½ÃÀ庸°í¼­
»óǰÄÚµå
1809661

¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó ½ÃÀå : À¯Çüº°, ¼ÒÀç À¯Çüº°, ¿ëµµº°, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°, ÆÇ¸Å ä³Îº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Thermoplastic Polyester Elastomer Market by Type, Material Types, Application, End-Use Industry, Sales Channel - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 198 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó ½ÃÀåÀÇ 2024³â ½ÃÀå ±Ô¸ð´Â 16¾ï 8,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³â¿¡´Â 17¾ï 7,000¸¸ ´Þ·¯, CAGR 5.63%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 23¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ 2024³â 16¾ï 8,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ 2025³â 17¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ 2030³â 23¾ï 4,000¸¸ ´Þ·¯
CAGR(%) 5.63%

Çö´ë Àç·á °øÇп¡¼­ ¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸ÓÀÇ ±âº» ¿ªÇÒ°ú ¼¼°è Á¦Á¶ »ê¾÷¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇØ ÀÌÇØÇÕ´Ï´Ù.

¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó´Â ¿¤¶ó½ºÅä¸ÓÀÇ À¯¿¬¼º°ú ¿­°¡¼Ò¼º ÇÃ¶ó½ºÆ½ÀÇ ±¸Á¶Àû ¹«°á¼ºÀ» ¿Ïº®ÇÏ°Ô °áÇÕÇÏ¿© ÷´Ü Á¦Á¶ »ê¾÷ÀÇ ÇÙ½É Àç·á·Î ºÎ»óÇß½À´Ï´Ù. ÃÖ±Ù¿¡´Â ³ôÀº ÀÎÀå°­µµ, ¿ì¼öÇÑ ³»È­Çмº, ³ÐÀº ¿­Àû ÀÛµ¿ ¹üÀ§ µî °íÀ¯ÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ ±î´Ù·Î¿î ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼­ äÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷, ¼ÒºñÀç, ÀüÀÚÁ¦Ç° ºÐ¾ßÀÇ Á¦Á¶¾÷üµéÀº ±âÁ¸ Æú¸®¸Ó·Î´Â ´Þ¼ºÇϱ⠾î·Á¿ü´ø ¼º´É ±âÁØÀ» ´Þ¼ºÇϱâ À§ÇØ ÀÌ ¼ÒÀç¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù.

±â¼ú Çõ½Å°ú Áö¼Ó°¡´É¼º¿¡ Á÷¸éÇÑ ¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó »ê¾÷ Á¤¼¼ Çü¼º,ÁÖ¿ä Àüȯ±â ½Äº°

¿­°¡¼Ò¼º Æú¸®¿¡½ºÅÍ ¿¤¶ó½ºÅä¸Ó »ê¾÷Àº ±â¼ú Çõ½Å°ú Áö¼Ó°¡´É¼ºÀÇ À¶ÇÕ¿¡ ÈûÀÔ¾î º¯È­ÀÇ ½Ã±â¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ù°, ÀÌ»êȭź¼Ò ¹èÃâ·® °¨ÃàÀÇ ÃßÁøÀ¸·Î ¹ÙÀÌ¿À À¯·¡ ´Ü·®Ã¼ ¹× Æó¼â ·çÇÁ ÀçȰ¿ë °øÁ¤ÀÇ °³¹ßÀÌ È°¼ºÈ­µÇ°í ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ±â°èÀûÀ¸·Î Àç»ýµÈ Æú¸®¿¡½ºÅ׸£³ª È­ÇÐÀûÀ¸·Î ÇØÁßÇÕµÈ Æú¸®¿¡½ºÅ׸£¸¦ ´Ù½Ã »ý»ê °øÁ¤¿¡ µµÀÔÇÏ¿© ¼®À¯È­ÇÐÀÇ ¹öÁø ¿ø·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß·Á´Â ¿òÁ÷ÀÓÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

¹Ì±¹ÀÇ 2025³â °ü¼¼ µµÀÔÀÌ ÁÖ¿ä »ê¾÷¿¡¼­ ¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸ÓÀÇ °ø±Þ¸Á°ú °¡°Ý ±¸Á¶¸¦ ¾î¶»°Ô ÀçÆíÇϰí ÀÖ´ÂÁö Æò°¡ÇÕ´Ï´Ù.

