시장보고서
상품코드
1829433

모바일 증강현실 시장 : 디바이스 유형, 컴포넌트, 추적 기술, 디스플레이 유형, 애플리케이션별 - 세계 예측(2025-2032년)

Mobile Augmented Reality Market by Device Type, Component, Tracking Technology, Display Type, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 186 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

모바일 증강현실 시장은 2032년까지 CAGR 27.67%로 1,446억 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 204억 7,000만 달러
추정연도 2025 262억 1,000만 달러
예측연도 2032 1,446억 달러
CAGR(%) 27.67%

디바이스 혁신, 소프트웨어 생태계, 서비스의 융합이 어떻게 모바일 증강현실을 채택할 수 있는 실행 가능한 경로를 형성하고 있는지를 설명하는 전략적 방향성

모바일 증강현실은 실험적인 파일럿 단계를 넘어 다양한 산업 분야에서 몰입형 인터랙션, 업무 효율화, 소비자 참여를 실현하는 중심적인 역할을 하고 있습니다. 이 경영자 요약은 분야 전반의 증거와 관찰 가능한 채택 패턴을 통합하여 경영진의 의사결정을 지원하는 전략적 개요를 제시합니다. 기기 혁신, 소프트웨어 생태계, 서비스 통합, 규제 역학의 상호 작용에 초점을 맞추고, 이들이 종합적으로 채택 경로를 형성하고 있습니다.

소개에서는 엣지에서의 컴퓨팅 밀도 향상, 컴퓨터 비전 및 SLAM 알고리즘 개선, 연결성 강화 등 주요 촉진요인 프레임워크가 소비자 스마트폰, 태블릿, 그리고 새로운 AR 글래스에서의 지속적인 공간 경험을 가능하게 하는 주요 촉진요인에 대해 설명합니다. 또한 교육, 게임, 헬스케어, 산업 운영, 소매업에 이르기까지 어떤 용도의 수직적 통합이 공유 플랫폼 기능과 사용자 경험에 대한 기대에 어떻게 집약되어 있는지를 강조합니다. 이 요약은 기술 동향, 이용 사례의 실현 가능성, 통합 과제를 종합적으로 파악해야 하는 제품 리더, 솔루션 설계자, 상업 전략가에게 실용적인 시사점을 제공하는 데 중점을 두고 있습니다.

기술적 타당성에서 상업적 타당성으로의 전환이 강조되며, 특히 구성 요소의 모듈화와 통합을 가속화하는 서비스의 역할이 주목됩니다. 마지막으로 진화하는 모바일 AR(증강현실) 환경에서 확장성 있는 전개와 탄력적인 매출모델을 실현하기 위해서는 제품, 엔지니어링, 시장 전개 등 부서 간 협력이 필요하다는 점을 강조했습니다.

하드웨어, 추적 기술, 플랫폼 서비스의 동시 발전이 모바일 AR에 대한 사용자의 기대와 전개 경로를 재정의하기 위해 어떻게 수렴하고 있는가?

모바일 AR의 상황은 디바이스 하드웨어, 트래킹 방법, 플랫폼 경제성의 발전으로 인해 사용자의 기대와 개발자의 기회를 재정의하는 혁신적인 변화를 맞이하고 있습니다. 하드웨어의 궤적은 단일 목적의 시연기에서 배터리, 광학, 프로세서, 센서가 열과 인체공학적 제약의 균형을 유지하면서 연속적인 공간 컴퓨팅을 최적화하도록 설계된 멀티센서 아키텍처로 꾸준히 이동하고 있습니다. 설계되어 있습니다. 이러한 하드웨어의 성숙은 AR 세션을 지속하기 위한 마찰을 줄이고, 보다 충실한 시각적 오버레이와 보다 반응적인 인터랙션을 가능하게 합니다.

