시장보고서
상품코드
1827576

데이터센터 건설 시장 : 데이터센터 유형별, 건설 유형별, Tier 레벨별, 컴포넌트별, 최종사용자 산업별, 건설 서비스 유형별 - 세계 예측(2025-2032년)

Data Center Construction Market by Data Center Type, Construction Type, Tier Level, Component, End User Industry, Construction Service Type - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 185 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

데이터센터 건설 시장은 2032년까지 CAGR 8.84%로 4,659억 4,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 2,365억 달러
추정연도 2025 2,576억 7,000만 달러
예측연도 2032 4,659억 4,000만 달러
CAGR(%) 8.84%

의사결정권자를 위해 데이터센터 구축 전략을 재구성하는 기술, 운영, 규제, 재무적 진화를 프레임워크화한 종합적인 소개를 제공

데이터센터 건설은 기술의 진화, 정책의 변화, 사용자의 기대치 변화 등으로 인해 큰 변화의 시기를 맞이하고 있습니다. 이 소개에서는 상업용, 기업 및 하이퍼스케일 데이터센터 건설에서 프로젝트의 설계, 조달 및 실행을 형성하는 가장 중요한 요소에 대해 설명합니다. 컴퓨팅 집약도 증가, 열 관리의 혁신, 전력 인프라의 복잡성, 시설 아키텍처에서 내결함성의 중요성 증가 등 여러 요인의 상호 관계를 개괄적으로 설명함으로써 경영진과 프로젝트 리더를 위한 논의를 구성하고 있습니다.

이 섹션에서는 기술적 추진력뿐만 아니라 규제 발전, 지속가능성의 필요성, 자본 배분 압력 등 더 넓은 맥락에서 건설 관행을 위치시킵니다. 또한 조달 주기가 길어지는 반면, 시장 출시 속도가 요구되고 있음을 밝히며, 신축과 개보수의 트레이드오프를 명확히 하고 있습니다. 이러한 전략적 기준선을 설정함으로써 의사결정자는 투자의 우선순위를 정하고, 단기적인 운영상의 제약과 장기적인 확장성 요구사항의 균형을 맞추고, 고급 구성 요소의 배치 및 통합을 위한 현실적인 일정을 설정할 수 있습니다.

기술, 공급망, 지속가능성, 규제 측면의 주요 변혁적 변화에 대한 심층 분석을 통해 건설 우선순위와 실행 모델을 재구성

최근 데이터센터 프로젝트의 구상, 자금 조달 및 실행 방식을 재정의하는 혁신적인 변화가 일어나고 있으며, 그 영향은 입지 선정부터 시운전, 그리고 그 너머에까지 미치고 있습니다. 첫째, 고밀도 워크로드의 급증과 인공지능 및 머신러닝 용도의 채택이 가속화되면서 열 관리 및 전력 분배에 대한 설계적 관심이 집중되고 있으며, 기존의 공랭식 패러다임에서 필요에 따라 하이브리드 및 수랭식 아키텍처로의 전환이 가속화되고 있습니다. 이 기술적 축에는 현장의 노동력을 줄이고 납기를 단축하는 모듈식 및 조립식 요소의 통합이 진행되고 있습니다.

동시에 공급망 탄력성이 프로그램의 핵심 리스크로 부상하여 공급업체 다양화, 부품 표준화, 재고 전략에 대한 의사결정에 영향을 미치고 있습니다. 이해관계자들은 계약서에 후반 단계의 유연성을 포함시켜 단계적 시운전을 용이하게 하는 건설 접근 방식을 선택하게 되었습니다. 지속가능성 측면에서 사업자는 더 높은 에너지 효율, 적극적인 PUE 감소 목표, 재생에너지 조달 메커니즘과의 더 깊은 관계를 추구하고 있으며, 이는 사이트의 실행 가능성과 그리드 인터페이스 전략에 영향을 미치고 있습니다. 마지막으로 규제 환경과 인센티브는 자본 배분의 형태를 변화시키고 있습니다. 새로운 건축 기준과 환경 보고 요건은 설계팀, 시공사, 컴플라이언스 전문가가 더욱 긴밀하게 협력해야 합니다. 이러한 변화를 종합해 볼 때, 탄력적이고 미래지향적인 시설을 제공하기 위해서는 기능 간 조정과 기존 프로젝트 거버넌스 모델의 재조정이 필요합니다.