2025³â ¹Ì±¹ÀÇ »õ·Î¿î °ü¼¼ Á¶Ä¡ÀÇ µµÀÔÀº ¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó °ø±Þ¸ÁÀÇ °æÀï ¿ªÇÐÀ» À籸¼ºÇß½À´Ï´Ù. ¸¹Àº ¼öÁö Á¦Á¶¾÷üµéÀÌ Ãß°¡ °ü¼¼¸¦ ÇÇÇϱâ À§ÇØ Á¶´Þ Àü·«À» Àç°ËÅäÇÔ¿¡ µû¶ó ¿øÀÚÀç ºñ¿ë ±¸Á¶°¡ ´õ¿í ºÒ¾ÈÁ¤ÇØÁ³½À´Ï´Ù. ±× °á°ú, ºÏ¹Ì ÄÁ¹öÅ͵éÀº °æÀï·Â ÀÖ´Â °¡°Ý Ã¥Á¤À» À¯ÁöÇϱâ À§ÇØ ¾Æ¸Þ¸®Ä«¿¡¼­ ´ëü Á¶´Þ °æ·Î¸¦ Ãß±¸ÇÏ°Ô µÇ¾ú°í, ÀÌ Áö¿ªÀÇ ¿ø·á ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ °ü½ÉÀÌ ´Ù½Ã ºÒºÙ°í ÀÖ½À´Ï´Ù.

À¯Çüº°, Àç·á ¿ëµµº°, »ê¾÷º°, ÆÇ¸Å ä³Îº° Á¾ÇÕÀûÀÎ ¼¼ºÐÈ­¸¦ ÅëÇØ Àü·«Àû ½ÃÀå ÀÎÅÚ¸®Àü½º¸¦ µµÃâÇÏ¿© ÅõÀÚ °áÁ¤¿¡ µµ¿òÀ» ÁÝ´Ï´Ù.

¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó ½ÃÀåÀ» À¯Çü, Àç·á È­ÇÐ, ÃÖÁ¾ ¿ëµµ, »ê¾÷º° ÃÖÁ¾ ¿ëµµ, ÆÇ¸Å ä³ÎÀÇ °üÁ¡¿¡¼­ ¸é¹ÐÈ÷ Á¶»çÇÏ¸é °¢±â ´Ù¸¥ ¿ªÇÐÀÌ µå·¯³³´Ï´Ù. ºí·Î¿ì ¼ºÇü¿¡ ÃÖÀûÈ­µÈ µî±ÞÀº ¿ì¼öÇÑ ¿ëÀ¶ °­µµ¿Í Ä¡¼ö ¾ÈÁ¤¼ºÀ¸·Î ÀÎÇØ ÀÌÀ½¸Å ¾ø´Â À¯Ã¼ ¿ë±â ¹× ¿¬·á ½Ã½ºÅÛ ºÎǰ Á¦Á¶¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. À̿ʹ ´ëÁ¶ÀûÀ¸·Î, ¾ÐÃâ ¼ºÇü¿ë µî±ÞÀº ÀϰüµÈ 󸮷®°ú ±â°èÀû ź¼ºÀÌ °¡Àå Áß¿äÇÑ ÄÉÀ̺í ÀçŶ ¹× Æ©ºê¿Í °°Àº ¿¬¼Ó ÇÁ·ÎÆÄÀÏÀ» À§ÇØ Á¾Á¾ ¼±Åõ˴ϴÙ. ¹Ý¸é, »çÃâ ¼ºÇü¿ë µî±ÞÀº ºü¸¥ »çÀÌŬ ŸÀÓ°ú ¾ö°ÝÇÑ ±ÝÇü °øÂ÷·Î ÀÎÇØ º¹ÀâÇÑ Ä¿³ØÅÍ ¹× Á¤¹Ð ¾Á Á¦Á¶¿¡ ÇʼöÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù.

¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó ¼ö¿äÀÇ Áö¿ªÀû ¿ªÇÐ ¹× ÃËÁø¿äÀο¡ ´ëÇÑ ÀÚ·áÀÔ´Ï´Ù.

¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó¿¡ ´ëÇÑ ¼ö¿ä´Â ¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­ ¶Ñ·ÇÇÑ Æ¯Â¡ÀÌ ³ªÅ¸³ª°í ÀÖÀ¸¸ç, Áö¿ªº° ¿ªÇÐÀº °è¼ÓÇØ¼­ ±× ±ËÀûÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ¾Æ¸Þ¸®Ä«¿¡¼­´Â ´Ï¾î¼î¾î¸µ Æ®·»µå¿Í ±¹³» Á¦Á¶¿¡ ´ëÇÑ Àμ¾Æ¼ºê°¡ °áÇÕµÇ¾î Æ¯È÷ ÀÚµ¿Â÷ ºÎ¹®ÀÇ »ý»ê´É·Â È®´ë°¡ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. °¡Ä¡»ç½½ÀÇ ÇöÁöÈ­¶ó´Â ÀÌ Áö¿ªÀû ÃÊÁ¡Àº ¼öÁö »ý»ê¿¡ ´ëÇÑ ¾÷½ºÆ®¸² ÅõÀÚµµ À¯Ä¡ÇÏ¿© ¸®µåŸÀÓ ´ÜÃà°ú ¸®½ºÅ© °¨¼Ò¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù.

¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸ÓÀÇ ÁÖ¿ä Á¦Á¶¾÷ü¿Í ÀÌ ºÐ¾ßÀÇ °æÀïÀû Â÷º°È­¿Í ±â¼ú ¹ßÀüÀ» ÁÖµµÇÏ´Â Çõ½Å°¡µéÀ» »ìÆìº¾´Ï´Ù.

¿­°¡¼Ò¼º Æú¸®¿¡½ºÅÍ ¿¤¶ó½ºÅä¸ÓÀÇ °æÀï ±¸µµ´Â ¼¼°è È­ÇÐ ´ë±â¾÷°ú ¹ÎøÇÑ Æ¯¼ö Æú¸®¸Ó Á¦Á¶¾÷ü°¡ È¥ÀçµÇ¾î ÀÖ½À´Ï´Ù. ÁÖ¿ä Á¦Á¶¾÷üµéÀº Áö¿ªÀû ¼ö¿ä º¯µ¿°ú °ü¼¼ÀÇ ¿µÇâ »çÀÌ¿¡¼­ ±ÕÇüÀ» ¸ÂÃß±â À§ÇØ Àü·«ÀûÀÎ Áö¿ª¿¡¼­ »ý»ê´É·ÂÀ» È®ÀåÇϰí ÀÖ½À´Ï´Ù. ±â¼ú Á¦°ø¾÷ü¿ÍÀÇ Á¦ÈÞ¸¦ ÅëÇØ ƯÁ¤ ÃÖÁ¾ ¿ëµµ¿¡ ¸Â´Â ÄÄÆÄ¿îµå °³¹ßÀÌ °¡´ÉÇØÁ® ¼º´É Ư¼ºÀÌ Çâ»óµÇ¾ú½À´Ï´Ù.

¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó ºÐ¾ßÀÇ »õ·Î¿î ±âȸ¸¦ Ȱ¿ëÇÏ°í °ø±Þ¸Á È¥¶õÀ» ±Øº¹Çϱâ À§ÇØ ¾÷°è ¸®´õµé¿¡°Ô ½ÇÇà °¡´ÉÇÑ Àü·«Àû Á¦¾ÈÀ» Á¦°øÇÕ´Ï´Ù.

ÁøÈ­ÇÏ´Â ½ÃÀå ¿ªÇÐ ¼Ó¿¡¼­ ¼º°øÀ» °ÅµÎ±â À§ÇØ ¾÷°è ¸®´õµéÀº °ø±Þ¸Á º¹¿ø·Â, Á¦Ç° Çõ½Å, Çù·ÂÀû ÆÄÆ®³Ê½ÊÀ» ¾Æ¿ì¸£´Â ´Ù°¢ÀûÀÎ Àü·«À» Ãß±¸ÇØ¾ß ÇÕ´Ï´Ù. ù°, ¹ÙÀÌ¿À ±â¹Ý¿Í ÀçȰ¿ë Æú¸®¿¡½ºÅ׸£ÀÇ È帧À» ÅëÇÕÇÏ¿© ¿ø·á °ø±Þ¿øÀ» ´Ù¾çÈ­ÇÔÀ¸·Î½á Áö¼Ó°¡´É¼º Àǹ«È­¿¡ ´ëÀÀÇÏ´Â µ¿½Ã¿¡ ¿ø·á °¡°Ý º¯µ¿¿¡ ´ëÇÑ ¸®½ºÅ©¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. Æó¼â ·çÇÁ ÀçȰ¿ëÀ» Ȱ¿ëÇÏ¸é ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·ÇÒ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó, ȯ°æ¿¡ ´ëÇÑ ÀνÄÀÌ ³ôÀº °í°´À¸·ÎºÎÅÍ ºê·£µå °¡Ä¡¸¦ ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.