동시에 추적 기술은 마커 기반 시스템에서 점점 더 강력한 마커리스 솔루션으로 진화하고 있습니다. SLAM 변형 및 비전 기반 기술을 활용한 마커리스 접근 방식은 제약이 없는 환경에서 자연스러운 상호작용을 가능하게 함으로써 이용 사례를 확장하고 있습니다. 광학 시스루리즘, 도파관 설계, 비디오 시스루 카메라 배치 등 디스플레이의 혁신은 사용자 경험의 트레이드오프를 다양화하고 있으며, 각 접근 방식은 밝기, 시야각, 폼팩터에서 뚜렷한 이점을 제공합니다.

소프트웨어 및 서비스가 융합되어 기업의 진입장벽을 낮추는 플랫폼화된 생태계가 구축되고 있습니다. 컨텐츠 제작 툴, 런타임 플랫폼 및 통합 서비스는 표준화된 API와 개발자 툴체인을 중심으로 통합되어 배포를 가속화하고 장기적인 유지보수 리스크를 줄일 수 있습니다. 동시에 경제적, 규제적 압력으로 인해 데이터 거버넌스, 프라이버시 바이 디자인, 상호운용성에 대한 관심이 높아지고 있습니다. 이러한 변화는 제품 엔지니어링을 서비스 오케스트레이션과 연계하고, 탄탄한 개발자 및 파트너 프로그램에 투자하며, 다양한 운영 환경에서 솔루션을 확장하는 조직이 성공할 수 있도록 돕습니다.

2025년, 정책 주도공급망 전환과 비용 압박이 조달 전략을 재구성하고 지역 제조 및 공급업체 다변화를 가속화할 것입니다.

2025년 관세 부과와 무역 정책의 변화는 모바일 증강현실(AR) 하드웨어 및 부품 공급을 지원하는 세계 공급망에 심각한 마찰을 야기할 것입니다. 관세로 인한 비용 차이는 배터리, 광학, 프로세서, 센서 등 주요 하드웨어 서브 컴포넌트의 조달 결정에 영향을 미치고, 공급업체 기반을 다변화하고 핵심 제조 노드의 현지화를 가속화할 수 있는 인센티브를 제공합니다. 그 결과, 기업은 고성능 AR 디바이스에 필요한 첨단 반도체 및 광학 부품에 대한 접근성을 유지하면서 단일 원산지 리스크에 대한 노출을 줄이기 위해 조달 전략을 재조정하고 있습니다.

이러한 정책 역학은 제품 로드맵과 자본 배분 타이밍에도 영향을 미칩니다. 기업은 핵심 사용자 경험을 저하시키지 않으면서도 현지에서 구할 수 있는 부품을 대체할 수 있는 모듈식 접근 방식과 같이 관세에 영향을 받기 쉬운 부품에 대한 의존도를 낮추는 설계 선택을 우선시하고 있습니다. 공급 측면의 적응과 병행하여, 기업은 예측 가능한 운영 비용을 요구하는 기업 고객에게 경쟁력 있는 가격을 유지하기 위해 토탈 랜드드 코스트 프레임워크와 서비스 제공 모델을 재평가했습니다. 그 결과, 하드웨어의 마진 압박을 상쇄할 수 있는 소프트웨어 중심의 차별화와 서비스가 중요해집니다.

또한 관세와 관련된 불확실성은 생산 능력을 확보하고 재고 전략을 수요 신호와 일치시키기 위해 OEM, 수탁제조업체, 세계 유통업체 간의 협력을 가속화할 것입니다. 시나리오 계획, 공급업체 이중 소싱, 니어쇼어링에 적극적으로 참여하는 기업은 혼란의 위험을 줄이고 제품의 연속성을 유지할 수 있습니다. 결국, 정책으로 인한 공급망의 복잡성은 탄력적인 조달, 유연한 제품 아키텍처, 긴밀하게 통합된 공급업체 관계의 전략적 가치를 높이고 있습니다.

통합 세분화 분석을 통해 디바이스 클래스, 컴포넌트 스택, 추적 시스템, 디스플레이 아키텍처, 용도 도메인이 어떻게 채택 경로를 결정하는지를 파악할 수 있습니다.

