시장보고서
상품코드
1829035

대기오염제어 시스템 시장 : 장비 유형, 오염물질 유형, 동작 모드, 최종 용도 산업, 판매 채널별 - 세계 예측(2025-2032년)

Air Pollution Control System Market by Equipment Type, Pollutant Type, Mode of Operation, End Use Industry, Sales Channel - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 192 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

대기오염제어 시스템 시장은 2032년까지 CAGR 8.01%로 1,396억 1,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 753억 1,000만 달러
추정연도 2025 814억 9,000만 달러
예측연도 2032 1,396억 1,000만 달러
CAGR(%) 8.01%

규제 강화, 기업의 지속가능성 추진력, 기술 발전이 현대의 대기오염 방지 투자 의사결정을 형성하고 있음을 설명하는 문맥적 개요

대기 오염을 통제하는 복잡한 과제는 산업체, 규제 당국, 기술 프로바이더 모두에게 전략적 우선순위로 발전해 왔습니다. 제조, 발전 및 공정 산업 전반에 걸쳐 조직은 신규 및 기존 운영 모두에 고급 제어 시스템을 통합해야 할 필요성이 점점 더 커지고 있습니다. 이 소개에서는 대기오염제어 시스템에 대한 투자를 촉진하는 주요 요인을 설명하고, 규제 강화, 기업의 지속가능성에 대한 약속, 운영 탄력성에 대한 중요성 증가에 초점을 맞추어 상황을 설명합니다.

규제 제도는 감시와 단속을 강화하고, 사업자들이 배출 관리 관행을 재평가하고 견고한 기술 솔루션을 찾도록 촉구하고 있습니다. 동시에 이해관계자들은 보다 광범위한 환경, 사회, 거버넌스 과제의 일환으로 미립자 및 기체 물질 배출을 입증 가능한 수준으로 감축할 것을 요구하고 있습니다. 제어 장비의 기술적 성숙도는 분석 및 시스템 통합의 개선과 함께 플랜트 엔지니어와 EHS 관리자가 사용할 수 있는 실행 가능한 솔루션의 범위를 확장하고 있습니다. 그 결과, 조달 및 엔지니어링 팀은 자본 비용 및 수명주기 비용과 성능, 유지보수성 및 확장성 사이에서 균형을 맞추어야 합니다.

이 소개는 또한 재료 고유의 과제와 공정 조건과의 상호 작용을 강조하여 장비 선택 및 운영 전략에 대한 정보를 제공합니다. 의사결정권자에게는 규정 준수를 유지하고 다운타임을 최소화하면서 오염물질 프로파일과 운영 제약 및 기술 사양을 일치시키는 것이 시급한 과제임이 분명합니다. 이 요약의 나머지 부분에서는 이러한 기본 주제를 바탕으로 상황 변화, 관세의 영향, 경쟁 구도 고려, 지역 역학, 경쟁 포지셔닝, 측정 가능한 대기 질 성과를 촉진하는 권장 조치를 살펴봅니다.

업계 솔루션과 조달 행동의 재정의,규제 압력의 수렴,센서와 재료의 혁신,서비스 모델의 진화 분석

대기오염제어 시스템의 산업 환경은 정책의 진화, 기술의 수렴, 산업 관행의 변화로 인해 일련의 변혁적 변화가 진행되고 있습니다. 엄격한 배출 규제와 모니터링 요건의 확대는 법규 준수를 위한 기술적 장벽을 높이고, 보다 정교한 제어 트레인 및 지속적인 배출량 모니터링의 채택을 촉진하고 있습니다. 동시에 재료 과학과 센서 기술의 발전으로 미립자 물질과 복잡한 기체 오염 물질 모두에 대해 더 높은 포집 효율이 가능해졌고, 데이터 충실도가 향상되어 능동적인 정비 및 적응형 제어 전략이 가능해졌습니다.

또 다른 주목할 만한 변화는 공정 최적화와 배출 제어의 융합입니다. 이 시설은 공정 제어 시스템에 오염 제어 로직을 통합하여 에너지 페널티를 줄이고 전체 플랜트 효율을 개선하기 위해 공정 제어 시스템에 오염 제어 로직을 통합하고 있습니다. 이 통합된 접근 방식은 배출 성능과 운영 비용 사이의 전통적인 트레이드오프를 줄여 환경적으로나 경제적으로 설득력 있는 솔루션을 가능하게 합니다. 또한 서비스 모델도 진화하고 있습니다. 벤더와 엔지니어링 회사는 성능 보증, 성과 기반 계약, 원격 모니터링 서비스를 제공하여 소유 및 유지보수 경제성을 변화시키고 있습니다.