2025년 미국 관세 도입에 따른 누적된 비즈니스 및 전략적 영향과 이해관계자들이 어떻게 조달 및 건설 리스크 관리를 재조정했는지 자세히 살펴봅니다.

2025년 미국의 관세 도입은 데이터센터 프로젝트의 조달 전략, 자재 조달, 건설 일정에 영향을 미치는 파급 효과를 가져왔습니다. 관세가 주요 수입 부품과 자재에 영향을 미치면서 이해관계자들은 공급업체 평가, 헤지 계약 협상, 경우에 따라서는 국내 조달 대안을 도입하기 위해 설계를 재구성하는 등 대응에 나섰습니다. 이러한 조정은 당장의 조달 마찰과 현지 제조업과의 파트너십을 강화하고 공급망 가시성 툴에 투자하는 장기적인 인센티브를 모두 창출했습니다.

그 결과, 계약자 및 개발업체는 특정 환위험 및 관세 위험을 회피하는 계약 조건을 중요시하게 되었고, 조달팀은 관세 노출 평가를 포함한 자격 기준을 확대했습니다. 한편, 현지에 사업 기반을 구축한 제조업체들은 수요 가시성이 높아진 덕에 일부 제조업체들이 생산 능력 확장에 투자하거나 기존 시설을 데이터센터용 제품 라인으로 재사용하는 등 혜택을 누리고 있습니다. 그 결과, 보다 견고한 비상 대응 계획, 단일 공급업체에 대한 의존도를 낮추기 위한 멀티소싱 전략, 일정 지연과 비용 상승을 억제하기 위한 물류 최적화에 대한 새로운 집중 등 사업 운영의 축이 형성되었습니다. 단기적인 영향은 민첩한 완화가 필요했으나, 장기적인 영향은 건설 프로그램의 복원력과 리스크 배분 재조정으로 업계 전반에 걸쳐 이루어지고 있습니다.

프로젝트 유형, 건설 접근 방식, 계층 수준, 구성 요소 선택, 최종사용자 산업, 서비스 모델이 건설 공사의 우선순위와 성과를 어떻게 좌우하는지 명확히 하는 종합적인 세분화 인사이트

세분화에 대한 중요 인사이트는 프로젝트 속성의 차이에 따라 전체 건설 수명주기의 우선순위가 어떻게 형성되는지, 그리고 각 부문이 설계, 조달 및 실행에 부과하는 명확한 업무적 요구가 무엇인지를 밝혀줍니다. 데이터센터 유형별로 살펴보면, 코로케이션 시설은 유연한 테넌트 옵션과 신속한 설치 및 운영이 가능한 시설을 우선시하고, 엣지 사이트는 컴팩트한 실적와 낮은 레이턴시 상호연결성을, 기업 캠퍼스는 기존 IT 자산과의 통합과 장기적인 유지보수성을, 하이퍼스케일 캠퍼스는 표준화된 모듈화, 전력 밀도 대응, 적극적인 시운전 일정을 요구합니다. 하이퍼스케일 캠퍼스는 표준화된 모듈성, 높은 전력 밀도 대응, 적극적인 시운전 일정을 요구하고 있습니다. 또한 하이퍼스케일 캠퍼스에서는 표준화된 모듈형 시스템, 매우 높은 전력 밀도에 대한 대응, 적극적인 시운전 일정이 요구됩니다. 신축의 경우, 최적의 사이트 엔지니어링, 재생에너지 통합, 엔드 투 엔드 설계 최적화가 가능하지만, 리노베이션의 경우, 재사용, 냉각 시스템 및 전원 시스템의 단계적 업그레이드, 운영 연속성 유지를 위한 신중한 단계적 변경이 중심이 됩니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 데이터센터 건설 시장 : 데이터센터 유형별