다양한 뉘앙스의 세분화 보기를 통해 다양한 이용 사례와 구매자 계층에 걸쳐 지속가능한 가치를 제공할 가능성이 가장 높은 기술과 상업적 구성을 파악할 수 있습니다. AR글래스는 소비자 모델과 기업용 모델로 나뉘고, 스마트폰은 5G 지원과 접이식 폼팩터로, 태블릿은 5G 지원과 멀티터치 지원으로 구분됩니다. 이러한 장치의 구분은 인체공학, 세션 길이, 상호 작용 패러다임에 영향을 미치며, 소비자용 안경은 가벼운 착용감을 중시하고 기업용 모델은 내구성, 배터리 수명, 산업용 워크플로우와의 통합을 우선시합니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 모바일 증강현실 시장 : 디바이스 유형별

  • AR 글래스
    • 소비자
    • 기업
  • 스마트폰
    • 5G 대응
    • 접이식
  • 태블릿
    • 5G 대응
    • 멀티 터치

제9장 모바일 증강현실 시장 : 컴포넌트별

  • 하드웨어
    • 배터리
    • 광학
    • 프로세서
    • 센서
  • 서비스
    • 컨설팅
    • 통합
    • 지원
  • 소프트웨어
    • 컨텐츠
    • 플랫폼

제10장 모바일 증강현실 시장 : 추적 기술별

  • 마커 기반
    • 기준 마커
    • QR코드
  • 마커리스
    • SLAM 기반
      • 관성 슬램
      • 비주얼 슬램
    • 비전 기반

제11장 모바일 증강현실 시장 : 디스플레이 유형별

  • 광학 시스루
    • 프리즘 기반
    • 도파관
  • 비디오 시스루
    • 듀얼 카메라
      • 스테레오 비전
      • 광각
    • 싱글 카메라

제12장 모바일 증강현실 시장 : 용도별

  • 교육
    • AR 교과서
    • 가상 교실
  • 게임
    • 위치 정보 게임
    • 모바일 게임
  • 헬스케어
    • 의료 연수
    • 외과수술 보조
  • 산업
    • 조립
    • 정비
  • 소매
    • 점내 내비게이션
    • 가상 착용

제13장 모바일 증강현실 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 모바일 증강현실 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 모바일 증강현실 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Niantic, Inc
    • Snap Inc
    • ByteDance Ltd
    • Google LLC
    • Apple Inc
    • Meta Platforms, Inc
    • Qualcomm Incorporated
    • PTC Inc
    • Microsoft Corporation
    • Magic Leap, Inc
KSA 25.10.14

The Mobile Augmented Reality Market is projected to grow by USD 144.60 billion at a CAGR of 27.67% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 20.47 billion
Estimated Year [2025] USD 26.21 billion
Forecast Year [2032] USD 144.60 billion
CAGR (%) 27.67%

A strategic orientation outlining how device innovation, software ecosystems, and services convergence are shaping viable pathways for mobile augmented reality adoption

Mobile augmented reality has moved beyond experimental pilots to become a central enabler of immersive interaction, operational efficiency, and consumer engagement across a broad spectrum of industries. This executive summary synthesizes cross-disciplinary evidence and observable adoption patterns to present a strategic overview that supports executive decision-making. It focuses on the interplay between device innovation, software ecosystems, services integration, and regulatory dynamics that collectively shape adoption pathways.

The introduction frames key drivers such as increased compute density at the edge, improvements in computer vision and SLAM algorithms, and enhanced connectivity that together enable persistent spatial experiences on consumer smartphones, tablets, and emerging AR glasses. It highlights how application verticals-from education and gaming to healthcare, industrial operations, and retail-are converging around shared platform capabilities and user experience expectations. Throughout this summary, emphasis falls on actionable implications for product leaders, solution architects, and commercial strategists who require a synthesis of technology trends, use-case viability, and integration challenges.