마지막으로 최종사용자의 우선순위에 따라 조달 행동이 변화하고 있습니다. 현재 구매자들은 수명주기의 총소유비용, 단계적 업그레이드를 위한 모듈성, 디지털 트윈 시스템 및 자산관리 시스템과의 호환성을 중요시하고 있습니다. 이러한 변화는 현장별 오염물질 프로파일과 운전 주기에 맞게 조정할 수 있는 유연한 하이브리드 제어 아키텍처에 대한 수요를 증가시키고 있습니다. 이러한 힘들이 결합되어 산업 부문 전반에 걸쳐 레거시 시스템 교체와 차세대 제어 기술 도입이 가속화되고 있습니다.

2025년 관세 환경과 수입 관세 변동이 조달 전략, 공급업체 현지화, 자본 프로젝트 위험 감소를 어떻게 재구성하고 있는지 살펴봅니다.

2025년에 발표 및 시행되는 관세 변경은 대기오염 방지 장비 및 부품의 조달 전략과 공급망 설계에 새로운 고려 사항을 도입할 것입니다. 주요 자재 및 완제품의 수입 관세 조정으로 인해 특정 장비 클래스의 비용 역학이 변화하고, 현지 조달, 공급업체 다양화, 가격 변동에 대한 계약상 보호의 중요성이 증가하고 있습니다. 이러한 환경에서 조달팀은 총 획득 비용과 수명주기 비용을 낮추면서 기술력을 유지하기 위해 벤더의 자격과 조달 조건을 적극적으로 검토해야 합니다.

관세 압력에 대응하기 위해, 많은 거래처 상표 제품 제조업체와 엔지니어링 조달 계약업체들은 고부가가치 부품의 현지화 전략을 추구하고, 관세 관련 패스스루로부터 최종사용자를 보호하기 위해 지역 조립 허브를 설립하고 있습니다. 이러한 니어쇼어링은 물류의 복잡성을 줄이고, 애프터서비스와 부품 공급력을 강화하는 두 가지 이점이 있습니다. 동시에, 구매자는 공급업체가 규모의 효율성을 달성하기 위해 더 적은 수의 거점에 제조를 집중할 경우 공급이 병목현상이 발생할 가능성에 대해 계속 경계해야 합니다.

공급 계약의 전환 조항이나 원자재와 연동된 투입물 헤지 접근 방식은 당장의 예산 영향을 어느 정도 완화할 수 있지만, 공급업체의 탄력성을 평가할 전략적 필요성을 배제할 수는 없습니다. 따라서 자본 계획 담당자와 EHS 리더는 관세 시나리오 테스트를 조달 로드맵에 통합하고, 단계적 투자가 가능한 모듈식 및 상호 운용 가능한 시스템 선택에 중점을 두어야 하며, 국경 간 컴플라이언스 및 물류 문제를 관리할 수 있는 능력이 입증된 벤더를 우선적으로 선택해야 합니다. 이러한 조치는 변화하는 무역 조건 하에서 첨단 제어 기술에 대한 접근성을 유지하면서 업무의 연속성을 보장하는 데 도움이 됩니다.

장비 기술, 오염 물질 화학 물질, 작동 모드, 산업 요구 사항, 판매 채널을 연결하는 종합적인 세분화 중심의 관점에서 사양 및 조달 선택에 정보를 제공

제품 및 애플리케이션의 다양성을 이해하려면 장비 유형 및 오염 물질의 특성, 작동 모드, 산업 요구 사항, 판매 경로를 신중하게 매핑해야 합니다. 장비 유형에 따른 분석은 흡착기, 백필터, 전기집진기, 스크러버가 대상이며, 스크러버는 다시 건식 스크러버와 습식 스크러버로 나뉩니다. 기체 오염물질은 질소산화물, 이산화황, 휘발성유기화합물, 휘발성유기화합물에 대한 추가 분석이 이루어지며, 입자상 물질은 PM10과 PM2.5로 구분하여 분석합니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 대기오염제어 시스템 시장 : 장비별