  • 코로케이션
  • 엣지
  • 기업
  • 하이퍼스케일

제9장 데이터센터 건설 시장 : 건설 유형별

  • 신축
  • 개수 공사

제10장 데이터센터 건설 시장 : Tier 레벨별

  • Tier I
  • Tier II
  • Tier III
  • Tier IV

제11장 데이터센터 건설 시장 : 컴포넌트별

  • 케이블 배선과 경로
  • 냉각 시스템
    • 공랭 식
    • 액랭식
  • 방화
  • 전력 시스템
    • 발전기
    • 스위치기어
    • UPS
  • 랙과 인클로저
  • 보안과 감시
    • 액세스 제어
    • 침입 탐지
    • 비디오 감시

제12장 데이터센터 건설 시장 : 최종사용자 업계별

  • 정부
  • 헬스케어
  • IT와 통신
  • 소매

제13장 데이터센터 건설 시장 : 건설 서비스 유형별

  • 설계·시공
  • 종합 건설 업자
  • 전문 업자

제14장 데이터센터 건설 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제15장 데이터센터 건설 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제16장 데이터센터 건설 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Turner Construction Company
    • Fluor Corporation
    • Skanska USA Building Inc.
    • DPR Construction, Inc.
    • Holder Construction Company LLC
    • Balfour Beatty Construction LLC
    • Clark Construction Group LLC
    • McCarthy Building Companies, Inc.
    • Hensel Phelps Construction Co.
    • Gilbane Building Company
KSA 25.10.13

The Data Center Construction Market is projected to grow by USD 465.94 billion at a CAGR of 8.84% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 236.50 billion
Estimated Year [2025] USD 257.67 billion
Forecast Year [2032] USD 465.94 billion
CAGR (%) 8.84%

Comprehensive introduction that frames the evolving technical, operational, regulatory, and financial forces reshaping data center construction strategies for decision-makers

The data center construction landscape is undergoing a profound period of transformation driven by technology evolution, policy shifts, and changing user expectations. This introduction synthesizes the most salient forces shaping project design, procurement, and execution across commercial, enterprise, and hyperscale builds. It frames the conversation for executives and project leaders by outlining the interplay between rising compute intensity, thermal management innovations, power infrastructure complexity, and the heightened importance of resiliency in facility architecture.

Beyond technical drivers, this section situates construction practices within the broader context of regulatory developments, sustainability imperatives, and capital allocation pressures. It clarifies how procurement cycles are lengthening while the need for speed-to-market intensifies, and it articulates the emerging trade-offs between new builds and retrofit renovations. By establishing this strategic baseline, decision-makers can better prioritize investment, balance short-term operational constraints with long-term scalability requirements, and set realistic timelines for deployment and integration of advanced components.

Detailed analysis of the major transformative shifts across technical, supply chain, sustainability, and regulatory dimensions that are reshaping construction priorities and execution models

Recent years have witnessed transformative shifts that are redefining how data center projects are conceived, financed, and executed, with implications that extend from site selection to commissioning and beyond. First, the proliferation of high-density workloads and accelerated adoption of artificial intelligence and machine learning applications have concentrated design attention on thermal management and power distribution, prompting a move from legacy air-cooled paradigms toward hybrid and liquid-cooled architectures where appropriate. This technical pivot is accompanied by growing integration of modular and prefabricated elements that reduce on-site labor demands and compress delivery timelines.

Concurrently, supply chain resilience has ascended as a core program risk, influencing decisions around vendor diversification, component standardization, and inventory strategies. Stakeholders are increasingly embedding late-stage flexibility into contracts and opting for construction approaches that facilitate phased commissioning. On the sustainability front, operators are pursuing higher energy efficiency, aggressive PUE reduction targets, and deeper engagement with renewable energy procurement mechanisms, which in turn affect site viability and grid interface strategies. Finally, regulatory environments and incentives are reshaping capital allocation; emerging building codes and environmental reporting requirements necessitate closer collaboration between design teams, contractors, and compliance specialists. Taken together, these shifts require cross-functional coordination and a recalibration of traditional project governance models to deliver resilient, future-ready facilities.

