½ÃÀ庸°í¼­
»óǰÄÚµå
1827576

µ¥ÀÌÅͼ¾ÅÍ °Ç¼³ ½ÃÀå : µ¥ÀÌÅͼ¾ÅÍ À¯Çüº°, °Ç¼³ À¯Çüº°, Tier ·¹º§º°, ÄÄÆ÷³ÍÆ®º°, ÃÖÁ¾»ç¿ëÀÚ »ê¾÷º°, °Ç¼³ ¼­ºñ½º À¯Çüº° - ¼¼°è ¿¹Ãø(2025-2032³â)

Data Center Construction Market by Data Center Type, Construction Type, Tier Level, Component, End User Industry, Construction Service Type - Global Forecast 2025-2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 185 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

µ¥ÀÌÅͼ¾ÅÍ °Ç¼³ ½ÃÀåÀº 2032³â±îÁö CAGR 8.84%·Î 4,659¾ï 4,000¸¸ ´Þ·¯ÀÇ ¼ºÀåÀÌ ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ¿¬µµ 2024 2,365¾ï ´Þ·¯
ÃßÁ¤¿¬µµ 2025 2,576¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø¿¬µµ 2032 4,659¾ï 4,000¸¸ ´Þ·¯
CAGR(%) 8.84%

ÀÇ»ç°áÁ¤±ÇÀÚ¸¦ À§ÇØ µ¥ÀÌÅͼ¾ÅÍ ±¸Ãà Àü·«À» À籸¼ºÇÏ´Â ±â¼ú, ¿î¿µ, ±ÔÁ¦, À繫Àû ÁøÈ­¸¦ ÇÁ·¹ÀÓ¿öũȭÇÑ Á¾ÇÕÀûÀÎ ¼Ò°³¸¦ Á¦°ø

µ¥ÀÌÅͼ¾ÅÍ °Ç¼³Àº ±â¼úÀÇ ÁøÈ­, Á¤Ã¥ÀÇ º¯È­, »ç¿ëÀÚÀÇ ±â´ëÄ¡ º¯È­ µîÀ¸·Î ÀÎÇØ Å« º¯È­ÀÇ ½Ã±â¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¼Ò°³¿¡¼­´Â »ó¾÷¿ë, ±â¾÷ ¹× ÇÏÀÌÆÛ½ºÄÉÀÏ µ¥ÀÌÅͼ¾ÅÍ °Ç¼³¿¡¼­ ÇÁ·ÎÁ§Æ®ÀÇ ¼³°è, Á¶´Þ ¹× ½ÇÇàÀ» Çü¼ºÇÏ´Â °¡Àå Áß¿äÇÑ ¿ä¼Ò¿¡ ´ëÇØ ¼³¸íÇÕ´Ï´Ù. ÄÄÇ»ÆÃ Áý¾àµµ Áõ°¡, ¿­ °ü¸®ÀÇ Çõ½Å, Àü·Â ÀÎÇÁ¶óÀÇ º¹À⼺, ½Ã¼³ ¾ÆÅ°ÅØÃ³¿¡¼­ ³»°áÇÔ¼ºÀÇ Á߿伺 Áõ°¡ µî ¿©·¯ ¿äÀÎÀÇ »óÈ£ °ü°è¸¦ °³°ýÀûÀ¸·Î ¼³¸íÇÔÀ¸·Î½á °æ¿µÁø°ú ÇÁ·ÎÁ§Æ® ¸®´õ¸¦ À§ÇÑ ³íÀǸ¦ ±¸¼ºÇϰí ÀÖ½À´Ï´Ù.

ÀÌ ¼½¼Ç¿¡¼­´Â ±â¼úÀû ÃßÁø·Â»Ó¸¸ ¾Æ´Ï¶ó ±ÔÁ¦ ¹ßÀü, Áö¼Ó°¡´É¼ºÀÇ Çʿ伺, ÀÚº» ¹èºÐ ¾Ð·Â µî ´õ ³ÐÀº ¸Æ¶ô¿¡¼­ °Ç¼³ °üÇàÀ» À§Ä¡½Ãŵ´Ï´Ù. ¶ÇÇÑ Á¶´Þ ÁֱⰡ ±æ¾îÁö´Â ¹Ý¸é, ½ÃÀå Ãâ½Ã ¼Óµµ°¡ ¿ä±¸µÇ°í ÀÖÀ½À» ¹àÈ÷¸ç, ½ÅÃà°ú °³º¸¼öÀÇ Æ®·¹À̵å¿ÀÇÁ¸¦ ¸íÈ®È÷ Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àü·«Àû ±âÁؼ±À» ¼³Á¤ÇÔÀ¸·Î½á ÀÇ»ç°áÁ¤ÀÚ´Â ÅõÀÚÀÇ ¿ì¼±¼øÀ§¸¦ Á¤Çϰí, ´Ü±âÀûÀÎ ¿î¿µ»óÀÇ Á¦¾à°ú Àå±âÀûÀÎ È®À强 ¿ä±¸»çÇ×ÀÇ ±ÕÇüÀ» ¸ÂÃß°í, °í±Þ ±¸¼º ¿ä¼ÒÀÇ ¹èÄ¡ ¹× ÅëÇÕÀ» À§ÇÑ Çö½ÇÀûÀÎ ÀÏÁ¤À» ¼³Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù.