  • 흡착기
  • 백 필터
  • 전기 집진기
  • 스크러버
    • 건식 스크러버
    • 습식 스크러버

제9장 대기오염제어 시스템 시장 : 오염물질 유형별

  • 가스상 오염물질
    • 질소산화물
    • 이산화황
    • 휘발성 유기 화합물
  • 냄새
  • 입자상 물질
    • PM10
    • PM2.5

제10장 대기오염제어 시스템 시장 : 운영 모드별

  • 이동형 대기오염 제어 시스템
  • 고정형 대기오염 제어 시스템

제11장 대기오염제어 시스템 시장 : 최종 용도 산업별

  • 시멘트
  • 화학제품
  • 식품 및 음료
  • 금속
  • 의약품
  • 발전

제12장 대기오염제어 시스템 시장 : 판매 채널별

  • 직접 판매
  • 도매업체
  • 온라인

제13장 대기오염제어 시스템 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 대기오염제어 시스템 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 대기오염제어 시스템 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • FLSmidth & Co. A/S
    • Mitsubishi Heavy Industries, Ltd.
    • Siemens Energy AG
    • Doosan Corporation
    • General Electric Company
    • Thermax Limited
    • ANDRITZ AG
    • Hitachi Zosen Corporation
    • ABB Group
    • Alstom SA
    • Andritz AG
    • Calgon Carbon Corporation
KSA 25.10.13

The Air Pollution Control System Market is projected to grow by USD 139.61 billion at a CAGR of 8.01% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 75.31 billion
Estimated Year [2025] USD 81.49 billion
Forecast Year [2032] USD 139.61 billion
CAGR (%) 8.01%

Contextual overview explaining regulatory intensification, corporate sustainability drivers, and technological advances shaping modern air pollution control investment decisions

The complex challenge of controlling air pollution has evolved into a strategic priority for industrial operators, regulators, and technology providers alike. Across manufacturing, power generation, and process industries, organizations are increasingly required to integrate advanced control systems into both new builds and legacy operations. This introduction sets the scene by explaining the primary drivers that compel investment in air pollution control systems, highlighting regulatory tightening, corporate sustainability commitments, and the growing emphasis on operational resilience.

Regulatory regimes have intensified monitoring and enforcement, prompting operators to reassess emissions management practices and seek robust technical solutions. At the same time, stakeholders demand demonstrable reductions in particulate and gaseous emissions as part of broader environmental, social, and governance agendas. Technological maturity in control equipment, combined with improved analytics and system integration, has expanded the set of viable solutions available to plant engineers and EHS managers. Consequently, procurement and engineering teams must balance capital and lifecycle costs with performance, maintainability, and scalability.

This introduction also underscores the interplay between material-specific challenges and process conditions, which informs equipment selection and operational strategies. For decision-makers, the imperative is clear: align technical specifications with pollutant profiles and operational constraints while maintaining compliance and minimizing downtime. The remainder of this summary builds on these foundational themes to explore landscape shifts, tariff impacts, segmentation insights, regional dynamics, competitive positioning, and recommended actions that drive measurable air quality outcomes.

Analysis of converging regulatory pressure, sensor and materials innovation, and service model evolution that are redefining solutions and procurement behavior in the industry

The landscape for air pollution control systems is undergoing a set of transformative shifts driven by policy evolution, technological convergence, and changes in industrial practices. Stringent emission limits and expanded monitoring requirements have increased the technical bar for compliance, prompting adoption of more sophisticated control trains and continuous emissions monitoring. In parallel, advances in material science and sensor technology are enabling higher capture efficiencies for both particulate matter and complex gaseous pollutants, and improved data fidelity is permitting proactive maintenance and adaptive control strategies.

Another notable shift is the convergence of process optimization and emissions control. Facilities are integrating pollution control logic with process control systems to reduce energy penalties and improve overall plant efficiency. This integrated approach diminishes the traditional trade-off between emissions performance and operating cost, enabling solutions that are both environmentally and economically compelling. Moreover, service models are evolving: vendors and engineering firms increasingly offer performance guarantees, outcome-based contracts, and remote monitoring services that change the economics of ownership and maintenance.

Finally, end-user priorities are reshaping procurement behavior. Buyers now emphasize lifecycle total cost of ownership, modularity for phased upgrades, and compatibility with digital twins and asset management systems. These shifts are reinforcing demand for flexible, hybrid control architectures that can be tailored to site-specific pollutant profiles and operational cycles. Together, these forces are accelerating the replacement of legacy systems and the deployment of next-generation control technologies across industrial sectors.