1Â÷ Á¤¼ºÀû Á¤º¸¿Í 2Â÷ µ¥ÀÌÅÍÀÇ ÅëÇÕÀ» ±â¹ÝÀ¸·Î Á¤È®ÇÑ ½ÃÀå ºÐ¼®À» Á¦°øÇϱâ À§ÇØ Ã¤ÅÃµÈ ¾ö°ÝÇÑ Á¶»ç ¹æ¹ý ¼³¸í

ÀÌ º¸°í¼­´Â ¾÷°è ÀÌÇØ°ü°èÀÚ¸¦ ´ë»óÀ¸·Î ÇÑ 1Â÷ ¼³¹®Á¶»ç¿Í ¾ö°ÝÇÑ 2Â÷ µ¥ÀÌÅÍ ºÐ¼®À̶ó´Â µÎ °¡Áö Á¶»ç ¹æ½ÄÀ» ÅëÇØ ¾òÀº °á°ú¸¦ ÅëÇÕÇÑ °ÍÀÔ´Ï´Ù. 1Â÷ Á¶»ç¿¡¼­´Â ÁÖ¿ä ÃÖÁ¾ »ç¿ë »ê¾÷ ºÐ¾ßÀÇ °íºÐÀÚ °úÇÐÀÚ, Á¶´Þ Ã¥ÀÓÀÚ ¹× ¼ö¼® ¿£Áö´Ï¾î¸¦ ´ë»óÀ¸·Î ±¸Á¶È­µÈ ÀÎÅͺ並 ½Ç½ÃÇß½À´Ï´Ù. ÀÌ·¯ÇÑ Á¶»ç¸¦ ÅëÇØ ÁøÈ­ÇÏ´Â Àç·á ¿ä±¸ »çÇ×, »õ·Î¿î ÀÀ¿ë ºÐ¾ß µ¿Çâ, °ø±Þ¸Á °úÁ¦¿¡ ´ëÇÑ Á÷Á¢ÀûÀÎ °ßÇØ¸¦ ¾òÀ» ¼ö ÀÖ¾ú½À´Ï´Ù.

¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó ½ÃÀåÀÇ ±ËÀû°ú ´Ù¾çÇÑ ºÐ¾ßÀÇ ÀÌÇØ°ü°èÀÚ¸¦ À§ÇÑ Àü·«Àû °úÁ¦¿¡ ´ëÇÑ ÁÖ¿ä ¿¬±¸ °á°ú ¹× ÀλçÀÌÆ® ¿ä¾à.

¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó´Â ¼º´É Áß½ÉÀÇ ¼ÒÀç Çõ½Å°ú ÁøÈ­ÇÏ´Â Áö¼Ó°¡´É¼º ¿ä±¸ÀÇ ±³Â÷Á¡¿¡ À§Ä¡Çϰí ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À ±â¹Ý ¿ø·á¿Í Æó¼â ·çÇÁ ÀçȰ¿ëÀÇ ¹ßÀüÀº ¾÷°èÀÇ È¯°æ º¸È£¿¡ ´ëÇÑ ³ë·ÂÀ» ¸íÈ®È÷ ÇÏ´Â ÇÑÆí, ÀûÃþ °øÁ¤¿¡¼­ µðÁöÅÐÈ­µÈ »ý»ê ¶óÀο¡ À̸£±â±îÁö »õ·Î¿î Á¦Á¶ ±â¼úÀº È¿À²¼º ±âÁØÀ» ÀçÁ¤ÀÇÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó ½ÃÀå : À¯Çüº°

  • ºí·Î¿ì ¼ºÇü µî±Þ
  • ¾ÐÃâ µî±Þ
  • »çÃâ ¼ºÇü µî±Þ

Á¦9Àå ¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó ½ÃÀå : ¼ÒÀç Á¾·ùº°

  • PBT ±â¹Ý
  • PET ±â¹Ý

Á¦10Àå ¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó ½ÃÀå : ¿ëµµº°

  • Ä¿³ØÅÍ
  • Çʸ§°ú ½ÃÆ®
  • È£½º¿Í Æ©ºê
  • ¾Á°ú °³½ºÅ¶
  • ¿ÍÀÌ¾î ¹× ÄÉÀ̺í ÀçŶ

Á¦11Àå ¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó ½ÃÀå : ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°

