시장보고서
상품코드
1809885

농업 생명공학 유전자 발현 분석 시장 : 제품 유형, 기술, 작물 유형, 용도, 최종사용자별 - 세계 예측(2025-2030년)

Gene Expression Analysis in Agricultural Biotechnology Market by Product Type, Technology, Crop Type, Application, End-User - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 190 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

농업 생명공학 유전자 발현 분석 시장은 2024년에 10억 2,000만 달러로 평가되었습니다. 2025년에는 11억 달러에 이르고, CAGR 8.40%로 성장하여 2030년에는 16억 6,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 10억 2,000만 달러
추정 연도 : 2025년 11억 달러
예측 연도 : 2030년 16억 6,000만 달러
CAGR(%) 8.40%

농업 생명공학의 발전과 지속 가능한 작물 혁신을 촉진하는 데 있어 유전자 발현 분석의 중요한 역할에 대해 알아봅니다.

농업 생명공학 분야는 유전자 발현 분석이 기술 혁신의 핵심으로 떠오르면서 큰 변화를 겪고 있습니다. 기존에는 학술 연구실에 국한되어 있던 이러한 분자 기술은 이제 연구의 틀을 넘어 식물 과학자들이 복잡한 제어 네트워크를 해독하고 수확량, 병충해 저항성, 환경 저항성을 향상시키는 형질을 설계할 수 있도록 하고 있습니다. 유전자 발현 분석은 본질적인 생물학적 과정을 지배하는 전사 환경을 조명함으로써 육종가와 생명공학자들에게 전례 없는 정확도로 데이터 기반 의사결정을 내릴 수 있는 능력을 부여하고 있습니다.

농업 생명공학 연구에서의 유전자 발현 분석을 변화시키는 파괴적 기술과 조사 방법의 전환을 살펴봅니다.

최근 농업 생명공학에서 유전자 발현 분석의 관행을 재정의하는 혁신적인 변화가 일어나고 있습니다. 최첨단 시퀀싱 플랫폼은 더 높은 처리량과 단일 세포 해상도를 달성하고, 발달 중인 식물 조직 전체의 미묘한 발현 패턴을 식별할 수 있는 능력을 발휘합니다. 동시에 인공지능을 데이터 분석 파이프라인에 통합하여 방대한 데이터 세트와 표현형 결과를 연결하고, 실험 반복을 줄이고 검증 주기를 단축하여 발견을 가속화합니다.

2025년 미국 관세 조정이 유전자 발현 분석 워크플로우 및 공급망 역학에 미치는 영향에 대한 평가

2025년 미국의 새로운 관세 조치의 시행은 유전자 발현 분석공급망에 큰 복잡성을 가져왔습니다. 수입 시약 및 특수 소모품에 부과되는 관세는 조달 비용을 상승시키고, 실험실은 공급업체와의 계약을 재평가하고 수량 기준 계약을 협상해야 하는 상황에 처해 있습니다. 동시에 차세대 시퀀서, 고처리량 PCR 장비 등 주요 장비에 관세가 추가되면서 공급업체들이 가격 전략을 조정하고 재고를 재분배하기 위해 리드타임이 길어지고 있습니다.

제품 유형, 기술, 작물 유형, 용도, 최종 사용자에 따른 시장 세분화에 대한 심층적인 통찰력을 얻을 수 있습니다.

시장 세분화에 대한 미묘한 이해를 통해 유전자 발현 분석 영역에서 명확한 성장 벡터와 경쟁 영역이 명확해집니다. 한편, 중합효소 연쇄반응 장치 및 하이스루풋 시퀀서 등의 장비는 첨단 응용 분야의 기술적 중추 역할을 합니다. 이러한 하드웨어 투자를 보완하는 데이터 분석 소프트웨어 제품군 및 실험실 정보 관리 시스템은 원시 결과물을 실행 가능한 통찰력으로 전환하는 데 점점 더 중요해지고 있습니다.

미주, 유럽, 아시아태평양 시장에서의 유전자 발현 분석의 지역적 차이와 시장 성장 촉진요인을 파악합니다.

유전자 발현 분석의 투자 흐름과 전략적 우선순위를 형성하는 것은 지역적 역학입니다. 미주 대륙에서는 막대한 연구 자금과 탄탄한 인프라가 형질 발견 및 정밀 육종 프로그램을 위한 차세대 염기서열 분석기의 빠른 도입을 촉진하고 있습니다. 이 시장 진출기업들은 민간 부문의 진입을 장려하는 지원적인 규제 프레임워크를 배경으로 다양한 작물에 대응하기 위해 실험실에서 고처리량 작업을 확장하고 있습니다.