±â¼ú, °ø±Þ¸Á, Áö¼Ó°¡´É¼º, ±ÔÁ¦ Ãø¸éÀÇ ÁÖ¿ä º¯ÇõÀû º¯È­¿¡ ´ëÇÑ ½ÉÃþ ºÐ¼®À» ÅëÇØ °Ç¼³ ¿ì¼±¼øÀ§¿Í ½ÇÇà ¸ðµ¨À» À籸¼º

ÃÖ±Ù µ¥ÀÌÅͼ¾ÅÍ ÇÁ·ÎÁ§Æ®ÀÇ ±¸»ó, ÀÚ±Ý Á¶´Þ ¹× ½ÇÇà ¹æ½ÄÀ» ÀçÁ¤ÀÇÇÏ´Â Çõ½ÅÀûÀÎ º¯È­°¡ ÀϾ°í ÀÖÀ¸¸ç, ±× ¿µÇâÀº ÀÔÁö ¼±Á¤ºÎÅÍ ½Ã¿îÀü, ±×¸®°í ±× ³Ê¸Ó¿¡±îÁö ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ù°, °í¹Ðµµ ¿öÅ©·ÎµåÀÇ ±ÞÁõ°ú ÀΰøÁö´É ¹× ¸Ó½Å·¯´× ¿ëµµÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ¸é¼­ ¿­ °ü¸® ¹× Àü·Â ºÐ¹è¿¡ ´ëÇÑ ¼³°èÀû °ü½ÉÀÌ ÁýÁߵǰí ÀÖÀ¸¸ç, ±âÁ¸ÀÇ °ø·©½Ä ÆÐ·¯´ÙÀÓ¿¡¼­ Çʿ信 µû¶ó ÇÏÀ̺긮µå ¹× ¼ö·©½Ä ¾ÆÅ°ÅØÃ³·ÎÀÇ ÀüȯÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀû Ãà¿¡´Â ÇöÀåÀÇ ³ëµ¿·ÂÀ» ÁÙÀÌ°í ³³±â¸¦ ´ÜÃàÇÏ´Â ¸ðµâ½Ä ¹× Á¶¸³½Ä ¿ä¼ÒÀÇ ÅëÇÕÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.

µ¿½Ã¿¡ °ø±Þ¸Á ź·Â¼ºÀÌ ÇÁ·Î±×·¥ÀÇ ÇÙ½É ¸®½ºÅ©·Î ºÎ»óÇÏ¿© °ø±Þ¾÷ü ´Ù¾çÈ­, ºÎǰ Ç¥ÁØÈ­, Àç°í Àü·«¿¡ ´ëÇÑ ÀÇ»ç°áÁ¤¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ÀÌÇØ°ü°èÀÚµéÀº °è¾à¼­¿¡ ÈÄ¹Ý ´Ü°èÀÇ À¯¿¬¼ºÀ» Æ÷ÇÔ½ÃÄÑ ´Ü°èÀû ½Ã¿îÀüÀ» ¿ëÀÌÇÏ°Ô ÇÏ´Â °Ç¼³ Á¢±Ù ¹æ½ÄÀ» ¼±ÅÃÇÏ°Ô µÇ¾ú½À´Ï´Ù. Áö¼Ó°¡´É¼º Ãø¸é¿¡¼­ »ç¾÷ÀÚ´Â ´õ ³ôÀº ¿¡³ÊÁö È¿À², Àû±ØÀûÀÎ PUE °¨¼Ò ¸ñÇ¥, Àç»ý¿¡³ÊÁö Á¶´Þ ¸ÞÄ¿´ÏÁò°úÀÇ ´õ ±íÀº °ü°è¸¦ Ãß±¸Çϰí ÀÖÀ¸¸ç, ÀÌ´Â »çÀÌÆ®ÀÇ ½ÇÇà °¡´É¼º°ú ±×¸®µå ÀÎÅÍÆäÀ̽º Àü·«¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î ±ÔÁ¦ ȯ°æ°ú Àμ¾Æ¼ºê´Â ÀÚº» ¹èºÐÀÇ ÇüŸ¦ º¯È­½Ã۰í ÀÖ½À´Ï´Ù. »õ·Î¿î °ÇÃà ±âÁذú ȯ°æ º¸°í ¿ä°ÇÀº ¼³°èÆÀ, ½Ã°ø»ç, ÄÄÇöóÀ̾𽺠Àü¹®°¡°¡ ´õ¿í ±ä¹ÐÇÏ°Ô Çù·ÂÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¯È­¸¦ Á¾ÇÕÇØ º¼ ¶§, ź·ÂÀûÀÌ°í ¹Ì·¡ÁöÇâÀûÀÎ ½Ã¼³À» Á¦°øÇϱâ À§Çؼ­´Â ±â´É °£ Á¶Á¤°ú ±âÁ¸ ÇÁ·ÎÁ§Æ® °Å¹ö³Í½º ¸ðµ¨ÀÇ ÀçÁ¶Á¤ÀÌ ÇÊ¿äÇÕ´Ï´Ù.