Transitions from technical feasibility to commercial viability are emphasized, with special attention to the modularity of components and the role of services in accelerating integration. The introduction closes by underscoring the necessity of cross-functional alignment-product, engineering, and go-to-market-to realize scalable deployments and resilient revenue models in the evolving mobile augmented reality landscape.

How simultaneous advancements in hardware, tracking technology, and platform services are converging to redefine user expectations and deployment pathways for mobile AR

The mobile augmented reality landscape is undergoing transformative shifts driven by advances in device hardware, tracking methods, and platform economics that are redefining user expectations and developer opportunity. Hardware trajectories show a steady migration from single-purpose demonstrators to multi-sensor architectures where batteries, optics, processors, and sensors are engineered to optimize continuous spatial computing while balancing thermal and ergonomic constraints. This hardware maturation reduces friction for sustained AR sessions and enables higher-fidelity visual overlays and more responsive interactions.

At the same time, tracking technologies are evolving from marker-based systems toward increasingly robust markerless solutions. Markerless approaches leveraging SLAM variants and vision-based techniques are expanding use cases by enabling natural interactions in unconstrained environments, while marker-based approaches remain relevant for workflows that demand high-precision anchoring. Display innovations in optical see-through prism and waveguide designs as well as video see-through camera arrangements are diversifying user experience trade-offs, with each approach offering distinct advantages in brightness, field of view, and form factor.

Software and services are converging to create platformed ecosystems that lower the barrier to entry for enterprises. Content creation tools, runtime platforms, and integration services cohere around standardized APIs and developer toolchains, which accelerates deployment and reduces long-term maintenance risk. Concurrently, economic and regulatory pressures are driving greater attention to data governance, privacy by design, and interoperability. These combined shifts imply that success will favor organizations that align product engineering with service orchestration and that invest in robust developer and partner programs to scale solutions across diverse operational contexts.

Policy-driven supply chain shifts and cost pressures in 2025 that are reshaping procurement strategies and accelerating regional manufacturing and supplier diversification

The imposition of tariffs and trade policy shifts in 2025 introduces material friction into global supply chains that support mobile augmented reality hardware and component supply. Tariff-driven cost differentials influence sourcing decisions for key hardware subcomponents such as batteries, optics, processors, and sensors, creating incentives to diversify supplier bases and to accelerate localization of critical manufacturing nodes. As a result, firms are recalibrating procurement strategies to reduce exposure to single-origin risk while preserving access to advanced semiconductors and optical components necessary for high-performance AR devices.

These policy dynamics also affect the cadence of product roadmaps and capital allocation. Companies are increasingly prioritizing design choices that reduce dependency on tariff-sensitive components, including modular approaches that allow substitution of regionally available parts without degrading core user experience. Parallel to supply-side adaptations, organizations are re-evaluating total landed cost frameworks and service delivery models to maintain competitive pricing for enterprise customers who demand predictable operational expenditures. In turn, this shifts emphasis toward software-driven differentiation and services that can offset hardware margin pressure.

Moreover, tariff-related uncertainty accelerates collaboration between OEMs, contract manufacturers, and global distributors to secure capacity and to align inventory strategies with demand signals. Firms that proactively engage in scenario planning, supplier dual-sourcing, and nearshoring initiatives will reduce disruption risk and preserve product continuity. Ultimately, policy-induced supply chain complexity heightens the strategic value of resilient procurement, flexible product architectures, and tightly integrated supplier relationships.

Integrated segmentation analysis revealing how device classes, component stacks, tracking systems, display architectures, and application domains determine adoption pathways

A nuanced segmentation view reveals which technology and commercial configurations are most likely to deliver sustainable value across different use cases and buyer cohorts. Based on device type, the landscape differentiates AR glasses, smartphones, and tablets; AR glasses bifurcate into consumer and enterprise models, smartphones differentiate along 5G-enabled and foldable form factors, and tablets segment into 5G-enabled and multi-touch variants. These device distinctions influence ergonomics, session length, and interaction paradigms, with consumer glasses emphasizing lightweight wearability while enterprise variants prioritize durability, battery life, and integration with industrial workflows.