Examination of the 2025 tariff landscape and how shifting import duties are reshaping procurement strategies, supplier localization, and risk mitigation for capital projects

Tariff changes announced and implemented in 2025 have introduced new considerations for procurement strategies and supply chain design in air pollution control equipment and components. Adjustments to import duties on key materials and finished goods have altered cost dynamics for certain classes of equipment and have amplified the importance of local sourcing, supplier diversification, and contractual protections against price volatility. This environment requires procurement teams to actively reassess vendor qualifications and procurement terms to preserve technical capability while containing total acquisition and lifecycle costs.

In response to tariff pressures, many original equipment manufacturers and engineering procurement contractors have pursued localization strategies for high-value components or established regional assembly hubs to shield end users from tariff-related pass-throughs. These nearshoring efforts have the dual benefit of reducing logistical complexity and strengthening after-sales service and parts availability. At the same time, buyers must remain vigilant about the potential for supply bottlenecks when suppliers concentrate manufacturing in fewer locations to achieve scale efficiencies.

Transition clauses in supply agreements and hedging approaches for commodity-linked inputs can mitigate some of the immediate budgetary impacts, but they do not eliminate the strategic need to evaluate supplier resilience. Therefore, capital planners and EHS leaders should incorporate tariff scenario testing into procurement roadmaps, emphasize modular and interoperable system selections that permit phased investments, and prioritize vendors with demonstrated ability to manage cross-border compliance and logistic challenges. These measures help ensure continuity of operations while preserving access to advanced control technologies under shifting trade conditions.

Comprehensive segmentation-driven perspective connecting equipment technologies, pollutant chemistries, operational modes, industry requirements, and sales channels to inform specification and procurement choices

Understanding product and application diversity requires careful mapping of equipment types to pollutant characteristics, operational modes, industry requirements, and sales pathways. Based on equipment type, analysis spans adsorbers, bag filters, electrostatic precipitators, and scrubbers with scrubbers further differentiated into dry scrubber and wet scrubber variants; each equipment class presents distinct removal mechanisms, space and utility considerations, and maintenance regimes that influence lifecycle performance. Based on pollutant type, the focus extends to gaseous pollutants, odor, and particulate matter; gaseous pollutants are further analyzed across nitrogen oxides, sulfur dioxide, and volatile organic compounds, while particulate matter is examined through PM10 and PM2.5 categories, all of which require tailored control strategies and monitoring approaches.

Based on mode of operation, the review considers both mobile air pollution control systems and stationary air pollution control systems, exploring the trade-offs between portability, deployment speed, and sustained throughput. Mobile systems have become valuable for temporary emissions events and for supporting maintenance outages, whereas stationary systems typically deliver higher integrated performance for continuous loads. Based on end use industry, segmentation covers cement, chemical, food & beverage, metal, pharmaceutical, and power generation sectors; each sector imposes unique process constraints, pollutant profiles, and regulatory drivers that alter equipment selection and operational priorities. For example, cement and metal operations frequently contend with high particulate loading and abrasive particulates that demand robust particulate control solutions, while chemical and pharmaceutical processes may require specialized adsorption or scrubbing solutions to manage hazardous gaseous emissions.

Based on sales channel, the market is evaluated across direct sales, distributor networks, and online channels; sales dynamics influence lead times, customization options, warranty structures, and after-market support availability. Collectively, this segmentation framework informs specification decisions, vendor shortlists, and project planning, enabling stakeholders to align technical capability with operational objectives and compliance timelines across diverse industrial contexts.

In-depth assessment of how distinct regulatory, industrial, and supply chain characteristics across global regions influence procurement, deployment, and aftermarket strategies

Regional dynamics are critical to strategic planning because regulatory frameworks, industrial composition, and supply chain footprints vary substantially across geographies. The Americas region combines a mix of mature environmental regulations in certain jurisdictions and legacy industrial installations that necessitate retrofit strategies and targeted modernization. In many jurisdictions across the Americas, investment cycles are influenced by both federal and state-level mandates as well as incentives for emissions reductions, which drive demand for robust particulate and gaseous control systems and for integrated monitoring solutions.

Europe, Middle East & Africa presents a heterogeneous landscape where regulatory sophistication in parts of Europe contrasts with rapidly expanding industrial capacity in sections of the Middle East and Africa. This divergence creates differentiated demand profiles: advanced economies emphasize performance optimization, lifecycle cost transparency, and stringent emissions thresholds, whereas emerging industrial markets prioritize cost-effective, reliable solutions that can be deployed at scale and maintained with limited local infrastructure. Consequently, vendors often adopt region-specific product configurations and service models to meet these varied needs.