2025³â ¹Ì±¹ °ü¼¼ µµÀÔ¿¡ µû¸¥ ´©ÀûµÈ ºñÁî´Ï½º ¹× Àü·«Àû ¿µÇâ°ú ÀÌÇØ°ü°èÀÚµéÀÌ ¾î¶»°Ô Á¶´Þ ¹× °Ç¼³ ¸®½ºÅ© °ü¸®¸¦ ÀçÁ¶Á¤Çß´ÂÁö ÀÚ¼¼È÷ »ìÆìº¾´Ï´Ù.

2025³â ¹Ì±¹ÀÇ °ü¼¼ µµÀÔÀº µ¥ÀÌÅͼ¾ÅÍ ÇÁ·ÎÁ§Æ®ÀÇ Á¶´Þ Àü·«, ÀÚÀç Á¶´Þ, °Ç¼³ ÀÏÁ¤¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÆÄ±Þ È¿°ú¸¦ °¡Á®¿Ô½À´Ï´Ù. °ü¼¼°¡ ÁÖ¿ä ¼öÀÔ ºÎǰ°ú ÀÚÀç¿¡ ¿µÇâÀ» ¹ÌÄ¡¸é¼­ ÀÌÇØ°ü°èÀÚµéÀº °ø±Þ¾÷ü Æò°¡, ÇìÁö °è¾à Çù»ó, °æ¿ì¿¡ µû¶ó¼­´Â ±¹³» Á¶´Þ ´ë¾ÈÀ» µµÀÔÇϱâ À§ÇØ ¼³°è¸¦ À籸¼ºÇÏ´Â µî ´ëÀÀ¿¡ ³ª¼¹½À´Ï´Ù. ÀÌ·¯ÇÑ Á¶Á¤Àº ´çÀåÀÇ Á¶´Þ ¸¶Âû°ú ÇöÁö Á¦Á¶¾÷°úÀÇ ÆÄÆ®³Ê½ÊÀ» °­È­ÇÏ°í °ø±Þ¸Á °¡½Ã¼º Åø¿¡ ÅõÀÚÇÏ´Â Àå±âÀûÀÎ Àμ¾Æ¼ºê¸¦ ¸ðµÎ âÃâÇß½À´Ï´Ù.

±× °á°ú, °è¾àÀÚ ¹× °³¹ß¾÷ü´Â ƯÁ¤ ȯÀ§Çè ¹× °ü¼¼ À§ÇèÀ» ȸÇÇÇÏ´Â °è¾à Á¶°ÇÀ» Áß¿ä½ÃÇÏ°Ô µÇ¾ú°í, Á¶´ÞÆÀÀº °ü¼¼ ³ëÃâ Æò°¡¸¦ Æ÷ÇÔÇÑ ÀÚ°Ý ±âÁØÀ» È®´ëÇß½À´Ï´Ù. ÇÑÆí, ÇöÁö¿¡ »ç¾÷ ±â¹ÝÀ» ±¸ÃàÇÑ Á¦Á¶¾÷üµéÀº ¼ö¿ä °¡½Ã¼ºÀÌ ³ô¾ÆÁø ´ö¿¡ ÀϺΠÁ¦Á¶¾÷üµéÀÌ »ý»ê ´É·Â È®Àå¿¡ ÅõÀÚÇϰųª ±âÁ¸ ½Ã¼³À» µ¥ÀÌÅͼ¾ÅÍ¿ë Á¦Ç° ¶óÀÎÀ¸·Î Àç»ç¿ëÇÏ´Â µî ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. ±× °á°ú, º¸´Ù °ß°íÇÑ ºñ»ó ´ëÀÀ °èȹ, ´ÜÀÏ °ø±Þ¾÷ü¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß±â À§ÇÑ ¸ÖƼ¼Ò½Ì Àü·«, ÀÏÁ¤ Áö¿¬°ú ºñ¿ë »ó½ÂÀ» ¾ïÁ¦Çϱâ À§ÇÑ ¹°·ù ÃÖÀûÈ­¿¡ ´ëÇÑ »õ·Î¿î ÁýÁß µî »ç¾÷ ¿î¿µÀÇ ÃàÀÌ Çü¼ºµÇ¾ú½À´Ï´Ù. ´Ü±âÀûÀÎ ¿µÇâÀº ¹ÎøÇÑ ¿ÏÈ­°¡ ÇÊ¿äÇßÀ¸³ª, Àå±âÀûÀÎ ¿µÇâÀº °Ç¼³ ÇÁ·Î±×·¥ÀÇ º¹¿ø·Â°ú ¸®½ºÅ© ¹èºÐ ÀçÁ¶Á¤À¸·Î ¾÷°è Àü¹Ý¿¡ °ÉÃÄ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.