농업 분야 유전자 발현 분석의 산업 환경을 형성하는 주요 이해관계자 및 전략적 혁신을 프로파일링합니다.

업계 리더들은 유전자 발현 분석 생태계 내에서 입지를 굳히기 위해 다각적인 전략을 펼치고 있습니다. 주요 생명과학 기기 공급업체들은 전략적 인수 및 공동 개발 계약을 통해 제품 포트폴리오를 지속적으로 확장하고 있으며, 시퀀싱 기능과 자동 시료 준비 모듈을 통합하고 있습니다. 동시에 시약 제조업체들은 고처리량 워크플로우와 주요 장비 플랫폼과의 호환성에 최적화된 시약 키트에 집중하여 원활한 엔드 투 엔드 솔루션을 목표로 하고 있습니다.

유전자 발현 분석 제공업체의 경쟁적 포지셔닝과 운영 효율성 향상을 위한 실행 가능한 전략적 제안.

복잡한 유전자 발현 분석 환경을 극복하기 위해 업계 리더들은 상호보완적인 강점을 연계하는 전략적 파트너십을 우선시해야 합니다. 시약 개발업체와 장비 공급업체 간의 협력적 제휴를 통해 최적화된 워크플로우 솔루션을 제공하고, 호환성을 강화하며, 사용자 도입을 촉진합니다. 이와 함께, 상호 운용 가능한 데이터 플랫폼에 투자하면 여러 기능의 팀들이 분자적 통찰력을 표현형 및 농학 데이터 세트와 통합하여 더 많은 정보에 입각한 의사결정을 내릴 수 있습니다.

종합적인 유전자 발현 분석 시장 조사 방법론의 틀을 뒷받침하는 엄격한 조사 방법론의 개요.

본 조사는 종합적인 조사 대상과 분석의 엄밀성을 보장하기 위해 설계된 견고하고 다층적인 조사 방법을 채택했습니다. 1차 조사는 주요 농업경제학 전문가, 연구소 책임자 및 공급망 관리자와의 심층 인터뷰를 통해 진행되었으며, 기술 채택, 조달 과제 및 진화하는 서비스 모델에 대한 직접적인 관점을 제공했습니다. 이러한 통찰력은 재무 보고서, 특허 출원, 규제 당국에 제출한 데이터와 삼각 비교를 통해 새로운 트렌드와 전략적 이니셔티브를 확인했습니다.

농업 생명공학 유전자 발현 분석 생태계의 이해관계자들에게 중요한 통찰력과 전략적 시사점을 통합합니다.

이 요약은 농업 생명공학 분야의 유전자 발현 분석의 진화하는 상황에 대한 매우 중요한 통찰력을 추출한 것입니다. 기술적 혁신, 방법론적 혁신, 무역 정책적 영향의 합류점을 조사하여 연구 및 상업 활동을 형성하는 전략적 요구를 확인했습니다. 세분화 분석을 통해 소모품 및 장비에서 데이터 분석 및 최종 용도에 이르기까지 각기 고유한 작물 및 지역적 우선순위에 따라 수요의 개별적인 벡터를 확인할 수 있었습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 농업 생명공학 유전자 발현 분석 시장 : 제품 유형별

  • 소모품 및 시약
    • 키트
    • 시약
  • 기기
    • PCR 머신
    • 시퀸서
  • 소프트웨어
    • 데이터 분석 소프트웨어
    • 림스

제9장 농업 생명공학 유전자 발현 분석 시장 : 기술별

  • 마이크로어레이 해석
  • 차세대 시퀀싱(NGS)
  • 중합효소 연쇄반응(PCR)

제10장 농업 생명공학 유전자 발현 분석 시장 : 작물 유형별

  • 곡물
  • 과일 및 채소
  • 지방종자 및 콩류

제11장 농업 생명공학 유전자 발현 분석 시장 : 용도별

  • 내병성
    • 진균 내성
    • 바이러스 내성
  • GMO 감지
  • 특성 개발
    • 가뭄 내성
    • 해충 내성
  • 수량 향상