Asia-Pacific continues to be a focal point for manufacturing intensity and energy development, with many jurisdictions tightening standards and investing in pollution control infrastructure. The region's mix of new build activity and retrofit programs presents opportunities for both modular and large-scale fixed installations. Across all regions, local content policies, tariff regimes, and logistics play decisive roles in procurement pathways and vendor positioning. Companies that align product design and service delivery with these regional nuances increase their competitiveness and improve long-term contract sustainability.

Strategic competitive analysis emphasizing engineering differentiation, after-sales service depth, alliances, and commercial models that drive vendor selection and long-term client value

Competitive positioning in the air pollution control landscape hinges on a combination of engineering expertise, service delivery, and the ability to demonstrate sustained performance under site-specific conditions. Leading firms differentiate through proprietary process know-how, materials science innovations, and integrated digital offerings that combine control hardware with analytics and predictive maintenance. This mix of capabilities helps firms convert technical advantages into measurable operational benefits for customers, including reduced downtime, lower energy penalties, and improved compliance confidence.

Strategic alliances and M&A activity remain important levers for capability expansion, enabling firms to broaden their product portfolios, enter adjacent industry verticals, or enhance geographic reach. Partnerships with local fabrication and service providers support faster deployment and improved parts logistics, which is especially valuable in regions with import constraints or high freight costs. Moreover, companies that invest in service offerings-such as performance testing, long-term operations support, and outcome-based contracts-can build recurring revenue streams and deepen customer relationships.

From a buyer's perspective, vendor selection criteria increasingly prioritize evidence of field-proven performance, the clarity of maintenance requirements, and demonstrated integration capability with existing plant control systems. Transparent service level agreements, warranties, and testing protocols are decisive negotiation levers. For suppliers, the path to sustained competitiveness lies in balancing innovation with manufacturability, scaling local support infrastructure, and offering flexible commercial models that reduce perceived procurement risk for asset owners.

Actionable, risk-aware steps for embedding emissions control into asset management, supplier strategy, modular system selection, and performance verification to ensure compliance and resilience

To translate insight into impact, industry leaders should adopt a set of pragmatic actions that align technical choices with operational and regulatory realities. First, embed emissions control decisions within asset management and process optimization programs to minimize energy penalties and to enable predictive maintenance workflows. By treating emissions systems as integral plant assets rather than add-on equipment, organizations can improve uptime and lower total lifecycle costs while ensuring compliance.

Second, diversify supplier relationships and evaluate local assembly or regional partnerships to mitigate tariff exposure and logistical disruption. Establishing multiple qualified suppliers for critical components and negotiating flexible terms can preserve continuity during market shocks. Third, prioritize modular and interoperable system architectures that allow phased upgrades and easier commissioning. Such designs permit early compliance while preserving optionality for future performance enhancements. Fourth, require rigorous performance verification and transparent warranty terms as part of procurement contracts; insist on documented test protocols that validate control efficiency under realistic operating conditions. Fifth, invest in workforce training and remote diagnostics capability to extend equipment life and optimize operating parameters through data-driven adjustments.

Taken together, these actions reduce execution risk, enhance resilience to trade and supply chain volatility, and create a stronger foundation for meeting increasingly stringent environmental expectations. Decision-makers who operationalize these recommendations will be better positioned to achieve regulatory compliance and sustainable operational outcomes.

Transparent and rigorous research methodology combining primary technical assessments, stakeholder interviews, and scenario analysis to connect trends with actionable engineering and procurement insights

The research underpinning this summary synthesizes primary technical assessments, vendor capability reviews, and a structured review of regulatory and trade developments to construct a robust evidence base. Primary inputs included engineering evaluations of equipment classes, pollutant-specific control efficacy analyses, and interviews with technical leads from operating sites and system integrators. These inputs were triangulated with publicly available regulatory documents, technical standards, and supplier technical literature to ensure that conclusions reflect current operational realities and compliance pathways.

Analytical methods emphasized comparative equipment assessment across pollutant regimes, scenario-based procurement impact analysis in light of tariff changes, and qualitative evaluation of regional deployment constraints. Where applicable, case studies provided concrete illustrations of retrofit approaches, integration strategies, and service delivery models, with attention to both technical performance and operational considerations such as maintenance windows and spare-parts logistics. The approach prioritized transparency in assumptions and clarity in limitations, and it highlighted areas where further site-specific engineering is required to finalize equipment specifications and integration designs.