In-depth examination of the cumulative operational and strategic consequences stemming from the United States tariffs in 2025 and how stakeholders recalibrated procurement and construction risk management

The introduction of tariffs in the United States in 2025 created ripple effects that influenced procurement strategies, material sourcing, and construction timelines for data center projects. With tariffs impacting key imported components and materials, stakeholders responded by accelerating supplier evaluations, negotiating hedging arrangements, and, in some cases, reconfiguring designs to incorporate domestically sourced alternatives. These adjustments produced both immediate procurement frictions and longer-term incentives to strengthen local manufacturing partnerships and invest in supply chain visibility tools.

As a result, contractors and developers placed greater emphasis on contract terms that shifted certain currency and tariff risks, and procurement teams expanded qualification criteria to include tariff exposure assessments. Meanwhile, manufacturers with established local footprints benefited from improved demand visibility, prompting some to invest in capacity expansion or repurpose existing facilities to serve data center-specific product lines. The combined effect was an operational pivot toward more robust contingency planning, a rise in multi-sourcing strategies to mitigate single-supplier dependencies, and a renewed focus on logistics optimization to contain schedule slippage and cost escalation. While the short-term impact required agile mitigation, the long-term consequence has been an industry-wide recalibration of resilience and risk allocation in construction programs.

Comprehensive segmentation insights that articulate how project type, construction approach, tier level, component selection, end-user industry, and service model drive distinct construction priorities and outcomes

Key segmentation insights illuminate how differing project attributes shape priorities across the construction lifecycle, and they reveal the distinct operational imperatives that each segment imposes on design, procurement, and execution. Based on data center type, colocation facilities prioritize flexible tenancy options and rapid fit-out capabilities, edge sites emphasize compact footprints and low-latency interconnectivity, enterprise campuses focus on integration with existing IT estates and long-term maintainability, and hyperscale campuses demand standardized modularity, extreme power density accommodations, and aggressive commissioning schedules. Based on construction type, new construction allows for optimal site engineering, embedded renewable energy integrations, and end-to-end design optimization, whereas retrofit renovation often centers on adaptive reuse, incremental upgrades to cooling and power systems, and careful phasing to maintain operational continuity.

Based on tier level, Tier I and Tier II projects tend to favor cost-efficiency and simplified infrastructure for predictable workloads, while Tier III and Tier IV facilities require redundant systems, fault-tolerant layouts, and rigorous testing regimes to meet higher availability commitments. Based on component, cabling and pathways require careful routing and future-proofing for increased bandwidth demands, cooling systems necessitate tailored strategies that balance air-cooled and liquid-cooled solutions based on density and lifecycle implications, and fire protection must integrate early-detection technologies with minimally invasive suppression approaches. Power systems span critical choices among generators, switchgear configurations, and uninterruptible power supply architectures that determine resilience and maintainability, while racks and enclosures demand modular designs that accommodate rapid hardware refreshes. Security and surveillance combine access control, intrusion detection, and video surveillance into layered protective postures aligned with compliance obligations. Based on end user industry, government projects emphasize compliance, auditability, and longevity; healthcare clients prioritize redundancy and secure patient data handling; IT and telecom operators focus on connectivity, latency, and scalable capacity; and retail deployments balance edge proximity with customer-facing reliability. Based on construction service type, design-build arrangements offer single-point accountability and speed, general contractor models deliver broad trade coordination and scale, and specialized contractors provide deep expertise for niche systems such as high-density cooling or advanced security installations. Integrating these segmentation lenses provides a multidimensional view that helps owners and contractors align capital planning, procurement strategies, and operational readiness with the unique demands of each project archetype.

Essential regional insights revealing how Americas, Europe Middle East & Africa, and Asia-Pacific differences shape site selection, regulatory response, supply chain resilience, and delivery timelines

Regional dynamics significantly influence construction strategies, regulatory approaches, and cost structures across the global data center landscape, and understanding these geographies is critical for effective portfolio planning. In the Americas, developers contend with a mix of mature hyperscale corridors and emerging edge markets, where grid access, permitting timelines, and incentives vary considerably across jurisdictions, prompting diversified site selection tactics and layered stakeholder engagement. Europe, Middle East & Africa presents a heterogeneous environment in which stringent sustainability targets and evolving energy policy frameworks shape design choices, while geopolitical considerations and differing regulatory regimes necessitate flexible contracting and localized compliance expertise.

