시장보고서
상품코드
1808595

재생의료 분야 인공지능(AI) 시장 : 기술, 기능, 개발 단계, 제공, 용도, 최종사용자 산업별 - 세계 예측(2025-2030년)

Artificial Intelligence in Regenerative Medicine Market by Technology, Functionality, Stage Of Development, Offerings, Application, End-User Industry - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 192 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

재생의료 분야 인공지능(AI) 시장은 2024년 2억 9,423만 달러로 평가되었습니다. 2025년에 3억 5,793만 달러에 이르고, CAGR22.16%로 성장하여 2030년에는 9억 7,813만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 2억 9,423만 달러
추정 연도 : 2025년 3억 5,793만 달러
예측 연도 : 2030년 9억 7,813만 달러
CAGR(%) 22.16%

환자 중심의 획기적인 치료를 촉진하는 인공지능과 재생의료의 접점을 밝힙니다.

인공지능은 세포 및 조직 공학에서 전례 없는 정밀도를 가능하게 하고, 발견을 가속화하고, 치료 결과를 최적화함으로써 재생의료의 경계를 재정의하고 있습니다. 첨단 계산 모델과 생물학적 연구의 융합은 디지털 플랫폼이 새로운 스캐폴딩 설계를 유도하고, 세포의 거동을 예측하고, 전달 메커니즘을 개선하고, 환자 맞춤형 솔루션의 새로운 시대를 열었습니다. 이 소개에서는 알고리즘 기반 도구가 어떻게 실험실 프로세스와 통합되어 재생 중재의 효과와 안전성을 증폭시킬 수 있는지에 대해 종합적으로 살펴봅니다.

재생의료의 치료 프로토콜을 재정의하고 있는 패러다임 전환적 기술 및 임상적 진전 검증

재생의료의 정세는 계산 능력의 비약적인 향상과 알고리즘의 고도화로 변모하고 있습니다. 지난 10년간 영상 처리 기술 혁신으로 연구자들은 현미경 수준의 정확도로 조직 구조를 매핑할 수 있게 되었고, 비디오 분석 플랫폼은 역동적인 세포 이벤트를 실시간으로 포착할 수 있게 되었습니다. 동시에 딥러닝 프레임워크는 유전체 및 단백질체 데이터 세트의 해독에서 놀라운 능력을 발휘하여 유전자 조절 및 세포 초기화의 새로운 표적을 밝혀냈습니다.

미국 2025년 관세 조정이 인공지능 기반 재생의료 분야에 미치는 누적 영향 평가

2025년 이후 미국의 새로운 관세 조치로 인해 AI 기반 재생 연구에 매우 중요한 하드웨어 부품, 첨단 영상 처리 장비, 특수 시약의 조달이 더욱 복잡해졌습니다. 수입되는 고해상도 현미경과 컴퓨팅 가속기에 대한 관세 인상은 벤더와의 계약 재검토로 이어져 많은 연구소가 업무의 연속성을 지키기 위해 장기적인 조달 전략을 재검토하도록 유도하고 있습니다.

재생의료 AI 용도에 대한 종합적인 다차원적 세분화 프레임워크를 통해 중요한 통찰력 제공

철저한 세분화 분석을 통해 AI를 활용한 재생의료 시장에 대한 다차원적이고 미묘한 통찰력을 얻을 수 있습니다. 기초 기술의 렌즈를 통해 보면, 이미지 처리와 비디오 분석을 모두 포괄하는 컴퓨터 비전의 발전이 머신러닝 알고리즘의 획기적인 발전과 병행하고 있음을 알 수 있습니다. 후자의 범주는 딥러닝, 강화학습, 지도학습, 비지도학습, 지도학습으로 구성되며, 각각은 복잡한 생물학적 현상을 모델링하는 명확한 능력에 기여합니다. 음성 인식 및 텍스트 분석과 같은 자연어 처리 기술을 도입하여 데이터 통합을 더욱 강화하는 한편, 로봇 공학은 컴퓨터의 지시를 실험실 환경으로 가져오는 물리적 인터페이스 역할을 합니다.