제12장 농업 생명공학 유전자 발현 분석 시장 : 최종사용자별

  • 학술연구기관
  • 바이오테크놀러지 기업
  • 수탁연구기관
  • 정부기관

제13장 아메리카의 농업 생명공학 유전자 발현 분석 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제14장 유럽, 중동 및 아프리카의 농업 생명공학 유전자 발현 분석 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제15장 아시아태평양의 농업 생명공학 유전자 발현 분석 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Illumina, Inc.
    • Agilent Technologies, Inc.
    • Azenta Life Sciences
    • Bio-Rad Laboratories, Inc.
    • CD Genomics
    • Cibus Inc.
    • Eurofins Scientific
    • Genedata AG
    • IGA Technology Services srl
    • Intertek Group plc
    • LGC Limited
    • NanoString Technologies, Inc.
    • Nath Bio-Genes(I) Ltd.
    • Oxford Nanopore Technologies plc.
    • Pacific Biosciences of California, Inc.
    • PerkinElmer Inc.
    • seqWell
    • Thermo Fisher Scientific Inc.
    • Trace Genomics.
    • QIAGEN GmbH

제17장 리서치 AI

제18장 리서치 통계

제19장 리서치 컨택트

제20장 리서치 기사

제21장 부록

LSH 25.09.22

The Gene Expression Analysis in Agricultural Biotechnology Market was valued at USD 1.02 billion in 2024 and is projected to grow to USD 1.10 billion in 2025, with a CAGR of 8.40%, reaching USD 1.66 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 1.02 billion
Estimated Year [2025] USD 1.10 billion
Forecast Year [2030] USD 1.66 billion
CAGR (%) 8.40%

Exploring the Critical Role of Gene Expression Analysis in Driving Agricultural Biotechnology Advancements and Sustainable Crop Innovation

The agricultural biotechnology sector is undergoing a profound transformation as gene expression analysis emerges as a cornerstone of innovation. Historically confined to academic laboratories, these molecular techniques have now transcended research boundaries, enabling plant scientists to decode complex regulatory networks and engineer traits for enhanced yield, disease resilience, and environmental tolerance. By illuminating the transcriptional landscapes that govern essential biological processes, gene expression analysis empowers breeders and biotechnologists to make data-driven decisions with unprecedented precision.

At the heart of this evolution lies the convergence of high-resolution detection methods, advanced bioinformatics, and scalable automation platforms. Together, they are catalyzing a shift from traditional phenotypic screening to predictive modeling approaches that prioritize efficiency and reliability. As global challenges such as food security and climate change intensify, the ability to accelerate varietal development through molecular insights becomes increasingly critical.

This introduction sets the stage for a comprehensive exploration of the latest breakthroughs, market drivers, and strategic considerations shaping the gene expression analysis landscape in agricultural biotechnology. Through a multi-faceted lens, we will examine transformative technological advancements, tariff-induced supply chain dynamics, nuanced segmentation insights, regional adoption patterns, and actionable guidance for industry leaders.

Examining the Disruptive Technological and Methodological Shifts Transforming Gene Expression Analysis in Agricultural Biotechnology Research

Recent years have witnessed transformative shifts that are redefining the practice of gene expression analysis in agricultural biotechnology. Cutting-edge sequencing platforms have achieved greater throughput and single-cell resolution, unlocking the capacity to discriminate subtle expression patterns across developing plant tissues. Simultaneously, the integration of artificial intelligence into data interpretation pipelines has accelerated discovery by correlating massive datasets with phenotypic outcomes, reducing experimental iterations and expediting validation cycles.

Methodological innovations are further enhancing reproducibility and scalability. Automated liquid handling systems now interface directly with miniaturized reaction volumes, decreasing consumable costs while improving protocol consistency across multiple labs. Moreover, the adoption of cloud-based computational frameworks has democratized access to powerful analytics, enabling smaller research organizations and contract research facilities to compete on par with large biotechnology companies.

These converging trends are fostering a collaborative ecosystem in which open-source software development and standardized data-sharing protocols facilitate cross-institutional partnerships. As a result, research timelines are contracting and project pipelines are expanding to encompass complex trait engineering, pathogen surveillance, and gene regulatory network mapping. Looking ahead, these shifts suggest an industry moving decisively towards predictive, high-throughput gene expression paradigms that will drive the next wave of agricultural innovation.