Based on component, the ecosystem encompasses hardware, services, and software; hardware incorporates batteries, optics, processors, and sensors, services cover consulting, integration, and support, and software spans content, platforms, and tools. This component-level decomposition clarifies investment levers: hardware improvements raise baseline capability, software platforms scale developer ecosystems, and services bridge technical implementation to measurable business outcomes. Tracking technology presents another axis of differentiation, separating marker-based and markerless approaches; marker-based techniques include fiducial markers and QR codes while markerless strategies rely on SLAM and vision-based methods, with SLAM further dividing into inertial and visual variants. These tracking trade-offs determine deployment complexity and environmental robustness across indoor and outdoor contexts.

Display type further partitions offerings into optical see-through and video see-through devices; optical see-through displays leverage prism and waveguide systems while video see-through devices operate using dual-camera and single-camera arrangements, with dual-camera systems offering stereo vision and wide-angle configurations. Application segmentation identifies distinctive value propositions in education, gaming, healthcare, industrial, and retail: education manifests as AR textbooks and virtual classrooms, gaming appears in location-based and mobile titles, healthcare focuses on medical training and surgical assistance, industrial use cases concentrate on assembly and maintenance, and retail activation includes in-store navigation and virtual try-on. Collectively, these segmentation lenses illuminate where technical capability aligns with user needs and where investment in integration and content will most rapidly translate into adoption and operational impact.

Regional dynamics and strategic considerations spanning the Americas, Europe Middle East & Africa, and Asia-Pacific that determine adoption velocity and partnership models

Regional dynamics shape adoption strategies, talent allocation, and partnership models across the Americas, Europe Middle East & Africa, and Asia-Pacific. In the Americas, commercial experimentation with AR is strongly influenced by mature consumer markets and early carrier investment in high-bandwidth connectivity, which together encourage innovation in social, location-based, and retail experiences. North American enterprise adoption is further propelled by close proximity to silicon vendors and a dense ecosystem of developers and content creators, enabling rapid prototyping and pilot scaling.

In Europe, the Middle East & Africa, regulatory and standards considerations weigh more heavily on deployment rhythm; privacy regulations and cross-border data considerations influence platform architecture and integration choices. This region also demonstrates strength in industrial and healthcare deployments where established manufacturing bases and advanced medical research institutions drive demand for reliable, standards-compliant AR solutions. Conversely, the Middle East presents opportunities for large-scale, high-visibility consumer and retail activations that can accelerate awareness and mainstream acceptance.

Asia-Pacific represents a heterogeneous landscape with strong device manufacturing capabilities, aggressive carrier investments in connectivity, and large-scale consumer adoption ecosystems. Several economies in the region benefit from integrated supply chains for optics, semiconductors, and sensors, supporting quicker time-to-market for novel form factors. Collectively, these regional attributes imply differing prioritization: the Americas emphasize rapid commercialization and developer ecosystems, Europe, Middle East & Africa prioritize regulated enterprise deployments and standards alignment, and Asia-Pacific focuses on scale, manufacturing integration, and rapid consumer uptake.

How platform incumbents, chip and optics innovators, and service integrators are forging strategic partnerships and shaping competitive differentiation across AR value chains

Competitive dynamics in mobile augmented reality are shaped by a mix of platform incumbents, semiconductor innovators, specialist optics and sensor suppliers, and vertically oriented solution providers. Platform companies continue to invest in developer tools, AR runtimes, and privacy-preserving data services to capture engagement and to lower friction for cross-device experiences. Semiconductor and systems vendors emphasize power efficiency and integrated sensor fusion to enable longer sessions and richer spatial understanding, while optics and display specialists pursue waveguide and prism innovations that expand field-of-view without compromising wearability.