재생의료 연구 분야에서 AI 통합을 촉진하는 주요 지역 클러스터의 지역적 역동성과 성장 패턴의 하이라이트

지역 분석을 통해 기술 채택 및 공동 연구 생태계의 다양한 패턴을 확인할 수 있었습니다. 미국 대륙에서는 AI 인프라와 재생의료에 대한 강력한 공공 및 민간 투자가 미국의 주요 허브들이 선구적인 임상 연구와 산업 협력을 촉진하는 견고한 혁신 환경을 조성하고 있습니다. 반대로 유럽, 중동 및 아프리카은 성숙도가 모자이크처럼 모자이크화되어 있으며, 서유럽의 기존 학술 클러스터와 중동 및 북아프리카의 신흥 우수 센터가 공존하고 있으며, 국경을 초월한 컨소시엄과 규제 조화 이니셔티브로의 전환이 두드러지고 있습니다.

AI 기반 재생 치료 솔루션의 미래를 만들어가는 세계 주요 혁신가 및 전략적 협력자 프로파일링.

대기업과 선구적인 스타트업들은 플랫폼 혁신과 전략적 파트너십을 결합하여 AI 통합 재생의료의 새로운 영역을 개척하고 있습니다. 주요 기술 기업들은 세포치료 전문가들과 협력하여 데이터 기반 진단 도구를 공동 개발하고 있으며, 기존 바이오제약 기업들은 머신러닝 스타트업에 투자하여 표적 탐색을 강화하고 제조 파이프라인을 간소화하고 있습니다. 동시에, 생명공학 혁신가들은 독자적인 알고리즘을 학술 센터에 라이선스를 부여하고 지적 자산을 공유함으로써 집단적 진보를 가속화할 수 있는 생태계를 구축하고 있습니다.

재생의료 분야에서 AI 혁신을 경쟁 우위로 활용하기 위한 업계 경영진을 위한 실행 가능한 전략 로드맵

인공지능과 재생의료의 융합을 활용하고자 하는 업계 리더들은 데이터 준비, 부서 간 협업, 유연한 규제 당국과의 관계를 중심으로 한 전략적 로드맵을 채택해야 합니다. 먼저, 다양한 생물의학 데이터 세트를 수용하고, 컴플라이언스 준수에 영향을 주지 않으면서도 고급 모델 학습을 지원하는 확장 가능하고 안전한 데이터 인프라에 투자해야 합니다. 또한, 바이오 엔지니어, 데이터 사이언스자, 임상의, 규제 당국 전문가로 구성된 다학제 팀을 육성하고, 지식의 사일로를 채우고, 번역 마일스톤을 촉진해야 합니다.

데이터의 완전성과 깊이를 보장하기 위해 정량적 분석과 정성적 통찰력을 통합한 강력한 조사 접근 방식에 대해 자세히 알아보세요.

이 조사 방법은 종합적인 포괄성과 데이터 무결성을 보장하기 위해 설계된 엄격한 다단계 방법을 통합하고 있습니다. 이 프로세스는 구조화된 2차 조사 단계부터 시작되었으며, 심사자 리뷰 출판물, 임상시험 등록, 특허 데이터베이스 및 규제 당국에 제출된 자료가 포함됩니다. 이러한 정보로부터 얻은 통찰력은 상세한 데이터 수집 프레임워크 개발에 반영되었고, 이후 KOL(Key Opinion Leader), 업계 베테랑, 기술 설계자, 학계, 임상 현장, 영리 기업의 최종 사용자 대표와의 심층 인터뷰로 구성된 1차 조사를 진행했습니다.

세계 재생의료 치료법 발전에서 AI의 혁신적 역할을 밝히기 위한 주요 연구 결과 통합 발표

이러한 종합적인 분석의 통합은 인공지능이 발견을 가속화하고, 임상 워크플로우를 최적화하며, 재생의료의 경계를 확장하는 혁신의 잠재력을 강조합니다. 고급 이미지 처리 및 예측 분석을 통해 세포 동역학을 정확하게 특성화할 수 있으며, 적응형 학습 시스템을 통해 치료 프로토콜을 실시간으로 개선할 수 있습니다. 소프트웨어 혁신가와 생명공학 기업 간의 협업으로 실험실 연구부터 임상 개발까지 의사결정을 지원하는 통합 플랫폼이 만들어지고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 재생의료 분야 인공지능(AI) 시장 : 기술별