  • ÀÚµ¿Â÷
  • ¼ÒºñÀç
  • Àü±â¡¤ÀüÀÚ
  • ÇコÄɾî
  • »ê¾÷

Á¦12Àå ¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó ½ÃÀå : ÆÇ¸Å ä³Îº°

  • Á÷Á¢ ÆÇ¸Å
  • ÆÇ¸Å´ë¸®Á¡ ÆÇ¸Å

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ ¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¿­°¡¼Ò¼º Æú¸®¿¡½ºÅ׸£ ¿¤¶ó½ºÅä¸Ó ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Arkema S.A.
    • Asahi Kasei Corporation
    • Avient Corporation
    • BASF SE
    • Celanese Corporation
    • Covestro AG
    • DuPont de Nemours, Inc.
    • Evonik Industries AG
    • Exxon Mobil Corporation
    • Huntsman International LLC
    • KRAIBURG TPE.
    • LCY Chemical Corp.
    • Lubrizol Corporation
    • LyondellBasell Industries N.V.
    • Mitsubishi Chemical Holdings Corporation
    • Mitsui Chemicals, Inc.
    • Moriroku Chemicals Company, Ltd.
    • Phon Tech Industrial Company
    • Saudi Basic Industries Corporation
    • Shin-Etsu Polymer Co., Ltd.
    • The Dow Chemical Company
    • Tosoh Corporation
    • Zeon Corporation

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

KSM 25.09.16

The Thermoplastic Polyester Elastomer Market was valued at USD 1.68 billion in 2024 and is projected to grow to USD 1.77 billion in 2025, with a CAGR of 5.63%, reaching USD 2.34 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 1.68 billion
Estimated Year [2025] USD 1.77 billion
Forecast Year [2030] USD 2.34 billion
CAGR (%) 5.63%

Understanding the Foundational Role of Thermoplastic Polyester Elastomer in Modern Materials Engineering and Its Impact on Global Manufacturing

Thermoplastic polyester elastomer has emerged as a cornerstone material in advanced manufacturing, seamlessly combining the flexibility of elastomers with the structural integrity of thermoplastics. In recent years, its unique properties-such as high tensile strength, excellent chemical resistance, and broad thermal operating windows-have driven adoption across a spectrum of demanding applications. Manufacturers spanning automotive, consumer goods, and electronics sectors have increasingly relied on this class of materials to achieve performance benchmarks that traditional polymers struggle to meet.

As industries pursue enhanced lightweighting, durability, and sustainability metrics, the foundational role of thermoplastic polyester elastomer continues to expand. Concurrently, innovations in polymer blends and copolymerization techniques have unlocked new performance thresholds, enabling thinner wall sections and more intricate part geometries without compromising mechanical robustness. Moreover, environmental imperatives have sparked research into bio-based feedstocks and closed-loop recycling methods, signaling the start of a shift toward circular material lifecycles.

Against this backdrop of technological maturation and shifting regulatory demands, stakeholders require a cohesive understanding of both macroeconomic forces and granular supply chain dynamics. The insights that follow aim to equip decision makers with a holistic perspective on the evolving landscape, ensuring readiness to navigate emerging challenges and capitalize on the next wave of growth opportunities.

Identifying the Key Transformative Shifts Reshaping the Thermoplastic Polyester Elastomer Industry Landscape in the Face of Technological Innovation and Sustainability

The thermoplastic polyester elastomer industry is undergoing transformative shifts driven by converging forces of innovation and sustainability. First, the push toward carbon footprint reduction has intensified development of bio-derived monomers and closed-loop recycling processes. Manufacturers are increasingly integrating mechanically reclaimed or chemically depolymerized polyester back into production streams, thereby reducing dependence on virgin petrochemical feedstocks.

Concurrently, additive manufacturing techniques have begun to intersect with elastomeric polyesters, enabling rapid prototyping of flexible components and opening doors to complex geometries previously unattainable with conventional molding techniques. This digital transformation not only accelerates time to market but also fosters localized, on-demand production that mitigates supply chain disruptions and lowers inventory carrying costs.

Lastly, global emphasis on lightweighting has elevated the prominence of thermoplastic polyester elastomer in sectors such as electric vehicles and wearable electronics. Advanced injection molding processes are delivering components that meet stringent performance criteria while minimizing material usage. Together, these technological, environmental, and operational shifts are redefining the contours of the market, demanding strategic agility from manufacturers and end users alike.

