland
  • 16.15. Sweden
  • 16.16. Nigeria
  • 16.17. Egypt
  • 16.18. Turkey
  • 16.19. Israel
  • 16.20. Norway
  • 16.21. Poland
  • 16.22. Switzerland

17. Asia-Pacific Industrial Motors Market

  • 17.1. Introduction
  • 17.2. China
  • 17.3. India
  • 17.4. Japan
  • 17.5. Australia
  • 17.6. South Korea
  • 17.7. Indonesia
  • 17.8. Thailand
  • 17.9. Philippines
  • 17.10. Malaysia
  • 17.11. Singapore
  • 17.12. Vietnam
  • 17.13. Taiwan

18. Competitive Landscape

  • 18.1. Market Share Analysis, 2024
  • 18.2. FPNV Positioning Matrix, 2024
  • 18.3. Competitive Analysis
    • 18.3.1. ABB Ltd.
    • 18.3.2. Rockwell Automation, Inc.
    • 18.3.3. Baldor Electric Company
    • 18.3.4. Danfoss A/S
    • 18.3.5. Emerson Electric Co.
    • 18.3.6. Fuji Electric Co., Ltd.
    • 18.3.7. General Electric Company
    • 18.3.8. Godrej & Boyce Manufacturing Company Limited
    • 18.3.9. Hitachi, Ltd.
    • 18.3.10. Hyundai Electric & Energy Systems Co., Ltd.
    • 18.3.11. Kirloskar Electric Company Ltd.
    • 18.3.12. Lepu Motor
    • 18.3.13. M.R. Enterprises
    • 18.3.14. Marathon Electric LLC
    • 18.3.15. Mitsubishi Electric Corporation
    • 18.3.16. Nav Bharat Motor Manufacturing Company
    • 18.3.17. Nidec Corporation
    • 18.3.18. O.M.E. Motori Elettrici s.r.l.
    • 18.3.19. Regal Beloit Corporation
    • 18.3.20. Robert Bosch GmbH
    • 18.3.21. SAINI HEAVY ELECTRICAL & ENGINEERING CO.PVT.LTD
    • 18.3.22. Schneider Electric SE
    • 18.3.23. Siemens AG
    • 18.3.24. Toshiba Corporation
    • 18.3.25. WEG S.A.
    • 18.3.26. Yaskawa Electric Corporation

19. ResearchAI

20. ResearchStatistics

21. ResearchContacts

22. ResearchArticles

23. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