  • 컴퓨터 비전
    • 영상 처리
    • 비디오 분석
  • 머신러닝 알고리즘
    • 딥러닝
    • 강화 학습
    • 지도 학습
    • 비지도 학습
  • 자연언어처리
    • 음성 인식
    • 텍스트 분석
  • 로봇 공학

제9장 재생의료 분야 인공지능(AI) 시장 : 기능성별

  • 의사결정 지원시스템
  • 예측 분석
  • 워크플로우 최적화

제10장 재생의료 분야 인공지능(AI) 시장 : 개발 단계별

  • 임상시험
  • 전임상

제11장 재생의료 분야 인공지능(AI) 시장 : 제공별

  • 서비스
    • 컨설팅 및 구현
    • 유지관리 및 지원
  • 소프트웨어
    • AI 알고리즘 및 플랫폼
    • 데이터 분석 및 시각화 툴

제12장 재생의료 분야 인공지능(AI) 시장 : 용도별

  • 심혈관 질환
    • 심근경색 치료
    • 혈관 조직 수복
  • 신경학
    • 신경 퇴행성 질환
    • 외상성 뇌손상 수복
  • 종양학
    • 암 백신
    • 유전자 도입 요법
  • 안과
    • 각막 수복
    • 망막 질환 치료
  • 정형외과
    • 뼈 재생
    • 연골 수복
    • 척추 질환 치료

제13장 재생의료 분야 인공지능(AI) 시장 : 최종사용자 업계별

  • 학술연구기관
  • 병원 및 진료소
  • 제약 기업 및 바이오테크놀러지 기업

제14장 아메리카의 재생의료 분야 인공지능(AI) 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제15장 유럽, 중동 및 아프리카의 재생의료 분야 인공지능(AI) 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제16장 아시아태평양의 재생의료 분야 인공지능(AI) 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Aiforia Technologies Plc
    • Aspen Neuroscience
    • Celularity Inc.
    • Deep Genomics Incorporated
    • Epistra Inc.
    • Exscientia plc
    • F. Hoffmann-La Roche Ltd.
    • Insilico Medicine
    • Intel Corporation
    • Juvenescence Therapeutics Limited
    • Medtronic PLC
    • Merck KGaA
    • Microsoft Corporation
    • Novo Nordisk A/S
    • NVIDIA Corporation
    • Owkin, Inc
    • Pandorum Technologies Pvt. Ltd
    • Recursion Pharmaceuticals
    • Sanofi SA
    • SOMITE THERAPEUTICS.
    • Tempus Labs, Inc.
    • Wipro Limited

제18장 리서치 AI

제19장 리서치 통계

제20장 리서치 컨택트

제21장 리서치 기사

제22장 부록

LSH 25.09.22

The Artificial Intelligence in Regenerative Medicine Market was valued at USD 294.23 million in 2024 and is projected to grow to USD 357.93 million in 2025, with a CAGR of 22.16%, reaching USD 978.13 million by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 294.23 million
Estimated Year [2025] USD 357.93 million
Forecast Year [2030] USD 978.13 million
CAGR (%) 22.16%

Unveiling the Intersection of Artificial Intelligence and Regenerative Medicine to Propel Revolutionary Patient-Centric Therapies

Artificial intelligence is redefining the boundaries of regenerative medicine by enabling unprecedented precision in cell and tissue engineering, accelerating discovery, and optimizing therapeutic outcomes. The convergence of advanced computational models with biological research has ushered in a new era of patient-specific solutions, where digital platforms guide the design of novel scaffolds, predict cell behavior, and refine delivery mechanisms. This introduction sets the stage for a comprehensive exploration of how algorithm-driven tools integrate with laboratory processes to amplify the efficacy and safety of regenerative interventions.

By harnessing sophisticated pattern recognition capabilities, researchers are now able to decode complex cellular interactions in ways that were previously unattainable. Visual computing systems transform microscopic imagery into actionable data, while adaptive learning algorithms continuously refine predictions based on new experimental results. Furthermore, robotics-mediated automation streamlines labor-intensive workflows, freeing scientific teams to focus on strategic innovation rather than repetitive tasks.