Assessing the Far-Reaching Effects of 2025 United States Tariff Adjustments on Gene Expression Analysis Workflows and Supply Chain Dynamics

The implementation of new United States tariff measures in 2025 has introduced significant complexities into the gene expression analysis supply chain. Tariffs imposed on imported reagents and specialized consumables have increased procurement costs, prompting research laboratories to reevaluate vendor agreements and negotiate volume-based contracts. At the same time, added duties on critical instrumentation, such as next-generation sequencers and high-throughput PCR machines, have extended lead times, as suppliers adjust pricing strategies and redistribute inventories.

As a result, organizations are diversifying sourcing strategies by exploring alternative domestic suppliers and regional manufacturing hubs. This dynamic has spurred investment in onshore reagent production facilities and encouraged instrument manufacturers to localize assembly operations. In parallel, service providers offering contract research and sequencing services have adapted by streamlining workflows and passing through cost efficiencies to end users through bundled service models.

While tariff-related pressures continue to reshape procurement and project budgeting, they have also accelerated the adoption of digital solutions. Remote instrument monitoring and virtual training programs are helping mitigate the impact of reduced on-site support. In turn, these adaptations are strengthening resilience within the gene expression analysis ecosystem and highlighting the importance of agile supply chain management under evolving trade policies.

Deriving In-Depth Market Segmentation Insights Across Product Type Technology Crop Type Application and End User Dimensions

A nuanced understanding of market segmentation reveals distinct growth vectors and competitive arenas within the gene expression analysis domain. Product-wise, consumables and reagents-encompassing kits alongside standalone reagents-remain foundational to routine laboratory protocols, whereas instruments such as polymerase chain reaction machines and high-throughput sequencers serve as the technological backbone for advanced applications. Complementing these hardware investments, data analysis software suites and laboratory information management systems are increasingly vital for translating raw outputs into actionable insights.

Technological segmentation underscores contrasting adoption rates between established polymerase chain reaction platforms, evolving microarray analysis systems, and next-generation sequencing technologies that deliver unparalleled resolution. These methodological distinctions align closely with crop-specific priorities. In staples like cereals and grains, research efforts emphasize yield improvement and disease resistance profiling, while fruit and vegetable genomics often target shelf life optimization and flavor trait enhancement. Meanwhile, oilseed and pulse research prioritizes oil composition analysis and stress tolerance characteristics.

Application-driven demand bifurcates across objectives such as genomic detection of genetically modified traits, trait development initiatives focusing on drought tolerance and pest resistance, as well as targeted strategies for fungal and viral resistance. Underpinning this spectrum of activities are key end users, from academic and research institutions pioneering fundamental discovery to biotechnology firms and contract research organizations that operationalize findings, with government agencies regulating compliance and safety standards.

Uncovering Regional Variations and Growth Drivers in Gene Expression Analysis Adoption Across the Americas EMEA and Asia Pacific Markets

Regional dynamics shape both investment flows and strategic priorities in gene expression analysis. In the Americas, substantial research funding and robust infrastructure have fostered rapid adoption of next-generation sequencing for trait discovery and precision breeding programs. This market has seen laboratories scale up high-throughput operations to address diverse crops, backed by supportive regulatory frameworks that encourage private sector participation.

Across Europe, the Middle East, and Africa, heterogeneity in research capabilities and policy environments drives varied adoption patterns. In Western European countries, stringent regulatory oversight and public-private partnerships have accelerated investments in bioinformatics platforms and localized reagent manufacture. Simultaneously, emerging agricultural hubs in North Africa and the Gulf region are leveraging collaborative research initiatives to enhance disease resistance studies in staple crops.

The Asia-Pacific region is experiencing exponential demand fueled by population growth and food security imperatives. Governments and private enterprises are channeling resources into high-throughput PCR instrumentation and gene editing platforms to develop climate-resilient varieties. Strategic collaborations with global technology providers are also facilitating localized training programs and knowledge transfer, ensuring that regional research institutions can fully leverage cutting-edge gene expression analysis tools.

Profiling Leading Industry Stakeholders and Their Strategic Innovations Shaping the Gene Expression Analysis Landscape in Agriculture

Industry leaders are deploying multifaceted strategies to consolidate their positions within the gene expression analysis ecosystem. Major life science instrumentation providers continue to expand their product portfolios through strategic acquisitions and co-development agreements, integrating sequencing capabilities with automated sample preparation modules. Concurrently, reagent manufacturers are focusing on reagent kits optimized for high-throughput workflows and compatibility with leading instrumentation platforms, targeting seamless end-to-end solutions.