ÇÁ·ÎÁ§Æ® À¯Çü, °Ç¼³ Á¢±Ù ¹æ½Ä, °èÃþ ¼öÁØ, ±¸¼º ¿ä¼Ò ¼±ÅÃ, ÃÖÁ¾»ç¿ëÀÚ »ê¾÷, ¼­ºñ½º ¸ðµ¨ÀÌ °Ç¼³ °ø»çÀÇ ¿ì¼±¼øÀ§¿Í ¼º°ú¸¦ ¾î¶»°Ô Á¿ìÇÏ´ÂÁö ¸íÈ®È÷ ÇÏ´Â Á¾ÇÕÀûÀÎ ¼¼ºÐÈ­ ÀλçÀÌÆ®

¼¼ºÐÈ­¿¡ ´ëÇÑ Áß¿ä ÀλçÀÌÆ®´Â ÇÁ·ÎÁ§Æ® ¼Ó¼ºÀÇ Â÷ÀÌ¿¡ µû¶ó Àüü °Ç¼³ ¼ö¸íÁÖ±âÀÇ ¿ì¼±¼øÀ§°¡ ¾î¶»°Ô Çü¼ºµÇ´ÂÁö, ±×¸®°í °¢ ºÎ¹®ÀÌ ¼³°è, Á¶´Þ ¹× ½ÇÇà¿¡ ºÎ°úÇÏ´Â ¸íÈ®ÇÑ ¾÷¹«Àû ¿ä±¸°¡ ¹«¾ùÀÎÁö¸¦ ¹àÇôÁÝ´Ï´Ù. µ¥ÀÌÅͼ¾ÅÍ À¯Çüº°·Î »ìÆìº¸¸é, ÄÚ·ÎÄÉÀÌ¼Ç ½Ã¼³Àº À¯¿¬ÇÑ Å×³ÍÆ® ¿É¼Ç°ú ½Å¼ÓÇÑ ¼³Ä¡ ¹× ¿î¿µÀÌ °¡´ÉÇÑ ½Ã¼³À» ¿ì¼±½ÃÇϰí, ¿§Áö »çÀÌÆ®´Â ÄÄÆÑÆ®ÇÑ ½ÇÀû¿Í ³·Àº ·¹ÀÌÅϽà »óÈ£¿¬°á¼ºÀ», ±â¾÷ Ä·ÆÛ½º´Â ±âÁ¸ IT ÀÚ»ê°úÀÇ ÅëÇÕ°ú Àå±âÀûÀÎ À¯Áöº¸¼ö¼ºÀ», ÇÏÀÌÆÛ½ºÄÉÀÏ Ä·ÆÛ½º´Â Ç¥ÁØÈ­µÈ ¸ðµâÈ­, Àü·Â ¹Ðµµ ´ëÀÀ, Àû±ØÀûÀÎ ½Ã¿îÀü ÀÏÁ¤À» ¿ä±¸ÇÕ´Ï´Ù. ÇÏÀÌÆÛ½ºÄÉÀÏ Ä·ÆÛ½º´Â Ç¥ÁØÈ­µÈ ¸ðµâ¼º, ³ôÀº Àü·Â ¹Ðµµ ´ëÀÀ, Àû±ØÀûÀÎ ½Ã¿îÀü ÀÏÁ¤À» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÇÏÀÌÆÛ½ºÄÉÀÏ Ä·ÆÛ½º¿¡¼­´Â Ç¥ÁØÈ­µÈ ¸ðµâÇü ½Ã½ºÅÛ, ¸Å¿ì ³ôÀº Àü·Â ¹Ðµµ¿¡ ´ëÇÑ ´ëÀÀ, Àû±ØÀûÀÎ ½Ã¿îÀü ÀÏÁ¤ÀÌ ¿ä±¸µË´Ï´Ù. ½ÅÃàÀÇ °æ¿ì, ÃÖÀûÀÇ »çÀÌÆ® ¿£Áö´Ï¾î¸µ, Àç»ý¿¡³ÊÁö ÅëÇÕ, ¿£µå Åõ ¿£µå ¼³°è ÃÖÀûÈ­°¡ °¡´ÉÇÏÁö¸¸, ¸®³ëº£À̼ÇÀÇ °æ¿ì, Àç»ç¿ë, ³Ã°¢ ½Ã½ºÅÛ ¹× Àü¿ø ½Ã½ºÅÛÀÇ ´Ü°èÀû ¾÷±×·¹À̵å, ¿î¿µ ¿¬¼Ó¼º À¯Áö¸¦ À§ÇÑ ½ÅÁßÇÑ ´Ü°èÀû º¯°æÀÌ Áß½ÉÀÌ µË´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