Asia-Pacific is characterized by rapid capacity expansion driven by cloud adoption and telecom modernization, with a pronounced emphasis on land use optimization, power availability, and logistical complexity in densely populated urban centers. Across these regions, local labor dynamics, availability of specialized contractors, and the maturity of domestic supply chains dictate the feasibility of prefabrication strategies and influence schedule certainty. Moreover, regional renewable energy markets and grid modernization efforts create opportunities for innovative power architectures, while permitting and environmental assessments remain key gating factors that require proactive stakeholder management and detailed environmental and community impact planning. By connecting regional nuances to project-level decisions, organizations can better align timelines, contractual structures, and sustainability initiatives with local realities.

Insightful overview of company capabilities and competitive dynamics that emphasize turnkey providers, specialized manufacturers, and regional contractors delivering differentiated construction value

The competitive landscape of companies engaged in data center construction reveals a spectrum of capabilities across integrated service providers, specialized equipment manufacturers, and regional contractors, each contributing unique value propositions. Integrated firms often offer turnkey solutions that combine design, procurement, and construction management, which helps compress schedules and centralize accountability, while specialized equipment manufacturers focus on high-performance cooling arrays, modular power skids, and prefabricated containment systems that enable repeatable deployments. Regional contractors bring critical local knowledge, permitting relationships, and labor market access that are indispensable for maintaining schedule integrity and managing community engagement.

Collaborative partnerships and joint venture models have become more prevalent as stakeholders seek to combine global standards with local executional strength. Suppliers that prioritize product standardization, interoperability, and robust after-sales service tend to support faster commissioning and lower lifecycle maintenance risk. Additionally, firms that demonstrate transparent supply chain practices, strong quality assurance protocols, and the ability to adapt designs for tariff-impacted sourcing scenarios distinguish themselves in procurement evaluations. The resulting vendor landscape rewards those who can offer demonstrable reliability, scalability, and the flexibility to support phased builds and retrofit scenarios while aligning with increasingly rigorous sustainability commitments.

Actionable recommendations for industry leaders focused on supply chain resilience, modular delivery, sustainability integration, governance, digital validation, and stakeholder engagement

To capitalize on evolving opportunities and mitigate emergent risks, industry leaders should adopt a set of actionable strategies that align capital deployment with operational resilience and sustainability objectives. First, integrate supply chain intelligence into early-stage project planning to identify tariff and logistics exposures, qualify secondary suppliers, and secure long-lead items through firm commitments or local sourcing options. Second, prioritize modularity and prefabrication for repeatable elements where quality controls and site constraints permit, thereby reducing schedule risk and on-site labor dependencies. Third, embed sustainability metrics and renewable energy integration into project requirements from the outset to maximize eligibility for incentives and to improve long-term operating economics.

In addition, strengthen governance by establishing cross-functional decision forums that include procurement, operations, legal, and sustainability leads to accelerate trade-offs and reduce rework. Invest in simulation and digital twin capabilities to validate designs against cooling and power performance targets and to optimize floorplate layouts before committing to costly on-site changes. Negotiate flexible contracting terms that allocate risk appropriately while preserving options for design evolution, and incorporate phased commissioning approaches to bring capacity online incrementally. Finally, cultivate relationships with local authorities and community stakeholders early to smooth permitting and to enhance social license to operate. Executing these recommendations will position organizations to deliver resilient, cost-effective, and future-ready facilities despite a dynamic external environment.

Transparent research methodology detailing interview-driven insights, secondary source corroboration, case study analysis, scenario testing, and rigorous data quality controls to support findings

The research underpinning this report combines qualitative and quantitative approaches to ensure a robust and balanced analysis of data center construction dynamics. Primary inputs include structured interviews with owners, design firms, general and specialized contractors, equipment manufacturers, and regulatory bodies to capture firsthand perspectives on technical requirements, procurement behaviors, and construction challenges. Secondary analysis leverages trade publications, regulatory filings, technical standards, and company disclosures to corroborate trends and provide context for component-level developments. The methodology emphasizes triangulation across sources to minimize bias and to validate observed patterns.