In the software arena, emerging players are differentiating through artificial intelligence-driven analytics that offer predictive modeling of gene regulatory networks and phenotype correlations. By partnering with academic consortia, these firms are enriching their algorithms with curated datasets, thereby enhancing accuracy and reducing time to insight. Contract research organizations are capitalizing on this trend by bundling specialized analytical services with remote data interpretation platforms, catering to clients seeking turnkey research workflows.

Moreover, vertically integrated agriscience companies are establishing proprietary genomics centers to internalize key stages of gene expression analysis, from sample collection to bioinformatics reporting. This approach not only secures intellectual property but also fosters agility in responding to emerging crop challenges. Across the board, collaboration between hardware, reagent, software, and service providers is intensifying, driving ecosystem convergence and creating compelling value propositions for end users.

Actionable Strategic Recommendations to Enhance Competitive Positioning and Operational Efficiency for Gene Expression Analysis Providers

To navigate the intricate gene expression analysis landscape, industry leaders should prioritize strategic partnerships that align complementary strengths. Collaborative alliances between reagent developers and instrumentation vendors can yield optimized workflow solutions, enhancing compatibility and driving user adoption. In parallel, investing in interoperable data platforms will enable cross-functional teams to synthesize molecular insights with phenotypic and agronomic datasets, fostering more informed decision-making.

Operational efficiency can be further improved by establishing regional centers of excellence for reagent production and instrument assembly, mitigating the impact of evolving tariff structures. Combining localized manufacturing with just-in-time inventory models can reduce lead times and manage working capital more effectively. Additionally, organizations should augment their talent pipelines by offering specialized training programs in bioinformatics and automated laboratory practices, ensuring that teams can fully leverage emerging technologies.

From a market positioning perspective, articulating clear value propositions around sustainability and precision breeding will differentiate offerings in a crowded field. Companies that can demonstrate measurable improvements in resource efficiency or resistance profiling will resonate strongly with both private breeders and public-sector research initiatives. Finally, maintaining an agile product development roadmap-guided by continuous feedback loops with end users-will be essential for capturing emerging opportunities in trait development and regulatory compliance.

Outlining the Rigorous Research Methodology Underpinning the Comprehensive Gene Expression Analysis Market Study Framework

This study employs a robust, multi-tiered research methodology designed to ensure comprehensive coverage and analytical rigor. Primary research was conducted through in-depth interviews with leading agrigenomics experts, laboratory directors, and supply chain managers, providing firsthand perspectives on technology adoption, procurement challenges, and evolving service models. These insights were triangulated with data from financial reports, patent filings, and regulatory filings to validate emerging trends and strategic initiatives.

Secondary research encompassed an extensive review of peer-reviewed journals, white papers, industry conference proceedings, and institutional publications. This phase allowed for the systematic mapping of technological advancements and methodological best practices across diverse geographies. Data compilation and cleansing protocols were applied to ensure consistency, while advanced analytics tools facilitated the identification of correlation patterns between gene expression platforms and application outcomes.

Throughout the research process, rigorous data validation measures- including cross-verification with subject matter experts and iterative feedback loops-were implemented to uphold accuracy. Market dynamics were evaluated within the context of regulatory frameworks, tariff changes, and regional infrastructure capacities. The integration of qualitative insights with quantitative trend analysis establishes a holistic foundation for the strategic conclusions and recommendations presented in this report.

Synthesizing Critical Insights and Strategic Implications for Stakeholders in Agricultural Biotechnology Gene Expression Analysis Ecosystem

This executive summary has distilled pivotal insights into the evolving landscape of gene expression analysis in agricultural biotechnology. By examining the confluence of technological breakthroughs, methodological innovations, and trade policy implications, we have illuminated the strategic imperatives shaping research and commercial activities. Segmentation analysis has revealed discrete vectors of demand, from consumables and instrumentation to data analytics and end-use applications, each driven by unique crop and regional priorities.

Furthermore, a thorough assessment of leading companies highlights the increasing importance of ecosystem integration, as stakeholders pursue end-to-end solutions spanning reagents, hardware, software, and services. Regional insights underscore the necessity of tailored strategies that address localized infrastructure capacities, regulatory frameworks, and funding mechanisms. The actionable recommendations emphasize the benefits of strategic partnerships, operational localization, and talent development in navigating supply chain complexities and sustaining innovation pipelines.