Á¦6Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦7Àå AIÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå µ¥ÀÌÅͼ¾ÅÍ °Ç¼³ ½ÃÀå : µ¥ÀÌÅͼ¾ÅÍ À¯Çüº°

  • ÄÚ·ÎÄÉÀ̼Ç
  • ¿§Áö
  • ±â¾÷
  • ÇÏÀÌÆÛ½ºÄÉÀÏ

Á¦9Àå µ¥ÀÌÅͼ¾ÅÍ °Ç¼³ ½ÃÀå : °Ç¼³ À¯Çüº°

  • ½ÅÃà
  • °³¼ö °ø»ç

Á¦10Àå µ¥ÀÌÅͼ¾ÅÍ °Ç¼³ ½ÃÀå : Tier ·¹º§º°

  • Tier I
  • Tier II
  • Tier III
  • Tier IV

Á¦11Àå µ¥ÀÌÅͼ¾ÅÍ °Ç¼³ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ÄÉÀÌºí ¹è¼±°ú °æ·Î
  • ³Ã°¢ ½Ã½ºÅÛ
    • °ø·© ½Ä
    • ¾×·©½Ä
  • ¹æÈ­
  • Àü·Â ½Ã½ºÅÛ
    • ¹ßÀü±â
    • ½ºÀ§Ä¡±â¾î
    • UPS
  • ·¢°ú ÀÎŬ·ÎÀú
  • º¸¾È°ú °¨½Ã
    • ¾×¼¼½º Á¦¾î
    • ħÀÔ Å½Áö
    • ºñµð¿À °¨½Ã

Á¦12Àå µ¥ÀÌÅͼ¾ÅÍ °Ç¼³ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚ ¾÷°èº°

  • Á¤ºÎ
  • ÇコÄɾî
  • IT¿Í Åë½Å
  • ¼Ò¸Å

Á¦13Àå µ¥ÀÌÅͼ¾ÅÍ °Ç¼³ ½ÃÀå : °Ç¼³ ¼­ºñ½º À¯Çüº°

  • ¼³°è¡¤½Ã°ø
  • Á¾ÇÕ °Ç¼³ ¾÷ÀÚ
  • Àü¹® ¾÷ÀÚ

Á¦14Àå µ¥ÀÌÅͼ¾ÅÍ °Ç¼³ ½ÃÀå : Áö¿ªº°

  • ¾Æ¸Þ¸®Ä«
    • ºÏ¹Ì
    • ¶óƾ¾Æ¸Þ¸®Ä«
  • À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • À¯·´
    • Áßµ¿
    • ¾ÆÇÁ¸®Ä«
  • ¾Æ½Ã¾ÆÅÂÆò¾ç

Á¦15Àå µ¥ÀÌÅͼ¾ÅÍ °Ç¼³ ½ÃÀå : ±×·ìº°

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

Á¦16Àå µ¥ÀÌÅͼ¾ÅÍ °Ç¼³ ½ÃÀå : ±¹°¡º°

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Turner Construction Company
    • Fluor Corporation
    • Skanska USA Building Inc.
    • DPR Construction, Inc.
    • Holder Construction Company LLC
    • Balfour Beatty Construction LLC
    • Clark Construction Group LLC
    • McCarthy Building Companies, Inc.
    • Hensel Phelps Construction Co.
    • Gilbane Building Company
KSA

The Data Center Construction Market is projected to grow by USD 465.94 billion at a CAGR of 8.84% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 236.50 billion
Estimated Year [2025] USD 257.67 billion
Forecast Year [2032] USD 465.94 billion
CAGR (%) 8.84%

Comprehensive introduction that frames the evolving technical, operational, regulatory, and financial forces reshaping data center construction strategies for decision-makers

The data center construction landscape is undergoing a profound period of transformation driven by technology evolution, policy shifts, and changing user expectations. This introduction synthesizes the most salient forces shaping project design, procurement, and execution across commercial, enterprise, and hyperscale builds. It frames the conversation for executives and project leaders by outlining the interplay between rising compute intensity, thermal management innovations, power infrastructure complexity, and the heightened importance of resiliency in facility architecture.