Specialist software firms and content studios are differentiating through domain-specific toolchains and high-quality, context-aware content pipelines that address training, remote assistance, and immersive retail. At the same time, systems integrators and consulting firms are establishing playbooks for end-to-end deployments that combine advisory, integration, and long-tail support-capabilities that enterprises value when deploying mission-critical applications. Partnerships across these groups are increasingly strategic, with collaboration agreements that span hardware certification, platform optimization, and co-developed vertical solutions.

Companies that demonstrate a balanced portfolio-showing strength in platform-level services, hardware optimization, and ecosystem partnerships-are positioned to capture the widest range of commercial opportunities. Conversely, firms that remain siloed risk commoditization or find adoption constrained to niche segments. The competitive inference is clear: success requires coordinated product roadmaps, open developer engagement, and the ability to deliver measurable outcomes in target verticals.

Actionable steps for product, engineering, and commercial teams to build resilient AR offerings that scale across devices, components, and enterprise use cases

Industry leaders must adopt a pragmatic, phased approach that balances near-term commercial wins with investments in platform robustness and ecosystem growth. First, prioritize product architectures that enable component modularity, allowing substitution of batteries, optics, processors, and sensors with minimal rework. This design freedom reduces supplier concentration risk and accelerates adaptation to regulatory or tariff-related pressures. Next, invest in developer experiences and toolchains that make it straightforward to deliver cross-device applications for AR glasses, smartphones, and tablets, recognizing that each device type drives different interaction and ergonomics requirements.

Simultaneously, pursue tightly integrated services offerings that translate platform capability into operational outcomes for enterprise customers. Consulting, integration, and ongoing support must be articulated as part of the value proposition to bridge the gap between prototype and production. Establish partnerships with specialist tracking technology providers and display vendors to ensure robust markerless and marker-based performance, and to align product roadmaps with evolving SLAM and vision-based breakthroughs. Finally, implement governance frameworks that address privacy, data residency, and interoperability to accelerate procurement processes and to reduce enterprise adoption friction.

By sequencing investments across hardware modularity, developer platforms, and service orchestration-and by embedding governance into product and sales processes-industry leaders can generate sustained momentum and convert experimental deployments into repeatable, scalable programs.

A methodology grounded in stakeholder interviews, technical literature review, patent and standards analysis, and scenario-based triangulation to validate conclusions

This research synthesized primary stakeholder interviews, vendor technical literature, patent filing trends, and publicly available regulatory guidance to construct a comprehensive view of the mobile augmented reality ecosystem. Primary inputs included qualitative discussions with device engineers, software architects, product leaders, and procurement specialists to validate technology trade-offs and deployment constraints. Secondary inputs included technical white papers, standards proposals, and academic publications that informed assessments of tracking accuracy, display technology maturity, and sensor fusion performance.

The methodology combined thematic analysis with cross-validation across multiple evidence streams to reduce bias and to ensure that insights reflect both technological capability and commercial feasibility. Scenario analysis was applied to evaluate supply chain resilience and policy impacts, while use-case mapping linked component capabilities to operational outcomes across education, gaming, healthcare, industrial, and retail domains. Where applicable, comparative benchmarking against device prototypes and developer SDKs provided grounding for assertions about ergonomics, session length, and developer usability.

Limitations of the research include variability in vendor roadmap disclosures and the proprietary nature of some integration metrics. To mitigate these constraints, the approach emphasized triangulation and sought corroboration across independent sources. The resulting methodology provides a robust foundation for strategic decision-making while remaining transparent about the assumptions and data sources that underpin the analysis.

A concise synthesis emphasizing the convergence of technology readiness, services integration, and strategic procurement as the gateway to scalable AR deployment

In summary, mobile augmented reality is transitioning from demonstrative novelty to a strategic capability that unlocks new forms of interaction, productivity, and engagement across multiple sectors. Progress in hardware, tracking, display systems, and software platforms is enabling more reliable and compelling spatial experiences, while services are proving essential to translate technical capability into measurable business outcomes. Regulatory and policy shifts, including tariff-induced supply chain adjustments, reinforce the need for flexible product architectures and diversified sourcing strategies.