As this report unfolds, you will discover how these synergistic technologies coalesce to build a robust infrastructure for regenerative medicine. From initial proof-of-concept studies through late-stage clinical evaluations, the integration of AI lays a foundation for scalable manufacturing, regulatory compliance, and personalized treatment modalities that hold the promise of transforming patient care on a global scale.

Examining the Paradigm-Shifting Technological and Clinical Advances That Are Redefining Treatment Protocols in Regenerative Medicine

The landscape of regenerative medicine has undergone transformative shifts driven by breakthroughs in computational power and algorithmic sophistication. Over the past decade, image processing innovations have enabled researchers to map tissue architectures with microscopic accuracy, while video analysis platforms have captured dynamic cellular events in real time. Simultaneously, deep learning frameworks have demonstrated remarkable proficiency in deciphering genomic and proteomic datasets, unlocking new targets for gene modulation and cellular reprogramming.

Natural language processing has revolutionized literature mining, facilitating rapid synthesis of research findings and enabling automated hypothesis generation from vast repositories of scientific publications. Voice-enabled interfaces now support hands-free laboratory control, enhancing efficiency in sterile environments. On the manufacturing front, robotics integration has matured, offering high-throughput bioprinting capabilities that produce consistent tissue constructs at scale.

These technological advancements have not only accelerated R&D timelines but have also redefined collaboration paradigms. Multidisciplinary teams now leverage decision support systems that merge predictive analytics with domain expertise. Workflow optimization engines dynamically allocate resources, reducing bottlenecks and improving reproducibility. As regulatory agencies increasingly recognize the crucial role of these tools, adaptive approval pathways are emerging, setting the stage for wider clinical adoption of AI-enabled regenerative therapies.

Assessing the Cumulative Consequences of United States 2025 Tariff Adjustments on the Artificial Intelligence-Driven Regenerative Medicine Sector

The implementation of new tariff measures in the United States from 2025 onward has introduced additional layers of complexity to the procurement of critical hardware components, advanced imaging devices, and specialized reagents pivotal to AI-driven regenerative research. Elevated duties on imported high-resolution microscopes and computing accelerators have led to recalibrated vendor contracts, prompting many laboratories to reevaluate long-term procurement strategies in an effort to safeguard operational continuity.

Over time, stakeholders have witnessed a cumulative impact that extends beyond immediate cost escalations. Collaborative projects between academic research centers and global technology providers have encountered negotiation delays as pricing structures are adjusted. Some organizations have responded by increasing domestic sourcing or by forging alliances with local manufacturers capable of delivering compliant instrumentation at competitive rates. However, these shifts have also constrained access to niche components that remain scarce in domestic markets.

In parallel, startups in the AI-regenerative medicine nexus are reassessing capital allocation toward infrastructure investments, mindful of the risk associated with fluctuating international trade policies. As a consequence, many venture-backed enterprises are accelerating efforts to develop in-house capabilities for data annotation, algorithmic training, and prototype fabrication, reducing reliance on imported modules. Looking ahead, industry leaders must navigate this evolving tariff environment by cultivating diversified supplier networks and leveraging policy advocacy to mitigate supply chain vulnerabilities.

Uncovering Critical Insights Through a Comprehensive Multi-Dimensional Segmentation Framework in Regenerative Medicine AI Applications

A thorough segmentation analysis reveals nuanced insights across multiple dimensions of the AI-enabled regenerative medicine market. When viewed through the lens of underlying technology, it becomes evident that advances in computer vision, which encompass both image processing and video analysis, have been paralleled by breakthroughs in machine learning algorithms. The latter category comprises deep learning, reinforcement learning, supervised learning, and unsupervised learning, each contributing distinct capabilities to model complex biological phenomena. Incorporation of natural language processing techniques such as speech recognition and text analysis further enhances data integration, while robotics serves as the physical interface that brings computational directives into the laboratory setting.

Evaluating functionality demonstrates that decision support systems, predictive analysis modules, and workflow optimization tools are increasingly indispensable for research and clinical operations. These platforms streamline critical decision pathways, offering dynamic recommendations that reduce trial-and-error cycles. Across stages of development, ongoing preclinical investigations feed data-driven hypotheses into clinical trials, establishing a feedback loop that accelerates translational progress.