Project-level case studies and procurement document reviews support deeper insight into scheduling practices, risk allocation, and constructability decisions. In addition, scenario analysis was applied to evaluate the implications of supply chain disruptions and policy shifts, producing actionable guidance for contingency planning. Data quality controls included source validation, cross-source reconciliation, and expert peer review to ensure the reliability of conclusions. Throughout, the approach prioritized transparency in assumptions and documentation of data provenance to enable replication and to support bespoke client inquiries.

Concluding synthesis that distills strategic imperatives and execution levers enabling stakeholders to transform current disruptions into durable competitive advantages in construction

In conclusion, the confluence of technological acceleration, policy shifts, and supply chain realignment is redefining the priorities and execution models for data center construction. Organizations that proactively adapt by integrating supply chain risk management, adopting modular delivery techniques, and embedding sustainability into capital projects will be better positioned to navigate complexity and deliver resilient capacity. Moreover, regional differences and segmentation nuances underscore the need for tailored strategies that align project archetypes with local regulatory and operational realities.

As the industry continues to mature, the most successful players will be those that combine cross-functional governance, digital validation tools, and flexible contractual frameworks to reduce uncertainty and speed time to service. By focusing on these strategic levers, stakeholders can convert current disruptions into competitive advantage and build facilities that meet the performance, resilience, and environmental expectations of tomorrow's workloads.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of liquid cooling systems for high-density computing workloads
  • 5.2. Adoption of modular prefabricated data center units for rapid deployment
  • 5.3. Implementation of renewable energy microgrids to power data center operations
  • 5.4. Deployment of AI-driven facility management systems for predictive maintenance and operational efficiency
  • 5.5. Growing focus on hyperscale edge data centers located near urban fiber network hubs
  • 5.6. Designing seismic-resilient data center infrastructure to withstand high earthquake risk regions
  • 5.7. Use of advanced energy storage solutions for dynamic demand response in data centers

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Data Center Construction Market, by Data Center Type

  • 8.1. Colocation
  • 8.2. Edge
  • 8.3. Enterprise
  • 8.4. Hyperscale

9. Data Center Construction Market, by Construction Type

  • 9.1. New Construction
  • 9.2. Retrofit Renovation

10. Data Center Construction Market, by Tier Level

  • 10.1. Tier I
  • 10.2. Tier II
  • 10.3. Tier III
  • 10.4. Tier IV

11. Data Center Construction Market, by Component

  • 11.1. Cabling And Pathways
  • 11.2. Cooling Systems
    • 11.2.1. Air Cooled
    • 11.2.2. Liquid Cooled
  • 11.3. Fire Protection
  • 11.4. Power Systems
    • 11.4.1. Generators
    • 11.4.2. Switchgear
    • 11.4.3. Uninterruptible Power Supply
  • 11.5. Racks And Enclosures
  • 11.6. Security And Surveillance
    • 11.6.1. Access Control
    • 11.6.2. Intrusion Detection
    • 11.6.3. Video Surveillance

12. Data Center Construction Market, by End User Industry

  • 12.1. Government
  • 12.2. Healthcare
  • 12.3. IT And Telecom
  • 12.4. Retail

13. Data Center Construction Market, by Construction Service Type

  • 13.1. Design Build
  • 13.2. General Contractor
  • 13.3. Specialized Contractor

14. Data Center Construction Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. Data Center Construction Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. Data Center Construction Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Turner Construction Company
    • 17.3.2. Fluor Corporation
    • 17.3.3. Skanska USA Building Inc.
    • 17.3.4. DPR Construction, Inc.
    • 17.3.5. Holder Construction Company LLC
    • 17.3.6. Balfour Beatty Construction LLC
    • 17.3.7. Clark Construction Group LLC
    • 17.3.8. McCarthy Building Companies, Inc.
    • 17.3.9. Hensel Phelps Construction Co.
    • 17.3.10. Gilbane Building Company
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제