The path to scaled adoption favors organizations that align device innovation with platform openness, invest in developer and partner ecosystems, and incorporate services that close the deployment gap. Regional dynamics will continue to influence where investments accelerate and which deployment patterns prevail, making localized strategy and supplier relationships indispensable. Executives who integrate these insights into product roadmaps and go-to-market plans will be better positioned to capture sustained value as AR moves into mainstream commercial use.

Taken together, the evidence suggests that careful orchestration across engineering, commercial, and operational domains-backed by disciplined scenario planning-will determine which organizations transform early technical promise into durable competitive advantage.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of generative AI with mobile augmented reality for personalized experiences
  • 5.2. Expansion of location based augmented reality gaming experiences with high fidelity map integration
  • 5.3. Adoption of 5G networks to enable seamless high bandwidth augmented reality streaming and collaboration
  • 5.4. Integration of augmented reality features in mobile social commerce to drive immersive shopping journeys
  • 5.5. Development of lightweight AR smart glasses optimized for mobile connectivity and extended battery life
  • 5.6. Implementation of robust privacy controls and data protection measures for mobile augmented reality applications
  • 5.7. Utilization of AR powered remote assistance tools for field service optimization and training

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Mobile Augmented Reality Market, by Device Type

  • 8.1. Ar Glasses
    • 8.1.1. Consumer
    • 8.1.2. Enterprise
  • 8.2. Smartphones
    • 8.2.1. 5G Enabled
    • 8.2.2. Foldable
  • 8.3. Tablets
    • 8.3.1. 5G Enabled
    • 8.3.2. Multi Touch

9. Mobile Augmented Reality Market, by Component

  • 9.1. Hardware
    • 9.1.1. Batteries
    • 9.1.2. Optics
    • 9.1.3. Processors
    • 9.1.4. Sensors
  • 9.2. Services
    • 9.2.1. Consulting
    • 9.2.2. Integration
    • 9.2.3. Support
  • 9.3. Software
    • 9.3.1. Content
    • 9.3.2. Platforms
    • 9.3.3. Tools

10. Mobile Augmented Reality Market, by Tracking Technology

  • 10.1. Marker Based
    • 10.1.1. Fiducial Markers
    • 10.1.2. QR Code
  • 10.2. Markerless
    • 10.2.1. SLAM Based
      • 10.2.1.1. Inertial Slam
      • 10.2.1.2. Visual Slam
    • 10.2.2. Vision Based

11. Mobile Augmented Reality Market, by Display Type

  • 11.1. Optical See Through
    • 11.1.1. Prism Based
    • 11.1.2. Waveguide
  • 11.2. Video See Through
    • 11.2.1. Dual Camera
      • 11.2.1.1. Stereo Vision
      • 11.2.1.2. Wide Angle
    • 11.2.2. Single Camera

12. Mobile Augmented Reality Market, by Application

  • 12.1. Education
    • 12.1.1. AR Textbooks
    • 12.1.2. Virtual Classrooms
  • 12.2. Gaming
    • 12.2.1. Location Based Gaming
    • 12.2.2. Mobile Gaming
  • 12.3. Healthcare
    • 12.3.1. Medical Training
    • 12.3.2. Surgical Assistance
  • 12.4. Industrial
    • 12.4.1. Assembly
    • 12.4.2. Maintenance
  • 12.5. Retail
    • 12.5.1. In Store Navigation
    • 12.5.2. Virtual Try On

13. Mobile Augmented Reality Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Mobile Augmented Reality Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Mobile Augmented Reality Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Niantic, Inc
    • 16.3.2. Snap Inc
    • 16.3.3. ByteDance Ltd
    • 16.3.4. Google LLC
    • 16.3.5. Apple Inc
    • 16.3.6. Meta Platforms, Inc
    • 16.3.7. Qualcomm Incorporated
    • 16.3.8. PTC Inc
    • 16.3.9. Microsoft Corporation
    • 16.3.10. Magic Leap, Inc
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제