Insights into product offerings indicate that service-based solutions-ranging from consulting and implementation to maintenance and support-are complemented by software packages built on AI algorithms, platforms, and data analytics and visualization tools. This duality ensures clients receive end-to-end support, from initial deployment through iterative enhancements. Finally, practical applications span major therapeutic areas including cardiovascular diseases with a focus on myocardial infarction therapy and vascular tissue repair, neurology targeting neurodegenerative disorders and traumatic brain injury repair, oncology through cancer vaccines and gene transduction therapies, ophthalmology addressing corneal repair and retinal disease therapy, and orthopedics encompassing bone regeneration, cartilage repair, and spinal disorder treatments. End-user industries for these solutions include academic and research institutes, hospitals and clinics, and pharmaceutical and biotechnology companies, each leveraging AI-driven insights to advance their unique missions.

Highlighting Regional Dynamics and Growth Patterns Across Key Territory Clusters Driving AI Integration in Regenerative Medicine Research

Regional analysis uncovers diverse patterns of technology adoption and collaborative research ecosystems. In the Americas, strong public and private investment in both AI infrastructure and regenerative medicine has created a robust innovation climate, with major hubs in the United States driving trailblazing clinical studies and industrial partnerships. Conversely, European, Middle Eastern, and African regions exhibit a mosaic of maturity levels, where established academic clusters in Western Europe coexist with emerging centers of excellence in the Middle East and North Africa, underscoring a shift toward cross-border consortia and regulatory harmonization initiatives.

Meanwhile, Asia-Pacific markets demonstrate rapid expansion fueled by government-sponsored research programs and growing biomanufacturing capacities. Nations in East Asia are advancing high-throughput bioprinting and cell therapy platforms, while Southeast Asian countries are leveraging cost-effective clinical trial sites to attract international collaborations. Taken together, these regional dynamics highlight a global convergence toward shared best practices, multi-stakeholder funding models, and harmonized data governance frameworks that accelerate the translation of AI-powered regenerative therapies from lab to clinic.

As research networks strengthen their cross-continental ties, manufacturers and technology providers are aligning distribution strategies and forging licensing agreements to ensure timely delivery of critical components. These synergistic efforts underscore the importance of regional insight when charting strategic market entry and expansion plans.

Profiling the Leading Innovators and Strategic Collaborators Shaping the Future of AI-Enabled Regenerative Therapeutic Solutions Globally

Leading corporations and pioneering startups are forging a new frontier in AI-integrated regenerative medicine by combining platform innovations with strategic partnerships. Major technology firms are collaborating with cell therapy specialists to co-develop data-driven diagnostic tools, while established biopharmaceutical companies invest in machine learning startups to bolster target discovery and streamline manufacturing pipelines. At the same time, biotech innovators are licensing proprietary algorithms to academic centers, creating an ecosystem where shared intellectual assets accelerate collective progress.

These strategic collaborations extend into multi-institutional alliances that integrate complementary strengths: computational design houses contributing algorithmic expertise connect with contract development organizations offering bioprocessing capabilities, forging end-to-end value chains. Moreover, recent mergers and acquisitions have reshaped the competitive landscape, enabling some players to vertically integrate AI analytics, cloud infrastructure, and cell culture facilities under a single organizational umbrella. This consolidation trend is complemented by consortium-based initiatives that democratize access to high-performance computing and standardized datasets, mitigating barriers for emerging entrants.

As capital continues to flow into this intersection of AI and regenerative medicine, corporate strategies are evolving to emphasize ecosystem development over product-centric approaches. By nurturing collaborative networks, these companies are not only accelerating innovation cycles but also establishing robust intellectual property portfolios that set the stage for long-term market leadership.

Actionable Strategic Roadmap for Industry Executives to Harness AI Innovations in Regenerative Medicine for Competitive Advantage

Industry leaders seeking to capitalize on the convergence of artificial intelligence and regenerative medicine must adopt a strategic roadmap centered on data readiness, cross-functional collaboration, and agile regulatory engagement. First, they should invest in scalable, secure data infrastructure that accommodates diverse biomedical datasets and supports advanced model training without compromising compliance. Coupled with this, organizations need to cultivate cross-disciplinary teams comprising bioengineers, data scientists, clinicians, and regulatory experts to bridge knowledge silos and expedite translational milestones.