Beyond technical drivers, this section situates construction practices within the broader context of regulatory developments, sustainability imperatives, and capital allocation pressures. It clarifies how procurement cycles are lengthening while the need for speed-to-market intensifies, and it articulates the emerging trade-offs between new builds and retrofit renovations. By establishing this strategic baseline, decision-makers can better prioritize investment, balance short-term operational constraints with long-term scalability requirements, and set realistic timelines for deployment and integration of advanced components.

Detailed analysis of the major transformative shifts across technical, supply chain, sustainability, and regulatory dimensions that are reshaping construction priorities and execution models

Recent years have witnessed transformative shifts that are redefining how data center projects are conceived, financed, and executed, with implications that extend from site selection to commissioning and beyond. First, the proliferation of high-density workloads and accelerated adoption of artificial intelligence and machine learning applications have concentrated design attention on thermal management and power distribution, prompting a move from legacy air-cooled paradigms toward hybrid and liquid-cooled architectures where appropriate. This technical pivot is accompanied by growing integration of modular and prefabricated elements that reduce on-site labor demands and compress delivery timelines.

Concurrently, supply chain resilience has ascended as a core program risk, influencing decisions around vendor diversification, component standardization, and inventory strategies. Stakeholders are increasingly embedding late-stage flexibility into contracts and opting for construction approaches that facilitate phased commissioning. On the sustainability front, operators are pursuing higher energy efficiency, aggressive PUE reduction targets, and deeper engagement with renewable energy procurement mechanisms, which in turn affect site viability and grid interface strategies. Finally, regulatory environments and incentives are reshaping capital allocation; emerging building codes and environmental reporting requirements necessitate closer collaboration between design teams, contractors, and compliance specialists. Taken together, these shifts require cross-functional coordination and a recalibration of traditional project governance models to deliver resilient, future-ready facilities.

In-depth examination of the cumulative operational and strategic consequences stemming from the United States tariffs in 2025 and how stakeholders recalibrated procurement and construction risk management

The introduction of tariffs in the United States in 2025 created ripple effects that influenced procurement strategies, material sourcing, and construction timelines for data center projects. With tariffs impacting key imported components and materials, stakeholders responded by accelerating supplier evaluations, negotiating hedging arrangements, and, in some cases, reconfiguring designs to incorporate domestically sourced alternatives. These adjustments produced both immediate procurement frictions and longer-term incentives to strengthen local manufacturing partnerships and invest in supply chain visibility tools.

As a result, contractors and developers placed greater emphasis on contract terms that shifted certain currency and tariff risks, and procurement teams expanded qualification criteria to include tariff exposure assessments. Meanwhile, manufacturers with established local footprints benefited from improved demand visibility, prompting some to invest in capacity expansion or repurpose existing facilities to serve data center-specific product lines. The combined effect was an operational pivot toward more robust contingency planning, a rise in multi-sourcing strategies to mitigate single-supplier dependencies, and a renewed focus on logistics optimization to contain schedule slippage and cost escalation. While the short-term impact required agile mitigation, the long-term consequence has been an industry-wide recalibration of resilience and risk allocation in construction programs.

Comprehensive segmentation insights that articulate how project type, construction approach, tier level, component selection, end-user industry, and service model drive distinct construction priorities and outcomes

Key segmentation insights illuminate how differing project attributes shape priorities across the construction lifecycle, and they reveal the distinct operational imperatives that each segment imposes on design, procurement, and execution. Based on data center type, colocation facilities prioritize flexible tenancy options and rapid fit-out capabilities, edge sites emphasize compact footprints and low-latency interconnectivity, enterprise campuses focus on integration with existing IT estates and long-term maintainability, and hyperscale campuses demand standardized modularity, extreme power density accommodations, and aggressive commissioning schedules. Based on construction type, new construction allows for optimal site engineering, embedded renewable energy integrations, and end-to-end design optimization, whereas retrofit renovation often centers on adaptive reuse, incremental upgrades to cooling and power systems, and careful phasing to maintain operational continuity.