Assessing How the 2025 United States Tariffs Are Reshaping Supply Chains and Pricing Structures for Thermoplastic Polyester Elastomer Across Key Industries

The introduction of new United States tariff measures in 2025 has reshaped the competitive dynamics of the thermoplastic polyester elastomer supply chain. Raw material cost structures have become more volatile as many resin producers recalibrate sourcing strategies to circumvent additional duties. As a result, North American converters have pursued alternative procurement channels in the Americas to maintain competitive pricing, sparking renewed interest in regional feedstock projects.

Meanwhile, companies with established operations in Asia-Pacific have adapted by leveraging integrated manufacturing networks that absorb a portion of incremental duties while preserving margin targets. In certain cases, midstream players have implemented duty drawback mechanisms and bonded warehouse strategies to alleviate cash flow pressures. Electronics and consumer goods manufacturers have responded by adjusting design specifications, favoring thinner wall sections or hybrid material constructions to offset raw material inflation.

Through these intertwined adjustments, the cumulative impact of tariff policy has underscored the importance of supply chain resilience. Decision makers are now prioritizing diversified sourcing footprints, flexible manufacturing capabilities, and strategic stock positioning to mitigate future policy risks. The resulting market environment demands a nuanced understanding of both trade regulations and operational levers that drive cost optimization.

Deriving Strategic Market Intelligence from Comprehensive Segmentation by Type Material Application Industry and Sales Channel to Guide Investment Decisions

A nuanced examination of the thermoplastic polyester elastomer market reveals differentiated dynamics when viewed through the lenses of type, material chemistry, end application, industry end use, and distribution channel. Grades optimized for blow molding have found traction in producing seamless fluid containers and fuel system components due to their superior melt strength and dimensional stability. In contrast, extrusion grades are increasingly selected for continuous profiles such as cable jackets and tubing, where consistent throughput and mechanical resilience are paramount. Meanwhile, injection molding grades have become indispensable for manufacturing intricate connectors and precision seals, underpinned by their fast cycle times and tight mold tolerances.

The choice between PBT-based and PET-based material types further refines this landscape. PBT-based polyesters often deliver superior chemical resistance and fatigue performance, making them the material of choice for wire and cable jackets in harsh environments. Conversely, PET-based elastomers excel in thermal conductivity and cost-efficiency, spurring their adoption in films and sheets where heat dissipation and budget constraints intersect.

Applications such as connectors demand materials that combine electrical insulation with mechanical durability, whereas films and sheets require uniform gauge control and optical clarity. Hoses and tubes leverage the elastomeric rebound properties for dynamic sealing, and seals and gaskets exploit low compression set characteristics to maintain leak integrity over extended service intervals. Wire and cable jackets benefit from flammability ratings and abrasion resistance, driving material selection criteria.

Across end-use industries, automotive manufacturers favor grades that deliver long-term dimensional stability under cyclical loading, while consumer goods producers prioritize aesthetic finish and cost predictability. Electrical and electronics firms demand precise dielectric properties, healthcare companies insist on biocompatibility and sterilization resistance, and industrial sectors look for chemical inertness in demanding process environments. Finally, sales channels bifurcate between direct engagements-where bespoke formulations and technical support foster deeper partnerships-and distributor networks that serve smaller converters with off-the-shelf solutions and logistical convenience.

Uncovering Regional Dynamics and Growth Drivers for Thermoplastic Polyester Elastomer Demand across the Americas Europe Middle East Africa and Asia-Pacific Regions

Regional dynamics continue to shape the trajectory of thermoplastic polyester elastomer demand, with distinct characteristics emerging across the Americas, Europe Middle East and Africa, and Asia-Pacific corridors. In the Americas, a combination of near-shoring trends and incentives for domestic manufacturing has bolstered capacity expansions, particularly within the automotive sector. This regional focus on localized value chains has also attracted upstream investments in resin production, shortening lead times and enhancing risk mitigation.

In Europe Middle East and Africa, stringent environmental regulations and evolving safety standards have accelerated the shift toward recycled and bio-based elastomer solutions. Infrastructure investments in renewable energy and electrification projects have created new outlets for materials that offer robust thermal performance. Moreover, the MENA subregion's petrochemical hubs continue to play a vital role in supplying feedstocks to downstream polyester elastomer manufacturers.

Asia-Pacific remains the most dynamic market, underpinned by a robust manufacturing base in electronics, textiles, and automotive assembly. Rapid urbanization and rising living standards have driven demand for premium consumer goods, while government policies in key countries promote research into advanced polymers and circular economy frameworks. With an ever-expanding converter network and competitive labor costs, the region is poised to maintain its leadership in both volume and innovation.