Concurrently, proactive engagement with regulatory bodies can shape adaptive oversight frameworks that foster innovation while ensuring patient safety. Companies are advised to participate in pilot programs and public-private partnerships that co-create guidelines for AI-driven medical devices and biologics. By doing so, stakeholders can influence standards, gain early feedback, and reduce time-to-market for novel therapies.

Finally, forging ecosystem partnerships-whether through consortium memberships, joint ventures, or licensing agreements-will be crucial to access complementary capabilities. Aligning with academic institutions or technology providers can unlock specialized expertise, shared infrastructure, and co-investment opportunities. Through these deliberate actions, executives will position their organizations to harness AI innovations effectively, drive competitive differentiation, and ultimately deliver transformative therapeutic solutions to patients.

Detailing a Robust Research Approach Integrating Quantitative Analyses and Qualitative Insights to Ensure Data Integrity and Depth

This research integrates a rigorous multi-phased methodology designed to ensure comprehensive coverage and data integrity. The process commenced with a structured secondary research phase, encompassing peer-reviewed publications, clinical trial registries, patent databases, and regulatory filings. Insights gleaned from these sources informed the development of a detailed data collection framework, followed by primary research comprising in-depth interviews with key opinion leaders, industry veterans, technology architects, and end-user representatives across academia, clinical settings, and commercial enterprises.

Quantitative analyses were conducted using advanced statistical techniques and machine learning-based data modeling, enabling robust identification of correlations, trend extrapolations, and scenario simulations. Qualitative evaluation complemented these findings through thematic coding of interview transcripts and case study analyses, illuminating contextual factors and strategic considerations that numbers alone cannot capture. Triangulation across secondary sources, primary insights, and analytical models further validated results and illuminated areas of convergence or discrepancy.

Throughout the process, stringent quality control measures-such as peer reviews, audit trails, and consistency checks-ensured the credibility and reproducibility of the findings. This integrated research design provides stakeholders with a transparent, evidence-based foundation for informed decision-making within the rapidly evolving intersection of AI and regenerative medicine.

Synthesizing Key Findings to Illuminate the Transformational Role of AI in Advancing Regenerative Medicine Therapeutic Modalities Globally

The synthesis of this comprehensive analysis underscores the transformational potential of artificial intelligence to accelerate discovery, optimize clinical workflows, and expand the frontiers of regenerative medicine. Advanced image processing and predictive analytics are enabling precise characterization of cellular dynamics, while adaptive learning systems refine therapeutic protocols in real time. Collaboration between software innovators and biotech organizations is yielding integrated platforms that support decision-making from laboratory research through clinical deployment.

Regional and tariff considerations further highlight the necessity for flexible sourcing strategies and policy engagement to sustain innovation momentum. Segmentation insights reveal that success hinges on tailored offerings that address distinct technological, functional, and developmental requirements, as well as specific therapeutic applications ranging from cardiovascular repair to neurologic and oncologic interventions. Strategic alliances and ecosystem-based approaches emerge as critical enablers, fostering shared infrastructure, co-investment, and regulatory alignment.

In conclusion, the intersection of AI and regenerative medicine represents a paradigm shift with far-reaching implications for healthcare. By embracing data-driven methodologies, fostering multidisciplinary partnerships, and navigating evolving trade environments, stakeholders can unlock unprecedented opportunities to deliver personalized, effective, and scalable therapies that improve patient outcomes globally.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Reinforcement learning frameworks to dynamically adjust bioprocess parameters in regenerative manufacturing
  • 5.2. Computer vision-based real-time monitoring of cell culture processes in automated regenerative manufacturing
  • 5.3. AI-driven predictive modeling of stem cell differentiation pathways for personalized tissue regeneration
  • 5.4. Real-time monitoring of tissue regeneration using AI-enhanced imaging analytics
  • 5.5. Deep learning-powered optimization of 3D bioprinting parameters for complex organ scaffold fabrication
  • 5.6. Machine learning algorithms enhancing biomaterials design for improved scaffold biocompatibility and function
  • 5.7. Integration of digital twin platforms with AI to simulate patient-specific regenerative therapy outcomes
  • 5.8. Natural language processing tools for automated literature review in regenerative medicine research pipelines
  • 5.9. AI powered biomarker discovery for customizing immunomodulatory treatments in tissue repair
  • 5.10. Digital twin simulations for predicting organoid growth patterns and therapeutic efficacy outcomes