Based on tier level, Tier I and Tier II projects tend to favor cost-efficiency and simplified infrastructure for predictable workloads, while Tier III and Tier IV facilities require redundant systems, fault-tolerant layouts, and rigorous testing regimes to meet higher availability commitments. Based on component, cabling and pathways require careful routing and future-proofing for increased bandwidth demands, cooling systems necessitate tailored strategies that balance air-cooled and liquid-cooled solutions based on density and lifecycle implications, and fire protection must integrate early-detection technologies with minimally invasive suppression approaches. Power systems span critical choices among generators, switchgear configurations, and uninterruptible power supply architectures that determine resilience and maintainability, while racks and enclosures demand modular designs that accommodate rapid hardware refreshes. Security and surveillance combine access control, intrusion detection, and video surveillance into layered protective postures aligned with compliance obligations. Based on end user industry, government projects emphasize compliance, auditability, and longevity; healthcare clients prioritize redundancy and secure patient data handling; IT and telecom operators focus on connectivity, latency, and scalable capacity; and retail deployments balance edge proximity with customer-facing reliability. Based on construction service type, design-build arrangements offer single-point accountability and speed, general contractor models deliver broad trade coordination and scale, and specialized contractors provide deep expertise for niche systems such as high-density cooling or advanced security installations. Integrating these segmentation lenses provides a multidimensional view that helps owners and contractors align capital planning, procurement strategies, and operational readiness with the unique demands of each project archetype.

Essential regional insights revealing how Americas, Europe Middle East & Africa, and Asia-Pacific differences shape site selection, regulatory response, supply chain resilience, and delivery timelines

Regional dynamics significantly influence construction strategies, regulatory approaches, and cost structures across the global data center landscape, and understanding these geographies is critical for effective portfolio planning. In the Americas, developers contend with a mix of mature hyperscale corridors and emerging edge markets, where grid access, permitting timelines, and incentives vary considerably across jurisdictions, prompting diversified site selection tactics and layered stakeholder engagement. Europe, Middle East & Africa presents a heterogeneous environment in which stringent sustainability targets and evolving energy policy frameworks shape design choices, while geopolitical considerations and differing regulatory regimes necessitate flexible contracting and localized compliance expertise.

Asia-Pacific is characterized by rapid capacity expansion driven by cloud adoption and telecom modernization, with a pronounced emphasis on land use optimization, power availability, and logistical complexity in densely populated urban centers. Across these regions, local labor dynamics, availability of specialized contractors, and the maturity of domestic supply chains dictate the feasibility of prefabrication strategies and influence schedule certainty. Moreover, regional renewable energy markets and grid modernization efforts create opportunities for innovative power architectures, while permitting and environmental assessments remain key gating factors that require proactive stakeholder management and detailed environmental and community impact planning. By connecting regional nuances to project-level decisions, organizations can better align timelines, contractual structures, and sustainability initiatives with local realities.

Insightful overview of company capabilities and competitive dynamics that emphasize turnkey providers, specialized manufacturers, and regional contractors delivering differentiated construction value

The competitive landscape of companies engaged in data center construction reveals a spectrum of capabilities across integrated service providers, specialized equipment manufacturers, and regional contractors, each contributing unique value propositions. Integrated firms often offer turnkey solutions that combine design, procurement, and construction management, which helps compress schedules and centralize accountability, while specialized equipment manufacturers focus on high-performance cooling arrays, modular power skids, and prefabricated containment systems that enable repeatable deployments. Regional contractors bring critical local knowledge, permitting relationships, and labor market access that are indispensable for maintaining schedule integrity and managing community engagement.

Collaborative partnerships and joint venture models have become more prevalent as stakeholders seek to combine global standards with local executional strength. Suppliers that prioritize product standardization, interoperability, and robust after-sales service tend to support faster commissioning and lower lifecycle maintenance risk. Additionally, firms that demonstrate transparent supply chain practices, strong quality assurance protocols, and the ability to adapt designs for tariff-impacted sourcing scenarios distinguish themselves in procurement evaluations. The resulting vendor landscape rewards those who can offer demonstrable reliability, scalability, and the flexibility to support phased builds and retrofit scenarios while aligning with increasingly rigorous sustainability commitments.

Actionable recommendations for industry leaders focused on supply chain resilience, modular delivery, sustainability integration, governance, digital validation, and stakeholder engagement

To capitalize on evolving opportunities and mitigate emergent risks, industry leaders should adopt a set of actionable strategies that align capital deployment with operational resilience and sustainability objectives. First, integrate supply chain intelligence into early-stage project planning to identify tariff and logistics exposures, qualify secondary suppliers, and secure long-lead items through firm commitments or local sourcing options. Second, prioritize modularity and prefabrication for repeatable elements where quality controls and site constraints permit, thereby reducing schedule risk and on-site labor dependencies. Third, embed sustainability metrics and renewable energy integration into project requirements from the outset to maximize eligibility for incentives and to improve long-term operating economics.

In addition, strengthen governance by establishing cross-functional decision forums that include procurement, operations, legal, and sustainability leads to accelerate trade-offs and reduce rework. Invest in simulation and digital twin capabilities to validate designs against cooling and power performance targets and to optimize floorplate layouts before committing to costly on-site changes. Negotiate flexible contracting terms that allocate risk appropriately while preserving options for design evolution, and incorporate phased commissioning approaches to bring capacity online incrementally. Finally, cultivate relationships with local authorities and community stakeholders early to smooth permitting and to enhance social license to operate. Executing these recommendations will position organizations to deliver resilient, cost-effective, and future-ready facilities despite a dynamic external environment.