Spotlighting Leading Thermoplastic Polyester Elastomer Manufacturers and Innovators Driving Competitive Differentiation and Technological Advancements in the Sector

The competitive landscape of thermoplastic polyester elastomer is dominated by a mix of global chemical giants and agile specialty polymer producers. Leading manufacturers have pursued capacity expansions in strategic geographies to balance regional demand fluctuations and tariff impacts. Partnerships with technology providers have enabled tailored compound development, enhancing performance characteristics for specific end uses.

At the forefront, several integrated players leverage vertically aligned operations from monomer synthesis through polymerization and compounding, resulting in cost advantages and consistent quality control. Others differentiate through proprietary catalysts or unique copolymerization methods that enhance thermal and mechanical properties. Joint ventures between major resin producers and regional converters have also emerged as a prevalent strategy, fostering faster market entry and localized R&D collaborations.

Innovative mid-tier companies are carving out niches by focusing on high-temperature grades and bio-derived monomer formulations, appealing to sectors with specialized performance requirements. Meanwhile, a growing number of contract manufacturers offer tolling services, allowing brands to outsource production without capital-intensive investments. This layered ecosystem of industry participants ensures a dynamic interplay between scale, specialization, and customer intimacy.

Offering Actionable Strategic Recommendations for Industry Leaders to Capitalize on Emerging Opportunities and Navigate Supply Chain Disruptions in the Thermoplastic Polyester Elastomer Sector

To thrive amid evolving market dynamics, industry leaders should pursue a multifaceted strategy that spans supply chain resilience, product innovation, and collaborative partnerships. First, diversifying feedstock sources by integrating bio-based and recycled polyester streams can reduce exposure to raw material price volatility while addressing sustainability mandates. Capitalizing on closed-loop recycling initiatives will not only satisfy regulatory requirements but also enhance brand reputation among eco-conscious customers.

Second, targeted R&D investments in advanced compound formulations-especially those geared toward high-temperature applications and ultra-lightweight designs-will unlock new market segments and justify premium pricing. By leveraging digital twins and simulation tools, companies can accelerate product development cycles and minimize trial-and-error costs. Strategic joint ventures with automotive OEMs or electronics manufacturers can further align innovation roadmaps with end-use requirements.

Third, strengthening regional manufacturing footprints and establishing bonded warehouse networks will help mitigate future tariff risks and logistical disruptions. Embracing smart factory initiatives-such as real-time analytics, predictive maintenance, and flexible extrusion lines-can optimize operational efficiency. Finally, fostering deep customer engagement through technical support services and co-development programs will bolster long-term partnerships and differentiate participants in an increasingly commoditized landscape.

Illustrating the Rigorous Research Methodology Employed to Deliver Accurate Market Analysis Based on Primary Qualitative Input and Secondary Data Synthesis

This report synthesizes insights drawn from a dual-pronged research approach comprising primary engagement with industry stakeholders and rigorous secondary data analysis. Primary research involved structured interviews with polymer scientists, procurement executives, and senior engineers across key end-use industries. These engagements provided firsthand perspectives on evolving material requirements, emerging application trends, and supply chain challenges.

Secondary research encompassed exhaustive reviews of technical publications, regulatory filings, patent databases, and trade association reports. Data triangulation techniques were employed to validate findings, ensuring consistency between quantitative metrics and qualitative insights. Scenario analysis was also utilized to model potential regulatory shifts, tariff evolutions, and feedstock availability constraints.

Throughout the research process, proprietary validation workshops brought together cross-functional teams to refine market assumptions and stress-test strategic hypotheses. While this methodology strives for comprehensive coverage, ongoing developments in polymer science and trade policy may necessitate periodic updates to maintain actionable relevance.

Summarizing Key Findings and Insights on the Thermoplastic Polyester Elastomer Market Trajectory and Strategic Imperatives for Stakeholders in Diverse Sectors

Thermoplastic polyester elastomer stands at the intersection of performance-driven material innovation and evolving sustainability imperatives. Advances in bio-based feedstocks and closed-loop recycling underscore the industry's commitment to environmental stewardship, while emerging manufacturing technologies-from additive processes to digitalized production lines-are redefining efficiency standards.