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Artificial Intelligence in Regenerative Medicine Market, by Technology

  • 8.1. Introduction
  • 8.2. Computer Vision
    • 8.2.1. Image Processing
    • 8.2.2. Video Analysis
  • 8.3. Machine Learning Algorithms
    • 8.3.1. Deep Learning
    • 8.3.2. Reinforcement Learning
    • 8.3.3. Supervised Learning
    • 8.3.4. Unsupervised Learning
  • 8.4. Natural Language Processing
    • 8.4.1. Speech Recognition
    • 8.4.2. Text Analysis
  • 8.5. Robotics

9. Artificial Intelligence in Regenerative Medicine Market, by Functionality

  • 9.1. Introduction
  • 9.2. Decision Support Systems
  • 9.3. Predictive Analysis
  • 9.4. Workflow Optimization

10. Artificial Intelligence in Regenerative Medicine Market, by Stage Of Development

  • 10.1. Introduction
  • 10.2. Clinical Trials
  • 10.3. Preclinical

11. Artificial Intelligence in Regenerative Medicine Market, by Offerings

  • 11.1. Introduction
  • 11.2. Service
    • 11.2.1. Consulting & Implementation
    • 11.2.2. Maintenance & Support
  • 11.3. Software
    • 11.3.1. AI Algorithms & Platforms
    • 11.3.2. Data Analytics & Visualization Tools

12. Artificial Intelligence in Regenerative Medicine Market, by Application

  • 12.1. Introduction
  • 12.2. Cardiovascular Diseases
    • 12.2.1. Myocardial Infarction Therapy
    • 12.2.2. Vascular Tissue Repair
  • 12.3. Neurology
    • 12.3.1. Neurodegenerative Disorders
    • 12.3.2. Traumatic Brain Injury Repair
  • 12.4. Oncology
    • 12.4.1. Cancer Vaccine
    • 12.4.2. Gene Transduction Therapy
  • 12.5. Ophthalmology
    • 12.5.1. Corneal Repair
    • 12.5.2. Retinal Disease Therapy
  • 12.6. Orthopedics
    • 12.6.1. Bone Regeneration
    • 12.6.2. Cartilage Repair
    • 12.6.3. Spinal Disorders Treatment

13. Artificial Intelligence in Regenerative Medicine Market, by End-User Industry

  • 13.1. Introduction
  • 13.2. Academic & Research Institutes
  • 13.3. Hospitals And Clinics
  • 13.4. Pharmaceutical & Biotechnology Companies

14. Americas Artificial Intelligence in Regenerative Medicine Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Artificial Intelligence in Regenerative Medicine Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Artificial Intelligence in Regenerative Medicine Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Aiforia Technologies Plc
    • 17.3.2. Aspen Neuroscience
    • 17.3.3. Celularity Inc.
    • 17.3.4. Deep Genomics Incorporated
    • 17.3.5. Epistra Inc.
    • 17.3.6. Exscientia plc
    • 17.3.7. F. Hoffmann-La Roche Ltd.
    • 17.3.8. Insilico Medicine
    • 17.3.9. Intel Corporation
    • 17.3.10. Juvenescence Therapeutics Limited
    • 17.3.11. Medtronic PLC
    • 17.3.12. Merck KGaA
    • 17.3.13. Microsoft Corporation
    • 17.3.14. Novo Nordisk A/S
    • 17.3.15. NVIDIA Corporation
    • 17.3.16. Owkin, Inc
    • 17.3.17. Pandorum Technologies Pvt. Ltd
    • 17.3.18. Recursion Pharmaceuticals
    • 17.3.19. Sanofi SA
    • 17.3.20. SOMITE THERAPEUTICS.
    • 17.3.21. Tempus Labs, Inc.
    • 17.3.22. Wipro Limited

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제