Transparent research methodology detailing interview-driven insights, secondary source corroboration, case study analysis, scenario testing, and rigorous data quality controls to support findings

The research underpinning this report combines qualitative and quantitative approaches to ensure a robust and balanced analysis of data center construction dynamics. Primary inputs include structured interviews with owners, design firms, general and specialized contractors, equipment manufacturers, and regulatory bodies to capture firsthand perspectives on technical requirements, procurement behaviors, and construction challenges. Secondary analysis leverages trade publications, regulatory filings, technical standards, and company disclosures to corroborate trends and provide context for component-level developments. The methodology emphasizes triangulation across sources to minimize bias and to validate observed patterns.

Project-level case studies and procurement document reviews support deeper insight into scheduling practices, risk allocation, and constructability decisions. In addition, scenario analysis was applied to evaluate the implications of supply chain disruptions and policy shifts, producing actionable guidance for contingency planning. Data quality controls included source validation, cross-source reconciliation, and expert peer review to ensure the reliability of conclusions. Throughout, the approach prioritized transparency in assumptions and documentation of data provenance to enable replication and to support bespoke client inquiries.

Concluding synthesis that distills strategic imperatives and execution levers enabling stakeholders to transform current disruptions into durable competitive advantages in construction

In conclusion, the confluence of technological acceleration, policy shifts, and supply chain realignment is redefining the priorities and execution models for data center construction. Organizations that proactively adapt by integrating supply chain risk management, adopting modular delivery techniques, and embedding sustainability into capital projects will be better positioned to navigate complexity and deliver resilient capacity. Moreover, regional differences and segmentation nuances underscore the need for tailored strategies that align project archetypes with local regulatory and operational realities.

As the industry continues to mature, the most successful players will be those that combine cross-functional governance, digital validation tools, and flexible contractual frameworks to reduce uncertainty and speed time to service. By focusing on these strategic levers, stakeholders can convert current disruptions into competitive advantage and build facilities that meet the performance, resilience, and environmental expectations of tomorrow's workloads.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of liquid cooling systems for high-density computing workloads
  • 5.2. Adoption of modular prefabricated data center units for rapid deployment
  • 5.3. Implementation of renewable energy microgrids to power data center operations
  • 5.4. Deployment of AI-driven facility management systems for predictive maintenance and operational efficiency
  • 5.5. Growing focus on hyperscale edge data centers located near urban fiber network hubs
  • 5.6. Designing seismic-resilient data center infrastructure to withstand high earthquake risk regions
  • 5.7. Use of advanced energy storage solutions for dynamic demand response in data centers

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Data Center Construction Market, by Data Center Type

  • 8.1. Colocation
  • 8.2. Edge
  • 8.3. Enterprise
  • 8.4. Hyperscale

9. Data Center Construction Market, by Construction Type

  • 9.1. New Construction
  • 9.2. Retrofit Renovation

10. Data Center Construction Market, by Tier Level

  • 10.1. Tier I
  • 10.2. Tier II
  • 10.3. Tier III
  • 10.4. Tier IV

11. Data Center Construction Market, by Component

  • 11.1. Cabling And Pathways
  • 11.2. Cooling Systems
    • 11.2.1. Air Cooled
    • 11.2.2. Liquid Cooled
  • 11.3. Fire Protection
  • 11.4. Power Systems
    • 11.4.1. Generators
    • 11.4.2. Switchgear
    • 11.4.3. Uninterruptible Power Supply
  • 11.5. Racks And Enclosures
  • 11.6. Security And Surveillance
    • 11.6.1. Access Control
    • 11.6.2. Intrusion Detection
    • 11.6.3. Video Surveillance

12. Data Center Construction Market, by End User Industry

  • 12.1. Government
  • 12.2. Healthcare
  • 12.3. IT And Telecom
  • 12.4. Retail

13. Data Center Construction Market, by Construction Service Type

  • 13.1. Design Build
  • 13.2. General Contractor
  • 13.3. Specialized Contractor

14. Data Center Construction Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. Data Center Construction Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. Data Center Construction Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Turner Construction Company
    • 17.3.2. Fluor Corporation
    • 17.3.3. Skanska USA Building Inc.
    • 17.3.4. DPR Construction, Inc.
    • 17.3.5. Holder Construction Company LLC
    • 17.3.6. Balfour Beatty Construction LLC
    • 17.3.7. Clark Construction Group LLC
    • 17.3.8. McCarthy Building Companies, Inc.
    • 17.3.9. Hensel Phelps Construction Co.
    • 17.3.10. Gilbane Building Company
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