Ultimately, the ability to translate gene expression data into agronomic value will define competitive differentiation in the years ahead. By adopting agile research frameworks, leveraging interoperable platforms, and aligning stakeholder interests, organizations can accelerate the path from molecular discovery to resilient, high-performing crop varieties. This holistic perspective equips leaders with the clarity needed to capitalize on emerging opportunities and mitigate evolving challenges within the gene expression analysis ecosystem.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Increasing adoption of gene expression biomarkers for early detection of plant stress and pathogens
  • 5.2. Integration of AI and machine learning for enhanced gene expression analysis in agriculture biotechnology
  • 5.3. Growing regulatory frameworks and ethical considerations influencing gene expression research and commercialization in agricultural biotechnology
  • 5.4. Collaboration between biotech firms and academic institutions for scalable gene expression solutions in agriculture
  • 5.5. Application of portable gene expression analysis tools for real-time field monitoring
  • 5.6. Development of drought-resistant crop varieties through gene expression profiling
  • 5.7. Utilization of next-generation sequencing technologies for comprehensive gene expression mapping in plants
  • 5.8. Expansion of bioinformatics tools for multi-omics integration in crop improvement
  • 5.9. Adoption of high-throughput phenotyping coupled with gene expression data
  • 5.10. Regulatory frameworks evolving for gene-edited agricultural products globally

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Gene Expression Analysis in Agricultural Biotechnology Market, by Product Type

  • 8.1. Introduction
  • 8.2. Consumables & Reagents
    • 8.2.1. Kits
    • 8.2.2. Reagents
  • 8.3. Instruments
    • 8.3.1. PCR Machines
    • 8.3.2. Sequencers
  • 8.4. Software
    • 8.4.1. Data Analysis Software
    • 8.4.2. LIMS

9. Gene Expression Analysis in Agricultural Biotechnology Market, by Technology

  • 9.1. Introduction
  • 9.2. Microarray Analysis
  • 9.3. Next-Generation Sequencing (NGS)
  • 9.4. Polymerase Chain Reaction (PCR)

10. Gene Expression Analysis in Agricultural Biotechnology Market, by Crop Type

  • 10.1. Introduction
  • 10.2. Cereals & Grains
  • 10.3. Fruits & Vegetables
  • 10.4. Oilseeds & Pulses

11. Gene Expression Analysis in Agricultural Biotechnology Market, by Application

  • 11.1. Introduction
  • 11.2. Disease Resistance
    • 11.2.1. Fungal Resistance
    • 11.2.2. Viral Resistance
  • 11.3. GMO Detection
  • 11.4. Trait Development
    • 11.4.1. Drought Tolerance
    • 11.4.2. Pest Resistance
  • 11.5. Yield Improvement

12. Gene Expression Analysis in Agricultural Biotechnology Market, by End-User

  • 12.1. Introduction
  • 12.2. Academic & Research Institutions
  • 12.3. Biotechnology Companies
  • 12.4. Contract Research Organizations
  • 12.5. Government Agencies

13. Americas Gene Expression Analysis in Agricultural Biotechnology Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Gene Expression Analysis in Agricultural Biotechnology Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Gene Expression Analysis in Agricultural Biotechnology Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Illumina, Inc.
    • 16.3.2. Agilent Technologies, Inc.
    • 16.3.3. Azenta Life Sciences
    • 16.3.4. Bio-Rad Laboratories, Inc.
    • 16.3.5. CD Genomics
    • 16.3.6. Cibus Inc.
    • 16.3.7. Eurofins Scientific
    • 16.3.8. Genedata AG
    • 16.3.9. IGA Technology Services srl
    • 16.3.10. Intertek Group plc
    • 16.3.11. LGC Limited
    • 16.3.12. NanoString Technologies, Inc.
    • 16.3.13. Nath Bio-Genes (I) Ltd.
    • 16.3.14. Oxford Nanopore Technologies plc.
    • 16.3.15. Pacific Biosciences of California, Inc.
    • 16.3.16. PerkinElmer Inc.
    • 16.3.17. seqWell
    • 16.3.18. Thermo Fisher Scientific Inc.
    • 16.3.19. Trace Genomics.
    • 16.3.20. QIAGEN GmbH

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제