The implementation of 2025 tariff measures in the United States has highlighted the critical role of supply chain agility, prompting stakeholders to diversify sourcing strategies and explore regional production hubs. Segmentation insights reveal that distinct grade, chemistry, and application combinations yield disparate growth trajectories, emphasizing the importance of tailored strategies for blow molding, extrusion, and injection molding markets.

Regionally, the Americas, Europe Middle East and Africa, and Asia-Pacific each present unique drivers, from near-shoring incentives to stringent environmental regulations and robust manufacturing expansion. Leading companies continue to differentiate through integrated operations, proprietary technologies, and strategic alliances. By following targeted recommendations-such as feedstock diversification, innovation partnerships, and smart manufacturing adoption-industry players can navigate current disruptions and steer toward sustainable, profitable growth.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Emergence of high-flow TPPE grades enabling thin-wall packaging and ultra-fast cycle times in consumer goods manufacturing
  • 5.2. Adoption of 3D printing-optimized TPPE formulations for customized medical devices with superior biocompatibility and sterilization stability
  • 5.3. Development of flame-retardant thermoplastic polyester elastomers for electrical and electronics industry to meet stringent standards
  • 5.4. Integration of bio-based monomers in thermoplastic polyester elastomers (TPPE) for enhanced sustainability and compliance with evolving global regulatory frameworks
  • 5.5. Advancement of nano-reinforcement technologies in TPPE compounds to improve mechanical strength and fatigue resistance in industrial applications
  • 5.6. Innovations in TPPE chemical recycling processes leveraging depolymerization for closed-loop circular economy integration
  • 5.7. Tailoring of TPPE hardness profiles through block copolymer architecture to address soft-touch automotive interior trim requirements
  • 5.8. Collaboration between petrochemical majors and compounders to develop cost-competitive TPPE grades for electric vehicle charging infrastructure components
  • 5.9. Shift toward low-emission TPPE polymerization using renewable energy sources and green catalysts to reduce manufacturing carbon footprint
  • 5.10. Exploration of TPU-TPE alloy blends for enhanced oil and chemical resistance in industrial hose and tubing applications

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Thermoplastic Polyester Elastomer Market, by Type

  • 8.1. Introduction
  • 8.2. Blow Molding Grade
  • 8.3. Extrusion Grade
  • 8.4. Injection Molding Grade

9. Thermoplastic Polyester Elastomer Market, by Material Types

  • 9.1. Introduction
  • 9.2. PBT-Based
  • 9.3. PET-Based

10. Thermoplastic Polyester Elastomer Market, by Application

  • 10.1. Introduction
  • 10.2. Connectors
  • 10.3. Films & Sheets
  • 10.4. Hoses & Tubes
  • 10.5. Seals & Gaskets
  • 10.6. Wire & Cable Jackets

11. Thermoplastic Polyester Elastomer Market, by End-Use Industry

  • 11.1. Introduction
  • 11.2. Automotive
  • 11.3. Consumer Goods
  • 11.4. Electrical & Electronics
  • 11.5. Healthcare
  • 11.6. Industrial

12. Thermoplastic Polyester Elastomer Market, by Sales Channel

  • 12.1. Introduction
  • 12.2. Direct Sales
  • 12.3. Distributor Sales

13. Americas Thermoplastic Polyester Elastomer Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Thermoplastic Polyester Elastomer Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Thermoplastic Polyester Elastomer Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Arkema S.A.
    • 16.3.2. Asahi Kasei Corporation
    • 16.3.3. Avient Corporation
    • 16.3.4. BASF SE
    • 16.3.5. Celanese Corporation
    • 16.3.6. Covestro AG
    • 16.3.7. DuPont de Nemours, Inc.
    • 16.3.8. Evonik Industries AG
    • 16.3.9. Exxon Mobil Corporation
    • 16.3.10. Huntsman International LLC
    • 16.3.11. KRAIBURG TPE.
    • 16.3.12. LCY Chemical Corp.
    • 16.3.13. Lubrizol Corporation
    • 16.3.14. LyondellBasell Industries N.V.
    • 16.3.15. Mitsubishi Chemical Holdings Corporation
    • 16.3.16. Mitsui Chemicals, Inc.
    • 16.3.17. Moriroku Chemicals Company, Ltd.
    • 16.3.18. Phon Tech Industrial Company
    • 16.3.19. Saudi Basic Industries Corporation
    • 16.3.20. Shin-Etsu Polymer Co., Ltd.
    • 16.3.21. The Dow Chemical Company
    • 16.3.22. Tosoh Corporation
    • 16.3.23. Zeon Corporation

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