This methodology supports decision-makers by linking high-level trends to actionable technical considerations and procurement levers. The resulting synthesis enables pragmatic next steps, including targeted due diligence, supplier audits, and pilots that can validate solutions under plant-specific conditions before wider rollouts.

Summative perspective highlighting the integration of emissions control with asset optimization, supplier strategy adaptation, and performance-based approaches to secure sustained compliance and efficiency

In conclusion, the air pollution control domain is at an inflection point characterized by heightened regulatory scrutiny, advancing control technologies, and evolving commercial models that together reshape procurement and operational practices. Operators must now evaluate emissions systems not only for compliance but also for their contribution to operational resilience and process efficiency. Successful projects will combine the right equipment class with tailored maintenance plans, service agreements, and digital diagnostics to deliver sustained performance in diverse industrial settings.

Looking ahead, organizations that integrate emissions management into broader asset and process optimization initiatives will capture the greatest value. This requires cross-functional collaboration between engineering, environmental health and safety, procurement, and finance teams to align technical specifications with contract terms and capital planning. Moreover, adapting supplier strategies to address tariff-driven cost shifts and regional regulatory differences will be essential to preserving program momentum. By emphasizing modularity, performance verification, and aftermarket support, industry leaders can reduce risk and accelerate compliant, cost-effective deployments that meet both operational and sustainability objectives.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of IoT-enabled real-time emission monitoring in air pollution control systems
  • 5.2. Shift towards energy-efficient electrostatic precipitators with optimized power consumption
  • 5.3. Implementation of advanced catalytic oxidation systems for volatile organic compound abatement
  • 5.4. Adoption of carbon capture and utilization technologies for cement and steel industry emissions
  • 5.5. Rising demand for modular wet scrubber units in marine and offshore emission control applications
  • 5.6. Development of multifunctional hybrid filtration systems combining HEPA, activated carbon, and UV technologies
  • 5.7. Growing investment in predictive maintenance analytics to reduce operational downtime of control equipment
  • 5.8. Increasing regulatory pressure driving installation of zero-liquid discharge scrubbers in chemical plants
  • 5.9. Emergence of biofiltration towers leveraging microbial systems for odor and VOC removal in wastewater plants
  • 5.10. Expansion of portable air quality monitoring devices integrated with cloud analytics for urban pollution management

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Air Pollution Control System Market, by Equipment Type

  • 8.1. Adsorber
  • 8.2. Bag Filter
  • 8.3. Electrostatic Precipitator
  • 8.4. Scrubber
    • 8.4.1. Dry Scrubber
    • 8.4.2. Wet Scrubber

9. Air Pollution Control System Market, by Pollutant Type

  • 9.1. Gaseous Pollutants
    • 9.1.1. Nitrogen Oxides
    • 9.1.2. Sulfur Dioxide
    • 9.1.3. Volatile Organic Compounds
  • 9.2. Odor
  • 9.3. Particulate Matter
    • 9.3.1. PM10
    • 9.3.2. PM2.5

10. Air Pollution Control System Market, by Mode of Operation

  • 10.1. Mobile Air Pollution Control Systems
  • 10.2. Stationary Air Pollution Control Systems

11. Air Pollution Control System Market, by End Use Industry

  • 11.1. Cement
  • 11.2. Chemical
  • 11.3. Food & Beverage
  • 11.4. Metal
  • 11.5. Pharmaceutical
  • 11.6. Power Generation

12. Air Pollution Control System Market, by Sales Channel

  • 12.1. Direct Sales
  • 12.2. Distributor
  • 12.3. Online

13. Air Pollution Control System Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Air Pollution Control System Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Air Pollution Control System Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. FLSmidth & Co. A/S
    • 16.3.2. Mitsubishi Heavy Industries, Ltd.
    • 16.3.3. Siemens Energy AG
    • 16.3.4. Doosan Corporation
    • 16.3.5. General Electric Company
    • 16.3.6. Thermax Limited
    • 16.3.7. ANDRITZ AG
    • 16.3.8. Hitachi Zosen Corporation
    • 16.3.9. ABB Group
    • 16.3.10. Alstom SA
    • 16.3.11. Andritz AG
    • 16.3.12. Calgon Carbon Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제